Spatial and Temporal Patterns of Grassland Species Diversity and Their Driving Factors in the Three Rivers Headwater Region of China from 2000 to 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Grassland Field Data
2.2.2. Remotely Sensed Vegetation Index and Preprocessing
2.2.3. Data for Other Variables
2.3. Construction and Assessment of Grassland Species Diversity Models
2.3.1. Variable Selection
2.3.2. Construction and Assessment of Machine Learning Models
2.4. The Spatiotemporal Dynamics of Grassland Species Diversity
2.4.1. Spatial Distribution
2.4.2. Trend in Spatiotemporal Changes
2.4.3. Future Trends
2.5. Detection of the Driving Factors of Grassland Species Diversity Dynamics
3. Results
3.1. Variable Selection and Model Accuracy Evaluation
3.2. Patterns of the Spatial Distribution of the Average Grassland Species Diversity from 2000 to 2021
3.3. Spatial and Temporal Trends in Grassland Species Diversity Between 2000 and 2021
3.4. Future Trends in Grassland Species Diversity
3.5. The Drivers of Spatial and Temporal Dynamics of Grassland Species Diversity
4. Discussion
4.1. Analysis of Variable Selection Results for Different Modeling Approaches
4.2. Analysis of Species Diversity Modeling and Accuracy Evaluation
4.3. Analysis of Spatial and Temporal Patterns of Species Diversity
4.4. Analysis of the Driving Factors of Changes in Species Diversity
5. Conclusions
- (1)
- The model constructed based on the STEP variable selection method combined with the RF machine learning method could accurately assess grassland species diversity in the TRHR. Through the comprehensive modeling of multiple variable selection and multiple machine learning models in addition to accuracy evaluation, we concluded that the model constructed based on the RF-STEP method had the highest accuracy of all the models tested, with an R2 of 0.44, an RMSE of 2.56 n/m2, and an MAE of 2.06 n/m2 for the model test set.
- (2)
- The effectiveness of the conservation of the diversity of grassland vegetation species in the TRHR from 2000 to 2021 has been good, with species diversity showing an increasing trend in most areas; however, some areas still exhibited a decreasing trend in the past and are predicted to do so again in the future, an aspect that needs to be emphasized in the future conservation of biodiversity in the TRHR.
- (3)
- This study revealed that climate change and human activities are both key drivers of changes in grassland vegetation species diversity, with temperature change being the most significant driver of changes in grassland species diversity in the TRHR.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; Guo, Q.; Guan, H.; Hu, T.; Jin, S.; Wang, Z.; Liu, L.; Jiang, L.; Guo, K.; Xie, Z.; et al. Human-climate coupled changes in vegetation community complexity of China since 1980s. Earth’s Future 2022, 10, e2021EF002553. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A.; et al. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef]
- Pennekamp, F.; Pontarp, M.; Tabi, A.; Altermatt, F.; Alther, R.; Choffat, Y.; Fronhofer, E.A.; Ganesanandamoorthy, P.; Garnier, A.; Griffiths, J.I.; et al. Biodiversity increases and decreases ecosystem stability. Nature 2018, 563, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.O.; Scholes, R.J.; Arneth, A.; Barnes, D.K.A.; Burrows, M.T.; Diamond, S.E.; Duarte, C.M.; Kiessling, W.; Leadley, P.; Managi, S.; et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 2023, 380, eabl4881. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, Y.; Luo, Y.; Ji, W.; Bian, Q.; Zhu, Z.; Wang, J.; Qin, Y.; He, X.Z.; Li, M.; et al. An improved method for monitoring multiscale plant species diversity of alpine grassland using UAV: A case study in the Source Region of the Yellow River, China. Front. Plant Sci. 2022, 13, 905715. [Google Scholar] [CrossRef] [PubMed]
