Joint Prediction of Sea Clutter Amplitude Distribution Based on a One-Dimensional Convolutional Neural Network with Multi-Task Learning
Abstract
:1. Introduction
- In this paper, an evaluation criterion for fitting sea clutter amplitude distribution that places greater emphasis on fitting accuracy in the tail regions is proposed. Unlike traditional methods that rely on simulated data for training, we annotate measured sea clutter data with this criterion and compile them into a dataset suitable for deep learning.
- Although histogram features can be adjusted by altering the number of intervals to obtain features of different lengths, relying solely on a single histogram feature makes it challenging to achieve highly accurate predictions of more complex sea clutter characteristics. Therefore, we introduce two long-sequence features along with supplementary features to more comprehensively describe sea clutter characteristics.
- A novel multi-task one-dimensional convolutional neural network is proposed for jointly predicting sea clutter amplitude distribution types and their corresponding parameters. The features proposed are effectively utilized by this model, which achieves state-of-the-art performance on the measured dataset.
2. Related Work
2.1. Multi-Task Learning
2.2. One-Dimensional Convolutional Neural Network
3. Methodology
3.1. Description of Multiple Sea Clutter Input Features
3.1.1. The Histogram Feature of Sea Clutter
3.1.2. The PDF Feature of Sea Clutter
3.1.3. The CCDF Feature of Sea Clutter
3.1.4. Statistical Features of the Amplitude Distribution of Sea Clutter
3.2. Optimal Amplitude Distribution Annotation of Sea Clutter Based on TEIC Testing
3.3. Overview of the MT1DCNN Model
4. Experiments and Results
4.1. Measured Sea Clutter Data
4.2. Evaluation Metrics for Sea Clutter Amplitude Distribution Type and Parameter Predictions
4.3. Analysis of Sea Clutter Amplitude Distribution Type and Parameter Predictions Based on MT1DCNN
4.4. Ablation Analysis and Impact Study of Input Features in the MT1DCNN Model
4.5. Comparative Analysis of Sea Clutter Amplitude Distribution Type and Parameter Prediction Results
4.5.1. Comparative Analysis of the Prediction Results of the MT1DCNN Model and the Traditional Method
4.5.2. Comparative Analysis of the Prediction Results of the MT1DCNN Model and Other Deep Learning Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amani, M.; Ghorbanian, A.; Asgarimehr, M.; Yekkehkhany, B.; Moghimi, A.; Jin, S.; Naboureh, A.; Mohseni, F.; Mahdavi, S.; Layegh, N.F. Remote Sensing Systems for Ocean: A Review (Part 1: Passive Systems). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 210–234. [Google Scholar] [CrossRef]
- Guo, L.; Wei, Y. Status and Prospects of Electromagnetic Scattering Echoes Simulation from Complex Dynamic Sea Surfaces and Targets. J. Radars 2023, 12, 76–109. [Google Scholar]
- Xue, J.; Ma, M.; Liu, J.; Pan, M.; Xu, S.; Fang, J. Wald- and Rao-Based Detection for Maritime Radar Targets in Sea Clutter with Lognormal Texture. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5119709. [Google Scholar] [CrossRef]
- Xue, J.; Xu, S.; Liu, J. Persymmetric Detection of Radar Targets in Nonhomogeneous and Non-Gaussian Sea Clutter. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5103709. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Xu, X.; Li, Q.; Wu, J. Estimation of Sea Clutter Inherent Doppler Spectrum from Shipborne S-Band Radar Sea Echo. Chin. Phys. B 2020, 29, 068402. [Google Scholar] [CrossRef]
