Progress in Remote Sensing of Heavy Metals in Water
Abstract
:1. Overview of Heavy Metal Pollution
2. Spectral Characteristics of Heavy Metal
3. Empirical Remote Sensing Algorithms of Heavy Metal in Waters
4. Machine Learning Algorithms
4.1. Machine Learning Versus Traditional Algorithms
4.2. Machine Learning Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, J.; Wang, Y.; Li, Q.; Liu, X.; Cao, Y.; He, L. Distribution characteristics, pollution assessment and source analysis of heavy metals in a drinking water source area. Environ. Chem. 2022, 41, 2276–2288. [Google Scholar]
- Wang, H.; Gou, W.; Wu, Y.; Li, W. Progress in remediation technologies of heavy metals contaminated soil: Principles and technologies. Chin. J. Ecol. 2021, 40, 2277–2288. [Google Scholar] [CrossRef]
- Dai, B.; Lv, J.; Zhan, J.; Zhang, Z.; Liu, Y.; Zhou, R. Assessment of sources, spatial distribution and ecological risk of heavy metals in soils in a typical industry-based city of Shandong Province, Eastern China. Environ. Sci. 2015, 36, 507–515. [Google Scholar] [CrossRef]
- Chen, C.; Liu, F.; Tang, S. Estimation of Heavy Metal Concentration in the Pearl River Estuarine Waters from Remote Sensing Data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2575–2578. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Z.; Lin, Z.; Li, Z.; Zhu, Z.; Chen, J. A study of estuarine chemistry in the Zhujiang River, I. Trace metal species in water phase. Oceanol. Limnol. Sin. 1982, 13, 19–25. [Google Scholar]
- Lin, Z.; Zheng, J.; Wang, Z.; Chen, J. A study of estuarine chemistry in the Zhujiang River II. Chemical forms of heavy metals in the suspended particulate. Oceanol. Limnol. Sin. 1982, 13, 523–530. [Google Scholar]
- Tong, Y.; Yue, T.; Gao, J.; Wang, K.; Wang, C.; Zuo, P.; Zhang, X.; Tong, L.; Liang, Q. Partitioning and Emission Characteristics of Hg, Cr, Pb, and As Among Air Pollution Control Devices in Chinese Coal-Fired Industrial Boilers. Energy Fuels 2020, 34, 7067–7075. [Google Scholar] [CrossRef]
- Greenfield, R.; van Vuren, J.; Wepener, V. Heavy Metal Concentrations in the Water of the Nyl River System, South Africa. Afr. J. Aquat. Sci. 2012, 37, 219–224. [Google Scholar] [CrossRef]
- Taghinia Hejabi, A.; Basavarajappa, H.T.; Karbassi, A.R.; Monavari, S.M. Heavy Metal Pollution in Water and Sediments in the Kabini River, Karnataka, India. Environ. Monit. Assess. 2011, 182, 1–13. [Google Scholar] [CrossRef]
- Suzuki, K.; Yabuki, T.; Ono, Y. Roadside Rhododendron Pulchrum Leaves as Bioindicators of Heavy Metal Pollution in Traffic Areas of Okayama, Japan. Environ. Monit. Assess. 2009, 149, 133–141. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, Y.; Ding, M.; Li, L. Identification of Traffic-Related Metals and the Effects of Different Environments on Their Enrichment in Roadside Soils along the Qinghai–Tibet Highway. Sci. Total Environ. 2015, 521–522, 160–172. [Google Scholar] [CrossRef]
- Bhuiyan, M.; Suruvi, N.; Dampare, S.; Islam, M.; Quraishi, S.; Ganyaglo, S.; Suzuki, S. Investigation of the Possible Sources of Heavy Metal Contamination in Lagoon and Canal Water in the Tannery Industrial Area in Dhaka, Bangladesh. Environ. Monit. Assess. 2011, 175, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Rickard, D. Kinetics of FeS Precipitation: Part 1. Competing Reaction Mechanisms. Geochim. Cosmochim. Acta 1995, 59, 4367–4379. [Google Scholar] [CrossRef]
- Caetano, M.; Madureira, M.-J.; Vale, C. Metal Remobilisation during Resuspension of Anoxic Contaminated Sediment: Short-Term Laboratory Study. Water Air Soil Pollut. 2003, 143, 23–40. [Google Scholar] [CrossRef]