- Wagg, C.; Roscher, C.; Weigelt, A.; Vogel, A.; Ebeling, A.; de Luca, E.; Roeder, A.; Kleinspehn, C.; Temperton, V.M.; Meyer, S.T.; et al. Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nat. Commun. 2022, 13, 7752. [Google Scholar] [CrossRef] [PubMed]
- Thornley, R.H.; Gerard, F.F.; White, K.; Verhoef, A. Prediction of Grassland Biodiversity Using Measures of Spectral Variance: A Meta-Analytical Review. Remote Sens. 2023, 15, 668. [Google Scholar] [CrossRef]
- Divíšek, J.; Chytrý, M. High-resolution and large-extent mapping of plant species richness using vegetation-plot databases. Ecol. Indic. 2018, 89, 840–851. [Google Scholar] [CrossRef]
- Levrel, H.; Fontaine, B.; Henry, P.; Jiguet, F.; Julliard, R.; Kerbiriou, C.; Couvet, D. Balancing state and volunteer investment in biodiversity monitoring for the implementation of CBD indicators: A French example. Ecol. Econ. 2010, 69, 1580–1586. [Google Scholar] [CrossRef]
- Reddy, C.S.; Kurian, A.; Srivastava, G.; Singhal, J.; Varghese, A.O.; Padalia, H.; Ayyappan, N.; Rajashekar, G.; Jha, C.S.; Rao, P.V.N. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: Technological advancement and potentials. Biodivers. Conserv. 2021, 30, 1–14. [Google Scholar] [CrossRef]
- Rocchini, D.; Balkenhol, N.; Carter, G.A.; Foody, G.M.; Gillespie, T.W.; He, K.S.; Kark, S.; Levin, N.; Lucas, K.; Luoto, M.; et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecol. Inform. 2010, 5, 318–329. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Fauvel, M.; Lopes, M.; Dubo, T.; Rivers-Moore, J.; Frison, P.; Gross, N.; Ouin, A. Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series. Remote Sens. Environ. 2020, 237, 111536. [Google Scholar] [CrossRef]
- Madonsela, S.; Cho, M.A.; Ramoelo, A.; Mutanga, O. Remote sensing of species diversity using Landsat 8 spectral variables. ISPRS J. Photogramm. 2017, 133, 116–127. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 2019, 231, 111218. [Google Scholar] [CrossRef]
- Perrone, M.; Di Febbraro, M.; Conti, L.; Divíšek, J.; Chytrý, M.; Keil, P.; Carranza, M.L.; Rocchini, D.; Torresani, M.; Moudrý, V.; et al. The relationship between spectral and plant diversity: Disentangling the influence of metrics and habitat types at the landscape scale. Remote Sens. Environ. 2023, 293, 113591. [Google Scholar] [CrossRef]
- Daleo, P.; Alberti, J.; Chaneton, E.J.; Iribarne, O.; Tognetti, P.M.; Bakker, J.D.; Borer, E.T.; Bruschetti, M.; MacDougall, A.S.; Pascual, J.; et al. Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass. Nat. Commun. 2023, 14, 1809. [Google Scholar] [CrossRef]
- Coelho, M.T.P.; Barreto, E.; Rangel, T.F.; Diniz-Filho, J.A.F.; Wüest, R.O.; Bach, W.; Skeels, A.; McFadden, I.R.; Roberts, D.W.; Pellissier, L.; et al. The geography of climate and the global patterns of species diversity. Nature 2023, 622, 537–544. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Figueiredo, M.; Domingos, T. The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Yu, Q.; Ji, W.; Prihodko, L.; Ross, C.W.; Anchang, J.Y.; Hanan, N.P. Study becomes insight: Ecological learning from machine learning. Methods Ecol. Evol. 2021, 12, 2117–2128. [Google Scholar] [CrossRef]