- Li, Y.; Ma, L.; Zhang, Y.; Wu, T.; Zhang, J.; Li, H. Prediction of Sea Surface Reflectivity under Different Sea Conditions Based on the Clustering of Marine Environmental Parameters. Remote Sens. 2023, 15, 5318. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, X.; Zou, P.; Shui, P. Compound-Gaussian Model with Nakagami-Distributed Textures for High-Resolution Sea Clutter at Medium/High Grazing Angles. Remote Sens. 2024, 16, 195. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, C.; Yan, J. A Facet-Based Model and Doppler Analysis for Bistatic Electromagnetic Scattering from 3-D Time-Evolving Sea Surface. IEICE Electron. Express 2024, 21, 20240001. [Google Scholar] [CrossRef]
- Liao, X.; Xie, J.; Zhou, J. A Data-Driven Optimization Method for Simulating Arbitrarily Distributed and Spatial-Temporal Correlated Radar Sea Clutter. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5110815. [Google Scholar] [CrossRef]
- Shi, S.; Shui, P.; Liang, X.; Li, T. Small Target Detection Based on Noncoherent Radial Velocity Spectrum of High-Resolution Sea Clutter. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8719–8733. [Google Scholar] [CrossRef]
- Xu, S.; Zhu, J.; Jiang, J.; Shui, P. Sea-Surface Floating Small Target Detection by Multifeature Detector Based on Isolation Forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 704–715. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, L.; Ewe, H.T. A Novel Data-Driven Modeling Method for the Spatial–Temporal Correlated Complex Sea Clutter. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5104211. [Google Scholar] [CrossRef]
- Xue, J.; Liu, J.; Xu, S.; Pan, M. Adaptive Detection of Radar Targets in Heavy-Tailed Sea Clutter with Lognormal Texture. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5108411. [Google Scholar] [CrossRef]
- Madjidi, H.; Laroussi, T.; Farah, F. A Robust and Fast CFAR Ship Detector Based on Median Absolute Deviation Thresholding for SAR Imagery in Heterogeneous Log-Normal Sea Clutter. Signal Image Video Process. 2023, 17, 2925–2931. [Google Scholar] [CrossRef]
- Weinberg, G.V.; Bateman, L.; Hayden, P. Development of Non-Coherent CFAR Detection Processes in Weibull Background. Digit. Signal Process. 2018, 75, 96–106. [Google Scholar] [CrossRef]
- He, X.; Xu, Y.; Liu, M.; Hao, C.; Hou, C. Adaptive Estimation of K-Distribution Shape Parameter Based on Fuzzy Statistical Normalization Processing. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 4566–4577. [Google Scholar] [CrossRef]
- Huang, P.; Zou, Z.; Xia, X.G.; Liu, X.; Liao, G. A Statistical Model Based on Modified Generalized-K Distribution for Sea Clutter. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8015805. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, D.; Tao, M.; Su, J.; Wang, L. Parameter Estimation for Sea Clutter Pareto Distribution Model Based on Variable Interval. Remote Sens. 2022, 14, 2326. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Li, X.; Yin, Z. KK Distribution Modeling with L Band Low Grazing Sea Clutter. Syst. Eng. Electron. 2014, 36, 1304–1308. [Google Scholar]
- Rosenberg, L.; Watts, S.; Bocquet, S. Application of the K+Rayleigh Distribution to High Grazing Angle Sea-Clutter. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–6. [Google Scholar]
- Wang, R.; Li, X.; Ma, H.; Zhang, H. Detection of Small Target in Sea Clutter via Multiscale Directional Lyapunov Exponents. Sens. Rev. 2019, 39, 752–762. [Google Scholar] [CrossRef]