- Zhuang, Y.; Allen, H.E.; Fu, G. Effect of Aeration of Sediment on Cadmium Binding. Environ. Toxicol. Chem. 1994, 13, 717–724. [Google Scholar] [CrossRef]
- Hong, Y.S.; Kinney, K.A.; Reible, D.D. Effects of Cyclic Changes in pH and Salinity on Metals Release from Sediments. Environ. Toxicol. Chem. 2011, 30, 1775–1784. [Google Scholar] [CrossRef]
- Stewart, R.H. Methods of Satellite Oceanography; University of California Press: Berkeley, CA, USA; London, UK, 1985; p. vii + 360. [Google Scholar]
- Vosburgh, W.C.; Cooper, G.R. Complex Ions. I. The Identification of Complex Ions in Solution by Spectrophotometric Measurements. J. Am. Chem. Soc. 1941, 63, 437–442. [Google Scholar] [CrossRef]
- Bjerrum, J.; Ballhausen, C.J.; Jørgensen, C.K.; Sörensen, N.A. Studies on Absorption Spectra. I. Results of Calculations on the Spectra and Configuration of Copper(II) Ions. Acta Chem. Scand. 1954, 8, 1275–1289. [Google Scholar] [CrossRef]
- Bjerrum, J.; Agarwala, B.V.; Ljungström, E.; Tørneng, E.; Woldbæk, T.; Strand, T.G.; Sukhoverkhov, V.F. Metal Ammine Formation in Solution. XIX. On the Formation of Tetraamminedi-Mu-Hydroxodicopper(II) and Hydroxotetraammine Complexes in Ammoniacal Copper(II) Solutions. Acta Chem. Scand. 1980, 34a, 475–481. [Google Scholar] [CrossRef]
- Jancsó, G. Effect of D and 18O Isotope Substitution on the Absorption Spectra of Aqueous Copper Sulfate Solutions. Radiat. Phys. Chem. 2005, 74, 168–171. [Google Scholar] [CrossRef]
- Liang, Y.; Deng, R.; Gao, Y.; Qin, Y.; Liu, X. Measuring absorption coefficient spectrum (400–900 nm) of copper ions in water. J. Remote Sens. 2016, 20, 27–34. [Google Scholar] [CrossRef]
- Deng, R.; Liang, Y.; Gao, Y.; Qin, Y.; Liu, X. Measuring absorption coefficient spectrum (400–900 nm) of hydrated and complex ferric ion in water. J. Remote Sens. 2016, 20, 35–44. [Google Scholar] [CrossRef]
- Liang, Y.; Deng, R.; Liu, Y.; Lin, L.; Qin, Y.; He, Y. Measuring the spectrum of extinction coefficient and reflectance for cadmium compounds from 400 to 900 nm. Spectrosc. Spectr. Anal. 2016, 36, 4006–4012. [Google Scholar]
- Luo, Z.; Tang, Y.; Zou, B.; Feng, H.; Han, T.; Zhou, S. Inversion of indoor hyperspectral characteristics of heavy metal Pb and Cd pollution in water. Geomat. Spat. Inf. Technol. 2024, 47, 104–108. [Google Scholar]
- Liang, Y.; Deng, R.; Huang, J.; Xiong, L.; Qin, Y.; Liu, Z. The special characteristic analysis of typical heavy metal polluted water-a cases study of mine drainage in Dabaoshan Mountain, Guangdong province, China. Spectrosc. Spectr. Anal. 2019, 39, 3237–3244. [Google Scholar]
- Bergamaschi, B.A.; Fleck, J.A.; Downing, B.D.; Boss, E.; Pellerin, B.; Ganju, N.K.; Schoellhamer, D.H.; Byington, A.A.; Heim, W.A.; Stephenson, M.; et al. Methyl Mercury Dynamics in a Tidal Wetland Quantified Using in Situ Optical Measurements. Limnol. Oceanogr. 2011, 56, 1355–1371. [Google Scholar] [CrossRef]
- Bergamaschi, B.A.; Fleck, J.A.; Downing, B.D.; Boss, E.; Pellerin, B.A.; Ganju, N.K.; Schoellhamer, D.H.; Byington, A.A.; Heim, W.A.; Stephenson, M.; et al. Mercury Dynamics in a San Francisco Estuary Tidal Wetland: Assessing Dynamics Using In Situ Measurements. Estuaries Coasts 2012, 35, 1036–1048. [Google Scholar] [CrossRef]
- Chen, C.; Liu, F.; He, Q.; Shi, H. The Possibility on Estimation of Concentration of Heavy Metals in Coastal Waters from Remote Sensing Data. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 4216–4219. [Google Scholar] [CrossRef]