- Yang, M.; Chen, A.; Zhang, M.; Gu, Q.; Wang, Y.; Guo, J.; Yang, D.; Zhao, Y.; Huang, Q.; Ma, L.; et al. Relationship between plant species diversity and aboveground biomass in alpine grasslands on the Qinghai–Tibet Plateau: Spatial patterns and the factors driving them. Front. Ecol. Evol. 2023, 11, 1138884. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Niu, B.; He, Y.; Wang, X.; Wu, J. Changes in plant species richness distribution in Tibetan alpine grasslands under different precipitation scenarios. Glob. Ecol. Conserv. 2020, 21, e848. [Google Scholar] [CrossRef]
- Tallowin, J.R.B.; Rook, A.J.; Rutter, S.M. Impact of grazing management on biodiversity of grasslands. Anim. Sci. 2005, 81, 193–198. [Google Scholar] [CrossRef]
- Yao, Z.; Xin, Y.; Yang, L.; Zhao, L.; Ali, A. Precipitation and temperature regulate species diversity, plant coverage and aboveground biomass through opposing mechanisms in large-scale grasslands. Front. Plant Sci. 2022, 13, 999636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Delgado-Baquerizo, M.; Li, G.; Isbell, F.; Wang, Y.; Hautier, Y.; Wang, Y.; Xiao, Y.; Cai, J.; Pan, X.; et al. Experimental impacts of grazing on grassland biodiversity and function are explained by aridity. Nat. Commun. 2023, 14, 5040. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.P.; Gornish, E.S.; Copeland, S. Climate-driven diversity loss in a grassland community. Proc. Natl. Acad. Sci. USA 2015, 112, 8672–8677. [Google Scholar] [CrossRef]
- Piao, S.; Zhang, X.; Wang, T.; Liang, E.; Wang, S.; Zhu, J.; Niu, B. Response of Qinghai-Tibet Plateau ecosystems to climate change and its feedbacks. Chin. Sci. Bull. 2019, 64, 2842–2855. [Google Scholar] [CrossRef]
- Mi, X.; Feng, G.; Hu, Y.; Zhang, J.; Ma, K. The global significance of biodiversity science in China: An overview. Natl. Sci. Rev. 2021, 36, 384–398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, X.; Gong, J.; Luo, F.; Pan, Y. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019. Sci. Total Environ. 2024, 910, 168676. [Google Scholar] [CrossRef]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.; Song, X.; Shi, Z.; Zhu, A.; Zhang, G. Mapping high resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef]
- Meng, N.; Wang, L.; Qi, W.; Dai, X.; Li, Z.; Yang, Y.; Li, R.; Ma, J.; Zheng, H. A high-resolution gridded grazing dataset of grassland ecosystem on the Qinghai–Tibet Plateau in 1982–2015. Sci. Data 2023, 10, 68. [Google Scholar] [CrossRef]
- Ge, J.; Hou, M.; Liang, T.; Feng, Q.; Meng, X.; Liu, J.; Bao, X.; Gao, H. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Sci. Total Environ. 2022, 826, 154226. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann±Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2001, 259, 254–271. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Oindo, B.O.; Skidmore, A.K. Interannual variability of NDVI and species richness in Kenya. Int. J. Remote Sens. 2002, 23, 285–298. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef]
- Peng, Y.; Feng, J.; Sang, W.; Axmacher, J.C. Geographical divergence of species richness and local homogenization of plant assemblages due to climate change in grasslands. Biodivers. Conserv. 2022, 31, 797–810. [Google Scholar] [CrossRef]
- Sabatini, F.M.; Jiménez-Alfaro, B.; Jandt, U.; Chytrý, M.; Field, R.; Kessler, M.; Lenoir, J.; Schrodt, F.; Wiser, S.K.; Arfin Khan, M.A.S.; et al. Global patterns of vascular plant alpha diversity. Nat. Commun. 2022, 13, 4683. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Gamon, J.A.; Zygielbaum, A.I.; Wang, R.; Schweiger, A.K.; Cavender-Bares, J. Remote sensing of biodiversity: Soil correction and data dimension reduction methods improve assessment of α-diversity (species richness) in prairie ecosystems. Remote Sens. Environ. 2018, 206, 240–253. [Google Scholar] [CrossRef]
