Submesoscale Short-Lived Eddies in the Southwestern Taiwan Strait Observed by High-Frequency Surface-Wave Radars
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods of Eddy Detection and Tracking
2.3. Specific Eddy Attributes Determination
3. Results
3.1. Case Studies
3.1.1. Case A
3.1.2. Case B
3.1.3. Case C
3.2. Statistical Characteristics
3.2.1. Eddy Distribution
3.2.2. Radius
3.2.3. Lifespan
3.2.4. Vorticity
3.2.5. Motion of Eddies
3.2.6. Evolution of Eddies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mcwilliams, J.C. The Vortices of Two-Dimensional Turbulence. J. Fluid Mech. 1990, 219, 361. [Google Scholar] [CrossRef]
- Doglioli, A.M.; Blanke, B.; Speich, S.; Lapeyre, G. Tracking Coherent Structures in a Regional Ocean Model with Wavelet Analysis: Application to Cape Basin Eddies. J. Geophys. Res. Ocean. 2007, 112. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Wang, Q.; Zeng, L.; Xing, T.; He, Y.; Shu, Y.; Chen, J.; Wang, Y. Eddy-Induced Transport of Saline Kuroshio Water into the Northern South China Sea. JGR Ocean. 2019, 124, 6673–6687. [Google Scholar] [CrossRef]
- Bassin, C.J.; Washburn, L.; Brzezinski, M.; McPhee-Shaw, E. Sub-Mesoscale Coastal Eddies Observed by High Frequency Radar: A New Mechanism for Delivering Nutrients to Kelp Forests in the Southern California Bight: COASTAL EDDIES. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Thomas, L.N.; Tandon, A.; Mahadevan, A. Submesoscale Processes and Dynamics. In Geophysical Monograph Series; Hecht, M.W., Hasumi, H., Eds.; American Geophysical Union: Washington, DC, USA, 2008; Volume 177, pp. 17–38. ISBN 978-0-87590-442-9. [Google Scholar]
- Wang, X.; Li, W.; Qi, Y.; Han, G. Heat, Salt and Volume Transports by Eddies in the Vicinity of the Luzon Strait. Deep Sea Res. Part I Oceanogr. Res. Pap. 2012, 61, 21–33. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, L.; Wang, Q. How Much Heat and Salt Are Transported into the South China Sea by Mesoscale Eddies? Earth’s Future 2021, 9, e2020EF001857. [Google Scholar] [CrossRef]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A.F. Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests. J. Phys. Oceanogr. 2008, 38, 29–43. [Google Scholar] [CrossRef]
- Faghmous, J.H.; Frenger, I.; Yao, Y.; Warmka, R.; Lindell, A.; Kumar, V. A Daily Global Mesoscale Ocean Eddy Dataset from Satellite Altimetry. Sci. Data 2015, 2, 150028. [Google Scholar] [CrossRef]
- Kirincich, A. The Occurrence, Drivers, and Implications of Submesoscale Eddies on the Martha’s Vineyard Inner Shelf. J. Phys. Oceanogr. 2016, 46, 2645–2662. [Google Scholar] [CrossRef]
- Bashmachnikov, I.L.; Raj, R.P.; Golubkin, P.; Kozlov, I.E. Heat Transport by Mesoscale Eddies in the Norwegian and Greenland Seas. J. Geophys. Res. Ocean. 2023, 128, e2022JC018987. [Google Scholar] [CrossRef]
- Lin, X.; Dong, C.; Chen, D.; Liu, Y.; Yang, J.; Zou, B.; Guan, Y. Three-Dimensional Properties of Mesoscale Eddies in the South China Sea Based on Eddy-Resolving Model Output. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 99, 46–64. [Google Scholar] [CrossRef]
- Hu, Q.; Huang, X.; Zhang, Z.; Zhang, X.; Xu, X.; Sun, H.; Zhou, C.; Zhao, W.; Tian, J. Cascade of Internal Wave Energy Catalyzed by Eddy-Topography Interactions in the Deep South China Sea. Geophys. Res. Lett. 2020, 47, e2019GL086510. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, L.; Chen, J.; He, Y.; Zhou, W.; Wang, D. The Linkage of Kuroshio Intrusion and Mesoscale Eddy Variability in the Northern South China Sea: Subsurface Speed Maximum. Geophys. Res. Lett. 2020, 47, e2020GL087034. [Google Scholar] [CrossRef]
