Landslide Hazard Prediction Based on UAV Remote Sensing and Discrete Element Model Simulation—Case from the Zhuangguoyu Landslide in Northern China
Abstract
:1. Introduction
2. Study Area
2.1. General Settings
2.2. Landslide Details
3. Materials and Methodologies
3.1. Modeling Framework
3.2. Deformation from SBAS-InSAR
3.3. UAV Remote Sensing
3.4. Extreme Rainfall Analysis
3.5. Landslide Stability Evaluation and Runout Analysis
3.5.1. Failure Probability of the Landslide
- (i)
- A geological model of the landslide was first established with grid shapes of quadrilaterals and triangles. Considering the geometry and volume of the slope, the size of the grids was set to 0.5 m, thus determining a total of 6027 nodes and 5866 elements (Figure 8).
- (ii)
- The whole slope was divided into a sliding body and bedrock according to the cross-section of the landslide, and the hydraulic boundary conditions were added according to the results from the extreme rainfall analysis. Because the on-site engineering investigation did not reveal the ground water level, the eater level was not set. The seepage field of the slope under rainfall scenarios was computed in the SEEP/W module of the software, and the results from this step were taken to conduct the stability analysis using the SLOPE/W module. During this procedure, when the deterministic parameters were used as the inputs, the factor of safety (FS) was obtained. The failure probability was computed when the distribution functions of the shear strength parameters were defined (i.e., stochastic parameters). In this study, the deterministic values for the parameters were set according to Table 2, which were mainly provided by the archived landslide report from the local authority of the geo-environmental department. The cohesion and friction angle followed a normal distribution based on the existing literature [18], where the max and min values were determined by laboratory tests.
- (iii)
- As analyzed in Section 2.2, the landslide is under the slow-moving stage, and future earthquake scenarios will possibly cause catastrophic failure. In China, the seismic hazard assessment and seismic design of buildings are commonly based on seismic intensity zonation maps [53]. Tianjin city is classified as the VII level in the latest version of the Seismic Ground Motion Parameters Zonation Map of China, representing a peak ground acceleration of 0.15 g [54]. Regarding the seismic duration, the assessment in this study was not for a specific event, but for a general scenario. We referred to the most famous earthquake within the study area, namely the Tangshan M7.8 earthquake, which lasted 14–16 s (https://www.britannica.com/event/Tangshan-earthquake-of-1976, accessed on 10 September 2024). Hence, the duration of the earthquake scenario for the ZGYL was set as 20 s. For a comparison, the duration of the Luding M6.8 earthquake in China in 2022 was ~20 s [55].
3.5.2. Landslide Runout Analysis Based on Discrete Element Model
4. Results
4.1. Extreme Rainfall and Landslide Stability Analysis
4.2. Landslide Runout and Kinetic Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haque, U.; Blum, P.; Da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.P.; Auflič, M.J.; Andres, N.; Poyiadji, E.; et al. Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. [Google Scholar] [CrossRef]
- Hürlimann, M.; Guo, Z.; Puig-Polo, C.; Medina, V. Impacts of future climate and land cover changes on landslide susceptibility: Regional scale modelling in the Val d’ Aran region (Pyrenees, Spain). Landslides 2022, 19, 99–118. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Melillo, M. Deep learning forecast of rainfall-induced shallow landslides. Nat. Commun. 2023, 14, 2466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, C.; Peng, J.; Zhou, Y.; Wang, S.; Chen, Y.; Tang, Y. Fatal landslides in China from 1940 to 2020: Occurrences and vulnerabilities. Landslides 2023, 20, 1243–1264. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, B.; Zhu, Y.; He, J.; Zhang, T. How do the landslide and non-landslide sampling strategies impact landslide susceptibility assessment?—A case study at catchment scale from China. J. Rock Mech. Geotech. Eng. 2024, 16, 877–894. [Google Scholar] [CrossRef]
- EM-DAT, CRED/UCLouvain. Brussels, Belgium. Available online: www.emdat.be (accessed on 15 October 2024).