- Liu, F.; Tang, S.; Chen, C. Estimation of Particulate Zinc Using MERIS Data of the Pearl River Estuary. Remote Sens. Lett. 2013, 4, 813–821. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef]
- Niu, C.; Tan, K.; Jia, X.; Wang, X. Deep Learning Based Regression for Optically Inactive Inland Water Quality Parameter Estimation Using Airborne Hyperspectral Imagery. Environ. Pollut. 2021, 286, 117534. [Google Scholar] [CrossRef]
- Pyo, J.; Kwon, Y.S.; Min, J.-H.; Nam, G.; Song, Y.-S.; Ahn, J.M.; Park, S.; Lee, J.; Cho, K.H.; Park, Y. Effect of Hyperspectral Image-Based Initial Conditions on Improving Short-Term Algal Simulation of Hydrodynamic and Water Quality Models. J. Environ. Manag. 2021, 294, 112988. [Google Scholar] [CrossRef]
- Rostom, N.G.; Shalaby, A.A.; Issa, Y.M.; Afifi, A.A. Evaluation of Mariut Lake Water Quality Using Hyperspectral Remote Sensing and Laboratory Works. Egypt. J. Remote Sens. Space Sci. 2017, 20, S39–S48. [Google Scholar] [CrossRef]
- Huang, C.; Chen, X.-Y.; Lee, M. An Improved Hyperspectral Sensing Approach for the Rapid Determination of Copper Ion Concentrations in Water Environment Using Short-Wavelength Infrared Spectroscopy. Environ. Pollut. 2023, 333, 121984. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.-C.; Lu, C.-C.; Wu, Y.-T. An Investigation on Design and Characterization of a Highly Selective LED Optical Sensor for Copper Ions in Aqueous Solutions. Sensors 2021, 21, 1099. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Wu, M.; Liu, L.; Zhu, Y.; Feng, J.; Yin, D.; Yin, C.; Yin, C. Predicting the Abundance of Copper in Soil Using Reflectance Spectroscopy and GF5 Hyperspectral Imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102420. [Google Scholar] [CrossRef]
- Jiang, G.; Zhou, S.; Cui, S.; Chen, T.; Wang, J.; Chen, X.; Liao, S.; Zhou, K. Exploring the Potential of HySpex Hyperspectral Imagery for Extraction of Copper Content. Sensors 2020, 20, 6325. [Google Scholar] [CrossRef]
- Swain, R.; Sahoo, B. A Simplified Modelling Framework for Real-Time Assessment of Conservative Pollutants in Ungauged Rivers during Cloudy Periods. J. Environ. Manag. 2021, 293, 112821. [Google Scholar] [CrossRef]
- Yuan, Y.; Hall, K.; Oldham, C. A Preliminary Model for Predicting Heavy Metal Contaminant Loading from an Urban Catchment. Sci. Total Environ. 2001, 266, 299–307. [Google Scholar] [CrossRef]
- Liebens, J. Heavy Metal Contamination of Sediments in Stormwater Management Systems: The Effect of Land Use, Particle Size, and Age. Environ. Geol. 2001, 41, 341–351. [Google Scholar] [CrossRef]
- Ujevic, I. Trace Metal Accumulation in Different Grain Size Fractions of the Sediments from a Semi-Enclosed Bay Heavily Contaminated by Urban and Industrial Wastewaters. Water Res. 2000, 34, 3055–3061. [Google Scholar] [CrossRef]
- Herngren, L.; Goonetilleke, A.; Ayoko, G.A. Understanding Heavy Metal and Suspended Solids Relationships in Urban Stormwater Using Simulated Rainfall. J. Environ. Manag. 2005, 76, 149–158. [Google Scholar] [CrossRef]
- Hallberg, M.; Renman, G.; Lundbom, T. Seasonal Variations of Ten Metals in Highway Runoff and Their Partition between Dissolved and Particulate Matter. Water Air Soil Pollut. 2007, 181, 183–191. [Google Scholar] [CrossRef]
- Rajesh, A.; Jiji, G.W.; Raj, J.D. Estimating the Pollution Level Based on Heavy Metal Concentration in Water Bodies of Tiruppur District. J. Indian Soc. Remote Sens. 2020, 48, 47–57. [Google Scholar] [CrossRef]