- López-Angulo, J.; Pescador, D.S.; Sánchez, A.M.; Luzuriaga, A.L.; Cavieres, L.A.; Escudero, A. Impacts of climate, soil and biotic interactions on the interplay of the different facets of alpine plant diversity. Sci. Total Environ. 2020, 698, 133960. [Google Scholar] [CrossRef] [PubMed]
- Tsiftsis, S.; Štípková, Z.; Kindlmann, P. Role of way of life, latitude, elevation and climate on the richness and distribution of orchid species. Biodivers. Conserv. 2018, 28, 75–96. [Google Scholar] [CrossRef]
- Cheng, C.; He, N.; Li, M.; Xu, L.; Cai, W.; Li, X.; Zhao, W.; Li, C.; Sun, O.J. Plant species richness on the Tibetan Plateau: Patterns and determinants. Ecography 2023, 2023, e06265. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, Z.; Cheng, Y.; Buhebaoyin; Borjigin, S.; Quan, Z. Grassland biomass spatiotemporal patterns and response to climate change in eastern Inner Mongolia based on XGBoost model estimates. Ecol. Indic. 2024, 158, 111554. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.; Montgomery, R.; Townsend, P.; Zygielbaum, A.; Bitan, K.; Tilman, D.; Cavender-Bares, J. Seasonal Variation in the NDVI–Species Richness Relationship in a Prairie Grassland Experiment (Cedar Creek). Remote Sens. 2016, 8, 128. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, Y.; Chen, W.; Zhao, Y.; Liu, X.; Bai, Y. The Potential of Mapping Grassland Plant Diversity with the Links among Spectral Diversity, Functional Trait Diversity, and Species Diversity. Remote Sens. 2021, 13, 3034. [Google Scholar] [CrossRef]
- Meyer, H.; Pebesma, E. Machine learning-based global maps of ecological variables and the challenge of assessing them. Nat. Commun. 2022, 13, 2208. [Google Scholar] [CrossRef]
- Muro, J.; Linstädter, A.; Magdon, P.; Wöllauer, S.; Männer, F.A.; Schwarz, L.; Ghazaryan, G.; Schultz, J.; Malenovský, Z.; Dubovyk, O. Predicting plant biomass and species richness in temperate grasslands across regions, time, and land management with remote sensing and deep learning. Remote Sens. Environ. 2022, 282, 113262. [Google Scholar] [CrossRef]
- Dong, S.; Tang, L.; Wang, X.; Liu, Y.; Liu, S.; Liu, Q.; Wu, Y.; Li, Y.; Su, X.; Zhao, C. Determination of plant diversity in alpine grasslands on the Tibetan Plateau minimum sample area. Biodivers. Sci. 2013, 21, 651–657. [Google Scholar] [CrossRef]
- Imran, H.A.; Gianelle, D.; Scotton, M.; Rocchini, D.; Dalponte, M.; Macolino, S.; Sakowska, K.; Pornaro, C.; Vescovo, L. Potential and Limitations of Grasslands α-Diversity Prediction Using Fine-Scale Hyperspectral Imagery. Remote Sens. 2021, 13, 2649. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Ma, R.; Xiao, F.; Dong, Z.; Nan, W.; Hu, G.; Cheng, H. Dynamics of land desertification and its drivers in Gonghe County, Qinghai Province, 2000–2020. J. Arid. Land Resour. Environ. 2022, 36, 139–148. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Z.; Shi, G.; Su, H.; Qin, R.; Chang, T.; Wei, J.; Zhou, C.; Hu, X.; Shao, X.; et al. Warming changed the relationship between species diversity and primary productivity of alpine meadow on the Tibetan Plateau. Ecol. Indic. 2022, 145, 109691. [Google Scholar] [CrossRef]
- Wei, X.; Wei, W.; Liu, C. Spatial and temporal changes of grassland vegetation and its relationship with human activities over the past 40 years in Qinghai Province. J. Ecol. 2021, 40, 2541–2552. [Google Scholar] [CrossRef]
- Shang, J.; Zhang, Y.; Peng, Y.; Huang, Y.; Zhu, L.; Wu, Z.; Wang, J.; Cui, Y. Climate change drives NDVI variations at multiple spatiotemporal levels rather than human disturbance in Northwest China. Environ. Sci. Pollut. R. 2022, 29, 13782–13796. [Google Scholar] [CrossRef]