- Corominas, J.; Van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.-P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Env. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Pardeshi, S.D.; Autade, S.E.; Pardeshi, S.S. Landslide hazard assessment: Recent trends and techniques. SpringerPlus 2013, 2, 523. [Google Scholar] [CrossRef]
- Tyagi, A.; Tiwari, R.K.; James, N. A review on spatial, temporal and magnitude prediction of landslide hazard. J. Asian Earth Sci. X 2022, 7, 100099. [Google Scholar] [CrossRef]
- Stanley, T.; Kirschbaum, D.B. A heuristic approach to global landslide susceptibility mapping. Nat. Hazards 2017, 87, 145–164. [Google Scholar] [CrossRef]
- Zêzere, J.L.; Pereira, S.; Melo, R.; Oliveira, S.C.; Garcia, R.A.C. Mapping landslide susceptibility using data-driven methods. Sci. Total Environ. 2017, 589, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Lima, P.; Steger, S.; Glade, T.; Jiang, T.; Zhang, J.; Liu, T.; Wang, Y. National-scale data-driven rainfall induced landslide susceptibility mapping for China by accounting for incomplete landslide data. Geosci. Front. 2021, 12, 101248. [Google Scholar] [CrossRef]
- Medina, V.; Hürlimann, M.; Guo, Z.; Lloret, A.; Vaunat, J. Fast physically-based model for rainfall-induced landslide susceptibility assessment at regional scale. Catena 2021, 201, 105213. [Google Scholar] [CrossRef]
- Guo, Z.; Torra, O.; Hürlimann, M.; Medina, V.; Puig-Polo, C. FSLAM: A QGIS plugin for fast regional susceptibility assessment of rainfall-induced landslides. Environ. Model. Softw. 2022, 150, 105354. [Google Scholar] [CrossRef]
- Kasama, K.; Furukawa, Z.; Hu, L. Practical reliability analysis for earthquake-induced 3D landslide using stochastic response surface method. Comput. Geotech. 2021, 137, 104303. [Google Scholar] [CrossRef]
- Li, C.; Wang, G.; He, J.; Wang, Y. A novel approach to probabilistic seismic landslide hazard mapping using Monte Carlo simulations. Eng. Geol. 2022, 301, 106616. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Yin, K.; Shrestha, D.P.; Zhang, L. Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China. Eng. Geol. 2020, 273, 105667. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, X.; Xu, Q.; Li, T.; Zhang, T. 3D probabilistic landslide run-out hazard evaluation for quantitative risk assessment purposes. Eng. Geol. 2021, 293, 106303. [Google Scholar] [CrossRef]
- Kamran, M.; Hu, X.; Hussain, M.A.; Sanaullah, M.; Ali, R.; He, K. Dynamic Response and Deformation Behavior of Kadui-2 Landslide Influenced by Reservoir Impoundment and Rainfall, Baoxing, China. J. Earth Sci. 2023, 34, 911–923. [Google Scholar] [CrossRef]
- Liu, B.; Siu, Y.L.; Mitchell, G.; Xu, W. Exceedance probability of multiple natural hazards: Risk assessment in China’s Yangtze River Delta. Nat. Hazards 2013, 69, 2039–2055. [Google Scholar] [CrossRef]
- Lari, S.; Frattini, P.; Crosta, G.B. A probabilistic approach for landslide hazard analysis. Eng. Geol. 2014, 182, 3–14. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, C. Qualitative Analyses of Correlations between Strong Ground Motions of the Three Large Earthquakes and Landslide Distributions. J. Earth Sci. 2023, 34, 369–380. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, H.; Park, H.J.; Heo, J.H. Temporal prediction modeling for rainfall-induced shallow landslide hazards using extreme value distribution. Landslides 2021, 18, 321–338. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, Z.; Xu, C.; Wen, Q. Numerical investigation of landslide kinetics for the recent Mabian landslide (Sichuan, China). Landslides 2019, 16, 2287–2298. [Google Scholar] [CrossRef]