- Bocquet, S.; Rosenberg, L.; Gierull, C.H. Parameter Estimation for a Compound Radar Clutter Model with Trimodal Discrete Texture. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7062–7073. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Yang, W.; Su, X.; Shen, Q. A Clutter Parameter Estimation Method Based on Origin Moment Derivation. Remote Sens. 2023, 15, 1551. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Y.; Li, H.; Wu, Z. Research on Amplitude Statistics of L-Band Low Grazing Angle Sea Clutter. J. Electron. Inf. Technol. 2014, 36, 1044–1048. [Google Scholar]
- Liu, H.; Song, J.; Xiong, W.; Cui, Y.; Lv, Y.; Liu, J. Analysis of Amplitude Statistical and Correlation Characteristics of High Grazing Angle Sea-Clutter. J. Eng. 2019, 2019, 6829–6833. [Google Scholar] [CrossRef]
- Mezache, A.; Chalabi, I. Estimation of the RiIG-Distribution Parameters Using the Artificial Neural Networks. In Proceedings of the 2013 IEEE International Conference on Signal and Image Processing Applications, Melaka, Malaysia, 8–10 October 2013; pp. 291–296. [Google Scholar]
- Machado Fernández, J.R.; Bacallao Vidal, J.D.L.C.; Chávez Ferry, N. A Neural Network Approach to Weibull Distributed Sea Clutter Parameter’s Estimation. Intel. Artif. 2015, 18, 3–13. [Google Scholar] [CrossRef]
- Wang, G.; Wang, C.; Liu, C.; Liu, N.; Ding, H. Amplitude Distribution Parameter Estimation Method of Sea Clutter Using Neural Network. J. Nav. Aviat. Univ. 2019, 34, 480–487. [Google Scholar]
- Xue, J.; Sun, M.; Liu, J.; Xu, S.; Pan, M. Shape Parameter Estimation of K-Distributed Sea Clutter Using Neural Network and Multisample Percentile in Radar Industry. IEEE Trans. Ind. Inform. 2023, 19, 7602–7612. [Google Scholar] [CrossRef]
- Song, C.; Xiuwen, L. Statistical Analysis of X-Band Sea Clutter at Low Grazing Angles. In Proceedings of the 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Bangkok, Thailand, 30 November–1 October 2020; pp. 141–144. [Google Scholar]
- Zhao, X.; Han, J.; Zhang, X.; Zhang, J.; Li, P. Sea Clutter Measurement Test and Amplitude Characteristics Analysis in the South China Sea Nearshore Area. J. Phys. Conf. Ser. 2023, 2486, 012022. [Google Scholar] [CrossRef]
- Ma, L. Research on Sea Clutter Characteristics Based on Deep Learning and Marine Environmental Parameters. Ph.D. Dissertation, Xidian University, Xi’an, China, 2021. [Google Scholar]
- Hua, Z.; Zhang, J.; Yin, B.; Wang, Y.; Zhang, Y. An Integrated Prediction Method for Sea Clutter Amplitude Distribution in Complex Spatio-Temporal Scenarios. Chin. J. Radio Sci. 2023, 39, 1–8. [Google Scholar] [CrossRef]
- Liu, N.; Dong, Y.; Wang, G.; Ding, H.; Huang, Y.; Guan, J.; Chen, X.; He, Y. Sea-Detecting X-Band Radar and Data Acquisition Program. J. Radars 2019, 8, 656–667. [Google Scholar]
- Liu, N.; Ding, H.; Huang, Y.; Dong, Y.; Wang, G.; Dong, K. Annual Progress of the Sea-detecting X-band Radar and Data Acquisition Program. J. Radars 2021, 10, 173–182. [Google Scholar] [CrossRef]
- Guan, J.; Liu, N.; Wang, G.; Ding, H.; Dong, Y.; Huang, Y.; Tian, K.; Zhang, M. Sea-detecting Radar Experiment and Target Feature Data Acquisition for Dual Polarization Multistate Scattering Dataset of Marine Targets. J. Radars 2023, 12, 456–469. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Q. An Overview of Multi-Task Learning. Natl. Sci. Rev. 2018, 5, 30–43. [Google Scholar] [CrossRef]
- Vandenhende, S.; Georgoulis, S.; Gansbeke, W.V.; Proesmans, M.; Dai, D.; Gool, L.V. Multi-Task Learning for Dense Prediction Tasks: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3614–3633. [Google Scholar] [CrossRef] [PubMed]
- Kieu, N.; Nguyen, K.; Nazib, A.; Fernando, T.; Fookes, C.; Sridharan, S. Multimodal Colearning Meets Remote Sensing: Taxonomy, State of the Art, and Future Works. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 7386–7409. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Q. A Survey on Multi-Task Learning. IEEE Trans. Knowl. Data Eng. 2022, 34, 5586–5609. [Google Scholar] [CrossRef]