- Cui, W.; Ma, X. Remote sensing monitoring method for heavy metal polluted wastewater based on spectral analysis. Adm. Tech. Environ. Monit. 2022, 34, 53–56. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A Machine Learning Approach to Estimate Chlorophyll-a from Landsat-8 Measurements in Inland Lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Ye, H.; Tang, S.; Yang, C. Deep Learning for Chlorophyll-a Concentration Retrieval: A Case Study for the Pearl River Estuary. Remote Sens. 2021, 13, 3717. [Google Scholar] [CrossRef]
- Balasubramanian, S.V.; Pahlevan, N.; Smith, B.; Binding, C.; Schalles, J.; Loisel, H.; Gurlin, D.; Greb, S.; Alikas, K.; Randla, M.; et al. Robust Algorithm for Estimating Total Suspended Solids (TSS) in Inland and Nearshore Coastal Waters. Remote Sens. Environ. 2020, 246, 111768. [Google Scholar] [CrossRef]
- Bangira, T.; Matongera, T.N.; Mabhaudhi, T.; Mutanga, O. Remote Sensing-Based Water Quality Monitoring in African Reservoirs, Potential and Limitations of Sensors and Algorithms: A Systematic Review. Phys. Chem. Earth Parts A/B/C 2024, 134, 103536. [Google Scholar] [CrossRef]
- Batina, A.; Krtalić, A. A Review of Remote Sensing Applications for Determining Lake Water Quality. Preprints 2023, 2023090489. [Google Scholar] [CrossRef]
- Jakovljevic, G.; Álvarez-Taboada, F.; Govedarica, M. Long-Term Monitoring of Inland Water Quality Parameters Using Landsat Time-Series and Back-Propagated ANN: Assessment and Usability in a Real-Case Scenario. Remote Sens. 2024, 16, 68. [Google Scholar] [CrossRef]
- Shen, H.; Jiang, M.; Li, J.; Zhou, C.; Yuan, Q.; Zhang, L. Coupling Model- and Data-Driven Methods for Remote Sensing Image Restoration and Fusion: Improving Physical Interpretability. IEEE Geosci. Remote Sens. Mag. 2022, 10, 231–249. [Google Scholar] [CrossRef]
- Malakar, N.K.; Lary, D.J.; Moore, A.; Gencaga, D.; Roscoe, B.; Albayrak, A.; Wei, J. Estimation and Bias Correction of Aerosol Abundance Using Data-Driven Machine Learning and Remote Sensing. In Proceedings of the 2012 Conference on Intelligent Data Understanding, Boulder, CO, USA, 24–26 October 2012; pp. 24–30. [Google Scholar] [CrossRef]
- Geng, L.; Che, T.; Ma, M.; Tan, J.; Wang, H. Corn Biomass Estimation by Integrating Remote Sensing and Long-Term Observation Data Based on Machine Learning Techniques. Remote Sens. 2021, 13, 2352. [Google Scholar] [CrossRef]
- Nagaraj, R.; Kumar, L.S. Multi Scale Feature Extraction Network with Machine Learning Algorithms for Water Body Extraction from Remote Sensing Images. Int. J. Remote Sens. 2022, 43, 6349–6387. [Google Scholar] [CrossRef]
- Li, A.; Fan, M.; Qin, G.; Xu, Y.; Wang, H. Comparative Analysis of Machine Learning Algorithms in Automatic Identification and Extraction of Water Boundaries. Appl. Sci. 2021, 11, 10062. [Google Scholar] [CrossRef]
- Huang, X.; Xie, C.; Fang, X.; Zhang, L. Combining Pixel- and Object-Based Machine Learning for Identification of Water-Body Types From Urban High-Resolution Remote-Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2097–2110. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sidike, P.; Hasenmueller, E.A.; Sloan, J.J.; Knouft, J.H. Machine Learning-Based Ensemble Prediction of Water-Quality Variables Using Feature-Level and Decision-Level Fusion with Proximal Remote Sensing. Photogramm. Eng. Remote Sens. 2019, 85, 269–280. [Google Scholar] [CrossRef]
- Jian, L.; Gao, F.; Ren, P.; Song, Y.; Luo, S. A Noise-Resilient Online Learning Algorithm for Scene Classification. Remote Sens. 2018, 10, 1836. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Li, W.; Fan, X.; Huang, F.; Chen, W.; Hong, H.; Huang, J.; Guo, Z. Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sens. 2020, 12, 4134. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, R.; Ma, H.; Zhang, J.; Zhang, X. Retrieving salt lake mineral ions salinity from hyper-spectral data based on BP neural network. Remote Sens. Land Resour. 2016, 28, 34–40. [Google Scholar] [CrossRef]