- Guo, Z.; Zhou, X.; Huang, D.; Zhai, S.; Tian, B. Dynamic Simulation Insights into Friction Weakening Effect on Rapid Long-Runout Landslides: A Case Study of the Yigong Landslide in the Tibetan Plateau, China. China Geol. 2024, 7, 222–236. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, Y.; Zhan, L. SPH-based simulation of flow process of a landslide at Hongao landfill in China. Nat. Hazards 2018, 93, 1113–1126. [Google Scholar] [CrossRef]
- Song, Y.; Huang, D.; Ce, D. Numerical modelling of the 2008 Wenchuan earthquake-triggered Daguangbao landslide using a velocity and displacement dependent friction law. Eng. Geol. 2016, 215, 50–68. [Google Scholar] [CrossRef]
- Luo, J.; Pei, X.; Evans, S.G.; Huang, R. Mechanics of the earthquake-induced Hongshiyan landslide in the 2014 Mw 6.2 Ludian earthquake, Yunnan, China. Eng. Geol. 2019, 251, 197–213. [Google Scholar] [CrossRef]
- Huang, T.; Ding, M.; She, T.; Tian, S.; Yang, J. Numerical simulation of a high-speed landslide in Chenjiaba, Beichuan, China. Eng. Geol. 2017, 14, 2137–2149. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhao, W.; He, S.; Wang, D.; Zhou, S.; An, H.; Wang, Z.; Cheng, D. Numerical modeling and dynamic analysis of the 2017 Xinmo landslide in Maoxian County, China. J. Mt. Sci. 2017, 14, 1701–1711. [Google Scholar] [CrossRef]
- Hussain, Y.; Schlögel, R.; Innocenti, A.; Hamza, O.; Iannucci, R.; Martino, S.; Havenith, H.B. Review on the Geophysical and UAV-Based Methods Applied to Landslides. Remote Sens. 2022, 14, 4564. [Google Scholar] [CrossRef]
- Casagli, N.; Intrieri, E.; Tofani, V.; Gigli, G. Landslide detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth Environ. 2023, 4, 51–64. [Google Scholar] [CrossRef]
- Van Natijne, A.L.; Bogaard, T.A.; van Leijen, F.J.; Hanssen, R.F.; Lindenbergh, R.C. World-wide InSAR sensitivity index for landslide deformation tracking. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102829. [Google Scholar] [CrossRef]
- Wang, X.; Yin, J.; Luo, M.; Ren, H.; Li, J.; Wang, L.; Li, D.; Li, G. Active High-Locality Landslides in Mao County: Early Identification and Deformational Rules. J. Earth Sci. 2023, 34, 1596–1615. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Chang, K.T.; Monserrat, O.; Martha, T.R.; Manconi, A. Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth-Sci. Rev. 2021, 216, 103574. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, B.; Dai, K.; Dong, X.; Li, W.; Zhu, X.; Yang, Y.; Xiao, X.; Wang, X.; Huang, J.; et al. Remote sensing for landslide investigations: A progress report from China. Eng. Geol. 2023, 321, 107156. [Google Scholar] [CrossRef]
- Cao, C.; Zhu, K.; Xu, P.; Shao, B.; Yang, G.; Song, S. Refined landslide susceptibility analysis based on InSAR technology and UAV multi-source data. J. Clean. Prod. 2022, 368, 133146. [Google Scholar] [CrossRef]
- Ilinca, V.; Sandric, I.; Chitu, Z.; Irimia, R.; Gheuca, I. UAV applications to assess short-term dynamics of slow-moving landslides under dense forest cover. Landslides 2022, 19, 1717–1734. [Google Scholar] [CrossRef]
- Choi, S.K.; Ramirez, R.A.; Lim, H.H.; Kwon, T.H. Multi-source remote sensing-based landslide investigation: The case of the August 7, 2020, Gokseong landslide in South Korea. Sci. Rep. 2024, 14, 12048. [Google Scholar] [CrossRef]
- Bi, J.; Song, C.; Cao, F. Declustering characteristics of the North China Plain seismic belt and its effect on probabilistic seismic hazard analysis. Sci. Rep. 2024, 14, 22170. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhao, J. The surface rupture zone and paleoseismic evidence on the seismogenic fault of the 1976 Ms 7.8 Tangshan earthquake, China. Geomorphology 2019, 327, 297–306. [Google Scholar] [CrossRef]
- Yan, A.; Yu, X.; Shen, Z.K.; Jing, L.-Z. A possible seismic gap and high earthquake hazard in the North China Basin. Geology 2015, 43, 19–22. [Google Scholar] [CrossRef]