- Shi, Q.; Wang, G. Meander Response of the Kuroshio in the East China Sea to Impinging Eddies. JGR Ocean. 2021, 126, e2021JC017512. [Google Scholar] [CrossRef]
- Qi, Y.; Mao, H.; Du, Y.; Li, X.; Yang, Z.; Xu, K.; Yang, Y.; Zhong, W.; Zhong, F.; Yu, L.; et al. A Lens-Shaped, Cold-Core Anticyclonic Surface Eddy in the Northern South China Sea. Front. Mar. Sci. 2022, 9, 976273. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Y.; Chen, G.; Tan, W.; Lin, X.; Guan, Y.; Dong, C. Three-Dimensional Properties of Mesoscale Cyclonic Warm-Core and Anticyclonic Cold-Core Eddies in the South China Sea. Acta Oceanol. Sin. 2021, 40, 17–29. [Google Scholar] [CrossRef]
- Ismoyo, D. Potential for Cross-Taiwan Strait Transmission System Development. In Proceedings of the 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kowloon, Hong Kong, 8–11 December 2013; pp. 1–6. [Google Scholar]
- Lan, K.-W.; Zhang, C.I.; Kang, H.J.; Wu, L.-J.; Lian, L.-J. Impact of Fishing Exploitation and Climate Change on the Grey Mullet Mugil Cephalus Stock in the Taiwan Strait. Mar. Coast. Fish. 2017, 9, 271–280. [Google Scholar] [CrossRef]
- Wang, Z. The Impact of China’s WTO Accession on Trade and Economic Relations across the Taiwan Strait. Econ. Transit. 2001, 9, 743–785. [Google Scholar] [CrossRef]
- Chuangt, W.-S. A Note on the Driving Mechanisms of Current in the Taiwan Strait. J. Oceanogr. 1986, 42, 355–361. [Google Scholar] [CrossRef]
- Jan, S.; Sheu, D.D.; Kuo, H. Water Mass and Throughflow Transport Variability in the Taiwan Strait. J. Geophys. Res. 2006, 111, 2006JC003656. [Google Scholar] [CrossRef]
- Chung, S.-W.; Jan, S.; Liu, K.-K. Nutrient Fluxes through the Taiwan Strait in Spring and Summer 1999. J. Oceanogr. 2001, 57, 47–53. [Google Scholar] [CrossRef]
- Hu, J.; Kawamura, H.; Li, C.; Hong, H.; Jiang, Y. Review on Current and Seawater Volume Transport through the Taiwan Strait. J. Oceanogr. 2010, 66, 591–610. [Google Scholar] [CrossRef]
- Nan, F.; He, Z.; Zhou, H.; Wang, D. Three Long-Lived Anticyclonic Eddies in the Northern South China Sea. J. Geophys. Res. Ocean. 2011, 116, CO5002:1–CO5002:15. [Google Scholar] [CrossRef]
- Li, L.; Nowlin, W.D.; Jilan, S. Anticyclonic Rings from the Kuroshio in the South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 1998, 45, 1469–1482. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Amores, A.; Melnichenko, O.; Maximenko, N. Coherent Mesoscale Eddies in the North Atlantic Subtropical Gyre: 3-D Structure and Transport with Application to the Salinity Maximum. J. Geophys. Res. Ocean. 2017, 122, 23–41. [Google Scholar] [CrossRef]
- Melnichenko, O.; Amores, A.; Maximenko, N.; Hacker, P.; Potemra, J. Signature of Mesoscale Eddies in Satellite Sea Surface Salinity Data. J. Geophys. Res. Ocean. 2017, 122, 1416–1424. [Google Scholar] [CrossRef]
- Gaube, P.; Chelton, D.B.; Samelson, R.M.; Schlax, M.G.; O’Neill, L.W. Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping. J. Phys. Oceanogr. 2015, 45, 104–132. [Google Scholar] [CrossRef]
- Chavanne, C.P.; Klein, P. Can Oceanic Submesoscale Processes Be Observed with Satellite Altimetry? Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Pomales-Velázquez, L.; Morell, J.; Rodriguez-Abudo, S.; Canals, M.; Capella, J.; Garcia, C. Characterization of Mesoscale Eddies and Detection of Submesoscale Eddies Derived from Satellite Imagery and HF Radar off the Coast of Southwestern Puerto Rico. In Proceedings of the OCEANS 2015-MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–6. [Google Scholar]