- Li, J.; Cheng, J.; Shi, J.; Huang, F. Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement. In Advances in Computer Science and Information Engineering; Jin, D., Lin, S., Eds.; Advances in Intelligent and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2012; Volume 169, pp. 553–558. ISBN 978-3-642-30222-0. [Google Scholar]
- Wang, D. Models for Predicting Lithium Content in Salt Lake Based on Remote Sensing: A Case Study of Argentina’s Arizaro Salt Lake. Master’s Thesis, Jilin University, Changchun, China, 2019. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Liu, T.; Dai, J.; Zhao, Y.; Tian, S.; Ye, C. Remote sensing inversion of lithium concentration in salt lake using LightGBM: A case study of northern Zabuye Salt Lake in Tibet. Acta Geol. Sin. 2021, 95, 2249–2256. [Google Scholar] [CrossRef]
- Fan, J.; Ma, X.; Wu, L.; Zhang, F.; Yu, X.; Zeng, W. Light Gradient Boosting Machine: An Efficient Soft Computing Model for Estimating Daily Reference Evapotranspiration with Local and External Meteorological Data. Agric. Water Manag. 2019, 225, 105758. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Gao, M.; Ma, Q.; Zhao, J.; Zhang, R.; Wang, Q.; Huang, L. A Predictive Data Feature Exploration-Based Air Quality Prediction Approach. IEEE Access 2019, 7, 30732–30743. [Google Scholar] [CrossRef]
- Li, L.; Lin, Y.; Yu, D.; Liu, Z.; Gao, Y.; Qiao, J. A Multi-Organ Fusion and LightGBM Based Radiomics Algorithm for High-Risk Esophageal Varices Prediction in Cirrhotic Patients. IEEE Access 2021, 9, 15041–15052. [Google Scholar] [CrossRef]
- Song, J.; Liu, G.; Jiang, J.; Zhang, P.; Liang, Y. Prediction of Protein–ATP Binding Residues Based on Ensemble of Deep Convolutional Neural Networks and LightGBM Algorithm. Int. J. Mol. Sci. 2021, 22, 939. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, J.; Tu, Y.; Zhang, Y.; Gao, J. Estimating Low Concentration Heavy Metals in Water through Hyperspectral Analysis and Genetic Algorithm-Partial Least Squares Regression. Sci. Total Environ. 2024, 916, 170225. [Google Scholar] [CrossRef]
- Kaneko, H. Genetic Algorithm-Based Partial Least-Squares with Only the First Component for Model Interpretation. ACS Omega 2022, 7, 8968–8979. [Google Scholar] [CrossRef]
- Xia, X.; Pan, J.; Pei, J. A New Approach to Estimate Total Nitrogen Concentration in a Seasonal Lake Based on Multi-Source Data Methodology. Ecol. Inform. 2024, 83, 102807. [Google Scholar] [CrossRef]
- Goetz, A.F.H. Three Decades of Hyperspectral Remote Sensing of the Earth: A Personal View. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Dierssen, H.; Ackleson, S.; Joyce, K.; Hestir, E.; Castagna, A.; Lavender, S.; McManus, M. Living up to the Hype of Hyperspectral Aquatic Remote Sensing: Science, Resources and Outlook. Front. Environ. Sci. 2021, 9, 649528. [Google Scholar] [CrossRef]
- Qian, S.-E. Hyperspectral Satellites, Evolution, and Development History. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7032–7056. [Google Scholar] [CrossRef]
- Ungar, S.G.; Pearlman, J.S.; Mendenhall, J.A.; Reuter, D. Overview of the Earth Observing One (Eo-1) Mission. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1149–1159. [Google Scholar] [CrossRef]
- Mission-EnMAP. Available online: https://www.enmap.org/mission/ (accessed on 16 October 2024).