- Xie, F.; Wang, Z.; Liu, J. Seismic Hazard and Risk Assessments for Beijing–Tianjin–Tangshan, China, Area. Pure Appl. Geophys. 2011, 168, 731–738. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Sorkhabi, O.M.; Khajehzadeh, M.; Keawsawasvong, S. Landslides monitoring with SBAS-InSAR and GNSS. Phys. Chem. Earth Parts A/B/C 2023, 132, 103486. [Google Scholar] [CrossRef]
- Fu, S.; Chen, L.; Woldai, T.; Yin, K.; Gui, L.; Li, D.; Du, J.; Zhou, C.; Xu, Y.; Lian, Z. Landslide hazard probability and risk assessment at the community level: A case of western Hubei, China. Nat. Hazards Earth Syst. Sci. 2020, 20, 581–601. [Google Scholar] [CrossRef]
- Peres, D.J.; Cancelliere, A. Estimating return period of landslide triggering by Monte Carlo simulation. J. Hydrol. 2016, 541, 256–271. [Google Scholar] [CrossRef]
- Strouth, A.; McDougall, S. Individual risk evaluation for landslides: Key details. Landslides 2022, 19, 977–991. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, K.M.; Hwang, I.T.; Lee, J.H. Regional Landslide Hazard Assessment Using Extreme Value Analysis and a Probabilistic Physically Based Approach. Sustainability 2022, 14, 2628. [Google Scholar] [CrossRef]
- Guo, Z.; Ferrer, J.V.; Hürlimann, M.; Medina, V.; Puig-Polo, C.; Yin, K.; Huang, D. Shallow landslide susceptibility assessment under future climate and land cover changes: A case study from southwest China. Geosci. Front. 2023, 14, 101542. [Google Scholar] [CrossRef]
- Xu, W.; Wu, J.; Gao, M. Seismic Hazard Analysis of China’s Mainland Based on a New Seismicity Model. Int. J. Disaster Risk Sci. 2023, 14, 280–297. [Google Scholar] [CrossRef]
- GB18306/2015; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Seismic Ground Motion Parameters Zonation Map of China. China Standard Press: Beijing, China, 2015.
- An, Y.; Wang, D.; Ma, Q.; Xu, Y.; Li, Y.; Zhang, Y.; Liu, Z.; Huang, C.; Su, J.; Li, J.; et al. Preliminary report of the September 5, 2022 MS6.8 Luding earthquake, Sichuan, China. Earthq. Res. Adv. 2023, 3, 100184. [Google Scholar] [CrossRef]
- Su, A.; Feng, M.; Dong, S.; Zou, Z.; Wang, J. Improved Statically Solvable Slice Method for Slope Stability Analysis. J. Earth Sci. 2022, 33, 1190–1203. [Google Scholar] [CrossRef]
- Huang, F.; Xiong, H.; Jiang, S.; Yao, C.; Fan, X.; Catani, F.; Chang, Z.; Zhou, X.; Huang, J.; Liu, K. Modelling landslide susceptibility prediction: A review and construction of semi-supervised imbalanced theory. Earth-Sci. Rev. 2024, 250, 104700. [Google Scholar] [CrossRef]
- Catani, F.; Lagomarsino, D.; Segoni, S.; Tofani, V. Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Nat. Hazards Earth Syst. Sci. 2013, 13, 2815–2831. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Saifullah, M.; Li, Q.; Li, X. Impact of DEM Resolution and Spatial Scale: Analysis of Influence Factors and Parameters on Physically Based Distributed Model. Adv. Meteorol. 2016, 2016, 8582041. [Google Scholar] [CrossRef]
- Segoni, S.; Pappafico, G.; Luti, T.; Catani, F. Landslide susceptibility assessment in complex geological settings: Sensitivity to geological information and insights on its parameterization. Landslides 2020, 17, 2443–2453. [Google Scholar] [CrossRef]
- Salciarini, D.; Volpe, E.; Kelley, S.A.; Brocca, L.; Camici, S.; Fanelli, G.; Tamagnini, C. Modeling the Effects Induced by the Expected Climatic Trends on Landslide Activity at Large Scale. Procedia Eng. 2016, 158, 541–545. [Google Scholar] [CrossRef]