- Wang, H.; Jin, X.; Du, Y.; Zhang, N.; Hao, H. Adaptive Hard Parameter Sharing Method Based on Multi-Task Deep Learning. Mathematics 2023, 11, 4639. [Google Scholar] [CrossRef]
- Pahari, N.; Shimada, K. Multi-Task Learning Using BERT with Soft Parameter Sharing Between Layers. In Proceedings of the 2022 Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Symposium on Advanced Intelligent Systems (SCIS&ISIS), Ise, Japan, 29 November–2 December 2022; pp. 1–6. [Google Scholar]
- Lin, B.; Ye, F.; Zhang, Y.; Tsang, I.W. Reasonable Effectiveness of Random Weighting: A Litmus Test for Multi-Task Learning. arXiv 2021, arXiv:2111.10603. [Google Scholar] [CrossRef]
- Li, B.; Dong, A. Multi-Task Learning with Attention: Constructing Auxiliary Tasks for Learning to Learn. In Proceedings of the 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), Washington, DC, USA, 1–3 November 2021; pp. 145–152. [Google Scholar]
- Choudhary, P.; Pathak, P. A Review of Convolution Neural Network Used in Various Applications. In Proceedings of the 2021 5th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 22–23 October 2021; pp. 1–5. [Google Scholar]
- Li, Y.; Ye, C.; Ge, Y.; Junior, J.M.; Gonçalvese, W.N.; Li, J. Identifying Building Rooftops in Hyperspectral Imagery Using CNN With Pure Pixel Index. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12022–12034. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D Convolutional Neural Networks and Applications: A Survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Chaubey, V.; Nair, M.S.; Pillai, G.N. Gene Expression Prediction Using a Deep 1D Convolution Neural Network. In Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 1383–1389. [Google Scholar]
- Song, P.; Geng, C.; Li, Z. Research on Text Classification Based on Convolutional Neural Network. In Proceedings of the 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA), Xi’an, China, 27–29 September 2019; pp. 229–232. [Google Scholar]
- Martynov, G. Weighted Cramer-von Mises Test with Estimated Parameters. Commun. Stat. Theory Methods 2011, 40, 3569–3586. [Google Scholar] [CrossRef]
- Chan, H.C. Radar Sea-Clutter at Low Grazing Angles. In IEE Proceedings F Radar and Signal Processing; IET: Stevenage, UK, 1990; Volume 137, p. 102. [Google Scholar]
- Iskander, D.R.; Zoubir, A.M. Estimation of the Parameters of the K-Distribution Using Higher Order and Fractional Moments. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 1453–1457. [Google Scholar] [CrossRef]
Inputs (310) | Long-sequence features (300) | Histogram |
CCDF | ||
Supplementary statistical features (10) | Min, Max | |
Var, Std | ||
Skew, Kurt | ||
Quantiles (P25, P50, P75, P90) | ||
Outputs (6) | Labels of sea clutter amplitude distribution type (4) | Log-normal, Weibull, K, Pareto |
Labels of sea clutter amplitude distribution parameter (2) | Shape parameter, scale parameter |
Distribution Types | Range of Shape Parameter | Range of Scale Parameter | Number |
---|---|---|---|
Log-normal | [0.740, 1.205] | [−0.692, −0.245] | 18,058 |
Weibull | [0.789, 2] | [0.671, 1.129] | 24,016 |
K | [0.224, 29,652] | [0.074, 23.130] | 6622 |
Pareto | [0.458, 17.710] | [0.821, 8.871] | 85,241 |
Distribution Types | Range of Shape Parameter | Range of Scale Parameter | Number |
---|---|---|---|
Log-normal | [0.121, 1.435] | [−0.989, −0.007] | 8408 |
Weibull | [0.849, 2] | [0.807, 1.129] | 21,223 |
K | [0.316, 20.378] | [0.154, 15.764] | 30,719 |