- Andersen, C.M.; Bro, R. Variable selection in regression—A tutorial. J. Chemom. 2010, 24, 728–737. [Google Scholar] [CrossRef]
- Duan, K.-B.; Rajapakse, J.; Wang, H.; Azuaje, F. Multiple SVM-RFE for Gene Selection in Cancer Classification with Expression Data. IEEE Trans. NanoBiosci. 2005, 4, 228–234. [Google Scholar] [CrossRef]
- Smith, G. Step away from stepwise. J. Big Data 2018, 5, 32. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Deng, Z.; Zhu, X.; Cheng, D.; Zong, M.; Zhang, S. Efficient kNN classification algorithm for big data. Neurocomputing 2016, 195, 143–148. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote. Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
Method | Variables Selected | Number |
---|---|---|
GA | KNDVI MAT MAP GMAP MET CF SND THK TK SBD ELE SLOPE | 12 |
REF | EVI NDVI GNDVI KNDVI RVI SAVI MAT GMAT MAP GMAP MET GMET THK SBD TN TK SOC TP SND PH ELE | 21 |
STEP | EVI KNDVI RVI SAVI MAT MAP MET GMET CF CLY SLT SND SOC THK TN SBD ELE | 17 |
LASSO | EVI GNDVI KNDVI RVI SAVI MAT GMAT MAP GMAP MET GMET CF CLS CLY SLT SOC THK TK TN TP SBD ELE ASP SLOP | 24 |
Model Method and Variable Selection Method | Training Set | Test Set | ||||
---|---|---|---|---|---|---|
RMSE | R2 | MAE | RMSE | R2 | MAE | |
XGboost-ALL | 2.25 | 0.58 | 1.79 | 2.63 | 0.40 | 2.12 |
XGboost-GA | 2.03 | 0.67 | 1.58 | 2.66 | 0.39 | 2.11 |
XGboost-REF | 2.38 | 0.53 | 1.90 | 2.62 | 0.41 | 2.11 |
XGboost-STEP | 2.38 | 0.52 | 1.88 | 2.63 | 0.40 | 2.12 |
XGboost-LASSO | 2.30 | 0.56 | 1.83 | 2.66 | 0.39 | 2.13 |
RF-ALL | 1.55 | 0.84 | 1.22 | 2.57 | 0.43 | 2.06 |
RF-GA | 1.38 | 0.88 | 1.09 | 2.61 | 0.41 | 2.10 |
RF-REF | 1.39 | 0.88 | 1.10 | 2.58 | 0.42 | 2.08 |
RF-STEP | 1.49 | 0.85 | 1.19 | 2.56 | 0.44 | 2.06 |
RF-LASSO | 1.61 | 0.83 | 1.28 | 2.59 | 0.42 | 2.07 |
KNN-ALL | 2.56 | 0.44 | 2.06 | 2.71 | 0.36 | 2.18 |
KNN-GA | 2.54 | 0.45 | 2.04 | 2.76 | 0.34 | 2.21 |
KNN-REF | 2.43 | 0.49 | 1.93 | 2.71 | 0.37 | 2.16 |
KNN-STEP | 2.52 | 0.46 | 2.00 | 2.66 | 0.39 | 2.13 |
KNN-LASSO | 2.55 | 0.44 | 2.04 | 2.70 | 0.37 | 2.17 |
SVM-ALL | 2.69 | 0.38 | 2.13 | 2.63 | 0.40 | 2.10 |
SVM-GA | 2.76 | 0.35 | 2.19 | 2.71 | 0.37 | 2.17 |
SVM-REF | 2.71 | 0.37 | 2.14 | 2.62 | 0.41 | 2.09 |
SVM-STEP | 2.70 | 0.38 | 2.14 | 2.61 | 0.41 | 2.08 |
SVM-LASSO | 2.70 | 0.38 | 2.13 | 2.62 | 0.41 | 2.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Chen, A.; Cao, W.; Wang, S.; Xu, M.; Gu, Q.; Wang, Y.; Yang, X. Spatial and Temporal Patterns of Grassland Species Diversity and Their Driving Factors in the Three Rivers Headwater Region of China from 2000 to 2021. Remote Sens. 2024, 16, 4005. https://doi.org/10.3390/rs16214005
Yang M, Chen A, Cao W, Wang S, Xu M, Gu Q, Wang Y, Yang X. Spatial and Temporal Patterns of Grassland Species Diversity and Their Driving Factors in the Three Rivers Headwater Region of China from 2000 to 2021. Remote Sensing. 2024; 16(21):4005. https://doi.org/10.3390/rs16214005
Chicago/Turabian StyleYang, Mingxin, Ang Chen, Wenqiang Cao, Shouxin Wang, Mingyuan Xu, Qiang Gu, Yanhe Wang, and Xiuchun Yang. 2024. "Spatial and Temporal Patterns of Grassland Species Diversity and Their Driving Factors in the Three Rivers Headwater Region of China from 2000 to 2021" Remote Sensing 16, no. 21: 4005. https://doi.org/10.3390/rs16214005
APA StyleYang, M., Chen, A., Cao, W., Wang, S., Xu, M., Gu, Q., Wang, Y., & Yang, X. (2024). Spatial and Temporal Patterns of Grassland Species Diversity and Their Driving Factors in the Three Rivers Headwater Region of China from 2000 to 2021. Remote Sensing, 16(21), 4005. https://doi.org/10.3390/rs16214005