- NASA PACE-Home. Available online: https://pace.gsfc.nasa.gov/ (accessed on 16 October 2024).
- Jiang, Y.; Wang, J.; Zhang, L.; Zhang, G.; Li, X.; Wu, J. Geometric Processing and Accuracy Verification of Zhuhai-1 Hyperspectral Satellites. Remote Sens. 2019, 11, 996. [Google Scholar] [CrossRef]
- Liu, Y.-N.; Sun, D.-X.; Hu, X.-N.; Ye, X.; Li, Y.-D.; Liu, S.-F.; Cao, K.-Q.; Chai, M.-Y.; Zhou, W.-Y.-N.; Zhang, J.; et al. The Advanced Hyperspectral Imager: Aboard China’s GaoFen-5 Satellite. IEEE Geosci. Remote Sens. Mag. 2019, 7, 23–32. [Google Scholar] [CrossRef]
- DeLuca, N.M.; Zaitchik, B.F.; Curriero, F.C. Can Multispectral Information Improve Remotely Sensed Estimates of Total Suspended Solids? A Statistical Study in Chesapeake Bay. Remote Sens. 2018, 10, 1393. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless Retrievals of Chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in Inland and Coastal Waters: A Machine-Learning Approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine Learning in Geosciences and Remote Sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef]
Heavy Metal Solutions (Concentration) | Absorption | Reflectance | References |
---|---|---|---|
Cu -NH3 solution (1–5 mol/m3) | 600–650 nm | Bjerrum and Agarwal [20] | |
CuSO4 | 780 nm | Jancso [21] | |
Cu ions | 810 nm | Liang et al. [22] | |
FeCl3 (0.138~0.390 g/L) | 417 nm | Deng et al. [23] | |
C6FeK3N6 (potassium ferricyanide) (0.023 g/L) | 469 nm | Deng et al. [23] | |
Fe2(SO4)3 (0.123~0.161 g/L) | 624 nm | Deng et al. [23] | |
CdS (0.048~0.494 g/L) | 675 nm | Yellow, red | Liang et al. [24] |
CdO (0.106~0.129 g/L) | Blue band | Red | Liang et al. [24] |
Standard solution of Pb (0.01~2.0 mg/L) | 654, 535 nm | Luo et al. [25] | |
Standard solution of Cd (0.01~2.0 mg/L) | 1067, 1079 nm | Luo et al. [25] |
Bands | R4 | R6 | R8 | R8a |
---|---|---|---|---|
Wavelength (nm) | 665 | 740 | 842 | 865 |
Landsat Band | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Wavelength (nm) | 433–453 | 450–515 | 525–600 | 630–680 | 845–885 | 560–1660 | 2100–2300 |
Resolution (m) | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Sources | Metals | Significant Band and Band Ratio | Algorithm | Detection Range | Sample No. | R2 (Validation) | MRE | RMSE |
---|---|---|---|---|---|---|---|---|
Chen et al. [4]. | Cu, Pb, Zn | B660/B560, B660/B485, B560/B485 | Cu: 80 Pb: 56 Zn: 83 | Cu: 0.75 Pb: 0.83 Zn: 0.75 | ||||
Liu, et al. [30]. | Zn | B681/B560, B754/B560, B620/B560, B779/B865 | 5.67–86.62 μg/L | 65 | 0.88 | 24.7% | 5.51 μg/L | |