Pareto | [0.587, 19.816] | [0.819, 3.416] | 68,408 |
Features | F1 Score | MAE | RMSE | R2 |
---|---|---|---|---|
Histogram | 95.75% | 0.194 | 1.119 | 0.811 |
95.33% | 0.207 | 1.178 | 0.801 | |
CCDF | 96.65% | 0.125 | 0.811 | 0.863 |
Histogram + AS | 96.67% | 0.124 | 0.721 | 0.878 |
Histogram + PDF | 95.79% | 0.178 | 1.112 | 0.812 |
Histogram + PDF + CCDF | 97.03% | 0.109 | 0.723 | 0.878 |
Histogram + PDF + CCDF + AS | 97.40% | 0.092 | 0.746 | 0.906 |
Features | F1 Score | MAE | RMSE | R2 |
---|---|---|---|---|
Histogram | 95.99% | 0.236 | 1.327 | 0.863 |
95.83% | 0.243 | 1.347 | 0.861 | |
CCDF | 95.98% | 0.185 | 1.272 | 0.868 |
Histogram + AS | 95.87% | 0.185 | 1.284 | 0.867 |
Histogram + PDF | 95.96% | 0.235 | 1.305 | 0.865 |
Histogram + PDF + CCDF | 96.15% | 0.177 | 1.281 | 0.868 |
Histogram + PDF + CCDF + AS | 96.74% | 0.154 | 1.071 | 0.881 |
Models | F1 Score | MAE | RMSE | R2 |
---|---|---|---|---|
DNN7 | 93.65% | 0.269 | 1.125 | 0.786 |
DNN-AF | 95.64% | 0.169 | 0.855 | 0.876 |
MT1DCNN-NT | 97.33% | 0.121 | 0.765 | 0.901 |
MT1DCNN | 97.40% | 0.092 | 0.746 | 0.906 |
Models | F1 Score | MAE | RMSE | R2 |
---|---|---|---|---|
DNN7 | 92.81% | 0.329 | 1.354 | 0.810 |
DNN-AF | 93.50% | 0.277 | 1.291 | 0.828 |
MT1DCNN-NT | 96.88% | 0.202 | 1.174 | 0.857 |
MT1DCNN | 96.74% | 0.154 | 1.071 | 0.881 |
Models | Log-Normal | Weibull | K | Pareto |
---|---|---|---|---|
DNN7 | 93.42% | 88.88% | 78.17% | 96.23% |
DNN-AF | 94.35% | 93.61% | 79.72% | 97.72% |
MT1DCNN-NT | 96.31% | 95.36% | 90.02% | 98.67% |
MT1DCNN | 96.57% | 95.62% | 89.03% | 98.72% |
Models | Log-Normal | Weibull | K | Pareto |
---|---|---|---|---|
DNN7 | 90.26% | 91.62% | 89.73% | 94.84% |
DNN-AF | 91.63% | 92.70% | 90.45% | 95.33% |
MT1DCNN-NT | 95.23% | 94.90% | 96.40% | 97.89% |
MT1DCNN | 94.59% | 94.56% | 96.42% | 97.81% |
Parameters | Models | MAE | RMSE | R2 |
---|---|---|---|---|
Shape | DNN7 | 0.468 | 1.551 | 0.714 |
DNN7-AF | 0.280 | 1.161 | 0.840 | |
MT1DCNN-NT | 0.188 | 1.032 | 0.873 | |
MT1DCNN | 0.149 | 1.010 | 0.880 | |
Scale | DNN7 | 0.069 | 0.350 | 0.729 |
DNN7-AF | 0.057 | 0.340 | 0.745 | |
MT1DCNN-NT | 0.053 | 0.322 | 0.771 | |
MT1DCNN | 0.035 | 0.305 | 0.796 |
Parameters | Models | MAE | RMSE | R2 |
---|---|---|---|---|
Shape | DNN7 | 0.515 | 1.645 | 0.796 |
DNN7-AF | 0.418 | 1.544 | 0.821 | |
MT1DCNN-NT | 0.272 | 1.337 | 0.865 | |
MT1DCNN | 0.239 | 1.369 | 0.862 | |
Scale | DNN7 | 0.144 | 0.979 | 0.200 |
DNN7-AF | 0.135 | 0.973 | 0.211 | |
MT1DCNN-NT | 0.132 | 0.985 | 0.192 | |
MT1DCNN | 0.068 | 0.647 | 0.658 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Ma, L.; Wu, T.; Wu, J.; Luo, X. Joint Prediction of Sea Clutter Amplitude Distribution Based on a One-Dimensional Convolutional Neural Network with Multi-Task Learning. Remote Sens. 2024, 16, 3891. https://doi.org/10.3390/rs16203891
Wang L, Ma L, Wu T, Wu J, Luo X. Joint Prediction of Sea Clutter Amplitude Distribution Based on a One-Dimensional Convolutional Neural Network with Multi-Task Learning. Remote Sensing. 2024; 16(20):3891. https://doi.org/10.3390/rs16203891
Chicago/Turabian StyleWang, Longshuai, Liwen Ma, Tao Wu, Jiaji Wu, and Xiang Luo. 2024. "Joint Prediction of Sea Clutter Amplitude Distribution Based on a One-Dimensional Convolutional Neural Network with Multi-Task Learning" Remote Sensing 16, no. 20: 3891. https://doi.org/10.3390/rs16203891
APA StyleWang, L., Ma, L., Wu, T., Wu, J., & Luo, X. (2024). Joint Prediction of Sea Clutter Amplitude Distribution Based on a One-Dimensional Convolutional Neural Network with Multi-Task Learning. Remote Sensing, 16(20), 3891. https://doi.org/10.3390/rs16203891