- Tofani, V.; Bicocchi, G.; Rossi, G.; Segoni, S.; D’Ambrosio, M.; Casagli, N.; Catani, F. Soil characterization for shallow landslides modeling: A case study in the Northern Apennines (Central Italy). Landslides 2017, 14, 755–770. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, J.; Yang, X. A novel approach for slope stability evaluation considering landslide dynamics and its application to reservoir landslide. Nat. Hazards 2024, 120, 3589–3621. [Google Scholar] [CrossRef]
- Yang, T.; Rao, Y.; Li, B.; Chen, H.; Yu, Z.; Zhang, Z.; Song, Y.; Wu, H. A novel physical modeling technique for slope failure caused by strength reduction: Comparisons with DEM simulation. Granul. Matter 2023, 25, 26. [Google Scholar] [CrossRef]
- Griffiths, D.; Lane, P. Slope stability analysis by finite elements. Geotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, M.; Song, Z.; Wang, S.; Zhao, Z.; Zuo, S. Regional-scale modeling of rainfall-induced landslides under random rainfall patterns. Environ. Model. Softw. 2022, 155, 105454. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Carrea, D.; Derron, M.H.; Oppikofer, T.; Penna, I.M.; Rudaz, B. A review of methods used to estimate initial landslide failure surface depths and volumes. Eng. Geol. 2020, 267, 105478. [Google Scholar] [CrossRef]
- Ma, P.; Peng, J.; Zhuang, J.; Zhu, X.; Liu, C.; Cheng, Y.; Zhang, Z. Initiation Mechanism of Loess Mudflows by Flume Experiments. J. Earth Sci. 2022, 33, 1166–1178. [Google Scholar] [CrossRef]
- Van Dine, D.F.; Rodman, R.F.; Jordan, P.; Dupas, J. Kuskonook Creek, an example of a debris flow analysis. Landslides 2005, 2, 257–265. [Google Scholar] [CrossRef]
- Rossi, M.; Witt, A.; Guzzetti, F.; Malamud, B.D.; Peruccacci, S. Analysis of historical landslide time series in the Emilia-Romagna region, northern Italy. Earth Surf. Process. Landf. 2010, 35, 1123–1137. [Google Scholar] [CrossRef]
Weight | Duration for Single Fight | Cruising Speed | Max Climbing Speed | Pixel of Camera | Resolution of Images |
---|---|---|---|---|---|
0.915 kg | 0.5 h | 15 m/s | 8 m/s | 2 × 107 | 5280 × 3956 |
Section | Unit Weight (KN/m3) | Cohesion (KPa) | Friction Angle (°) | Elastic Modulus (KPa) | Poisson’s Ratio | Volumetric Moisture Content |
---|---|---|---|---|---|---|
Sliding body | 20 | 30 | 22 | 1200 | 0.3 | 0.4 |
Bedrock | 21 | 50 | 30 | 20,000 | 0.33 | 0.3 |
Section | Density (kg/m3) | Cohesion (KPa) | Friction Angle (°) | Bulk Modulus (MPa) | Shear Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|---|---|---|
Sliding body | 21 | 30 | 22 | 60 | 50 | 0.35 |
Bedrock | 21 | 50 | 30 | 300 | 100 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Zhang, Y.; Zhang, Y.; Guo, Z.; Liu, Y.; Zhou, X.; Guo, Z.; Guo, W.; Wan, L.; Duan, L.; et al. Landslide Hazard Prediction Based on UAV Remote Sensing and Discrete Element Model Simulation—Case from the Zhuangguoyu Landslide in Northern China. Remote Sens. 2024, 16, 3887. https://doi.org/10.3390/rs16203887
Li G, Zhang Y, Zhang Y, Guo Z, Liu Y, Zhou X, Guo Z, Guo W, Wan L, Duan L, et al. Landslide Hazard Prediction Based on UAV Remote Sensing and Discrete Element Model Simulation—Case from the Zhuangguoyu Landslide in Northern China. Remote Sensing. 2024; 16(20):3887. https://doi.org/10.3390/rs16203887
Chicago/Turabian StyleLi, Guangming, Yu Zhang, Yuhua Zhang, Zizheng Guo, Yuanbo Liu, Xinyong Zhou, Zhanxu Guo, Wei Guo, Lihang Wan, Liang Duan, and et al. 2024. "Landslide Hazard Prediction Based on UAV Remote Sensing and Discrete Element Model Simulation—Case from the Zhuangguoyu Landslide in Northern China" Remote Sensing 16, no. 20: 3887. https://doi.org/10.3390/rs16203887
APA StyleLi, G., Zhang, Y., Zhang, Y., Guo, Z., Liu, Y., Zhou, X., Guo, Z., Guo, W., Wan, L., Duan, L., Luo, H., & He, J. (2024). Landslide Hazard Prediction Based on UAV Remote Sensing and Discrete Element Model Simulation—Case from the Zhuangguoyu Landslide in Northern China. Remote Sensing, 16(20), 3887. https://doi.org/10.3390/rs16203887