Rostom et al. [34]. | Mn Co Cr Ni Cu Cd Pb Fe Zn | B531, B904 B989, B997, and B985 B989, B990, and B945, B989 and B1013 B704 B1001, B952, and B887 B989, and B990 B366 B1001, B977, & B996 | Mn: 0.097–0.245 mg/L Co: 0.069–0.199 mg/L Cr: 0.006–0.120 mg/L Ni: 0.395–0.516 mg/L Cu: 0.006–0.094 mg/L Cd: 0.003–0.068 mg/L Pb: 0.980–1.527 mg/L Fe: 0.034–1.261 mg/L Zn: 0.021–1.160 mg/L | 22 | Mn: 0.70 Co: 0.58 Cr: 0.86 Ni: 0.82 Cu: 0.97 Cd: 0.27 Pb: 0.88 Fe: 0.87 Zn: 0.27 | |||
Huang et al. [35]. | Cu ion | B901.11, B1079.08 | 100–1000 mg/L, | 98 | 0.74 (adjusted) | |||
Swain and Sahoo [39]. | Fe, Zn, Cu, Cr, Pb, Cd | L3: 631–692 nm, L4: 772–898 nm, L3/L4 | Fe: 95.01–7538.03 μg/L Zn: 7.85–49.86 μg/L Cu: 1.15–109.21 μg/L Cr: 3.70–207.38 μg/L Pb: 3.01–207.38 μg/L Cd: 0.33–127.45 μg/L | 250 | From Ln to Tu: 0.90 From Tu to TSS: 0.86 Form TSS to metal: 0.76–0.91 for all, among which, Cd: 0.91 Fe: 0.76 | From Ln to Tu: 27.28 NTU From Tu to TSS: 28.27 mg/L Form TSS to Metal: 3.76–38.72 μg/L for all metals | ||
Zhou et al. [63]. | K+, Mg2+, Na+ | HJ–1A bands: 105, 104, 106, 103, 107, 46, 45, 109, 102, 47, 48, 108, 49, 101, 44, 50, 100, 70, 51, 99 | BP Neural Network | K: 2.9–3.5 g/L Mg: 6.4–7.4 g/L Na: 110–116 g/L | 21 | >0.85 | <10% | |
Wang et al. [65]. | Li | Sentinel-2A Bands 4 (665 nm), 6 (740 nm), 8 (842 nm), 8a (865 nm) | BP Neural Network Random Forrest (RF) | 6.8–96 mg/L | 30 | BP: 0.731 RF: 0.771 | (mg/L) 15.719 12.822 | |
Liu et al. [67]. | Li | Landsat Bands 1–7 | LightGBM | 424.7 -568.1 mg/L | 27 | 0.876 | 5.3% | 10.287 mg/L |
Lin et al. [72]. | Cu, Fe | Cu: 497, 665, 686, 831, and 935 nm Fe: 700, 746, 801, 948, and 993 nm | Genetic Algorithm–Partial Least Squares Regression (GA-PLSR) PLSR RF | Cu: 0.002–0.025 mg/L Fe: 0.014–0.262 mg/L | 35 | Cu: RF 0.53 PLSR 0.57 GA-PLSR 0.75 Fe: RF 0.47 PLSR 0.57 GA-PLSR 0.73 | Cu: RF 42.4% PLSR 48.6% GA-PLSR 38.2% Fe: RF 56.3% PLSR 46.6% GA-PLSR 46.4% | Cu: RF 0.004 mg/L PLSR 0.004 mg/L GA-PLSR 0.004 mg/L Fe: RF 0.045 mg/L PLSR 0.037 mg/L GA-PLSR 0.036 mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Pan, J.; Zhang, H.; Lin, H. Progress in Remote Sensing of Heavy Metals in Water. Remote Sens. 2024, 16, 3888. https://doi.org/10.3390/rs16203888
Xu X, Pan J, Zhang H, Lin H. Progress in Remote Sensing of Heavy Metals in Water. Remote Sensing. 2024; 16(20):3888. https://doi.org/10.3390/rs16203888
Chicago/Turabian StyleXu, Xiaoling, Jiayi Pan, Hua Zhang, and Hui Lin. 2024. "Progress in Remote Sensing of Heavy Metals in Water" Remote Sensing 16, no. 20: 3888. https://doi.org/10.3390/rs16203888
APA StyleXu, X., Pan, J., Zhang, H., & Lin, H. (2024). Progress in Remote Sensing of Heavy Metals in Water. Remote Sensing, 16(20), 3888. https://doi.org/10.3390/rs16203888