- Dandapat, S.; Chakraborty, A. Mesoscale Eddies in the Western Bay of Bengal as Observed from Satellite Altimetry in 1993–2014: Statistical Characteristics, Variability and Three-Dimensional Properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5044–5054. [Google Scholar] [CrossRef]
- Mandal, S.; Sil, S.; Pramanik, S.; Arunraj, K.S.; Jena, B.K. Characteristics and Evolution of a Coastal Mesoscale Eddy in the Western Bay of Bengal Monitored by High-Frequency Radars. Dyn. Atmos. Ocean. 2019, 88, 101107. [Google Scholar] [CrossRef]
- Kim, S.Y. Observations of Submesoscale Eddies Using High-Frequency Radar-Derived Kinematic and Dynamic Quantities. Cont. Shelf Res. 2010, 30, 1639–1655. [Google Scholar] [CrossRef]
- Huang, C.; Zeng, L.; Wang, D.; Wang, Q.; Wang, P.; Zu, T. Submesoscale Eddies in Eastern Guangdong Identified Using High-Frequency Radar Observations. Deep Sea Res. Part II Top. Stud. Oceanogr. 2023, 207, 105220. [Google Scholar] [CrossRef]
- Payandeh, A.R.; Washburn, L.; Emery, B.; Ohlmann, J.C. The Occurrence, Variability, and Potential Drivers of Submesoscale Eddies in the Southern California Bight Based on a Decade of High-Frequency Radar Observations. J. Geophys. Res. Ocean. 2023, 128, e2023JC019914. [Google Scholar] [CrossRef]
- Lai, Y.; Zhou, H.; Wen, B. Surface Current Characteristics in the Taiwan Strait Observed by High-Frequency Radars. IEEE J. Ocean. Eng. 2017, 42, 449–457. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, X.; Lin, H.; Chen, X.; Xu, X.; Li, L. Spatial Distribution Characteristics of Surface Tidal Currents in the Southwest of Taiwan Strait. J. Ocean Univ. China 2014, 13, 971–978. [Google Scholar] [CrossRef]
- Wang, L.; Pawlowicz, R.; Wu, X.; Yue, X. Wintertime Variability of Currents in the Southwestern Taiwan Strait. J. Geophys. Res. Ocean. 2021, 126, e2020JC016586. [Google Scholar] [CrossRef]
- Lai, Y.; Zhou, H.; Yang, J.; Zeng, Y.; Wen, B. Submesoscale Eddies in the Taiwan Strait Observed by High-Frequency Radars: Detection Algorithms and Eddy Properties. J. Atmos. Ocean. Technol. 2017, 34, 939–953. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, H.; Huang, W.; Wen, B. Submesoscale Eddies Observation Using High-Frequency Radars: A Case Study in the Northern South China Sea. IEEE J. Ocean. Eng. 2021, 46, 624–633. [Google Scholar] [CrossRef]
- Ari Sadarjoen, I.; Post, F.H. Detection, Quantification, and Tracking of Vortices Using Streamline Geometry. Comput. Graph. 2000, 24, 333–341. [Google Scholar] [CrossRef]
- Dong, C.; Liu, Y.; Lumpkin, R.; Lankhorst, M.; Chen, D.; McWilliams, J.C.; Guan, Y. A Scheme to Identify Loops from Tracks of Oceanic Surface Drifters: An Application in the Kuroshio Extension Region. J. Atmos. Ocean. Technol. 2011, 28, 1167–1176. [Google Scholar] [CrossRef]
- Nencioli, F.; Dong, C.; Dickey, T.; Washburn, L.; McWilliams, J.C. A Vector Geometry–Based Eddy Detection Algorithm and Its Application to a High-Resolution Numerical Model Product and High-Frequency Radar Surface Velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Okubo, A. Horizontal Dispersion of Floatable Particles in the Vicinity of Velocity Singularities Such as Convergences. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 445–454. [Google Scholar] [CrossRef]
- Weiss, J. The Dynamics of Enstrophy Transfer in Two-Dimensional Hydrodynamics. Phys. D Nonlinear Phenom. 1991, 48, 273–294. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale Eddies off Peru in Altimeter Records: Identification Algorithms and Eddy Spatio-Temporal Patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, H.; Huang, W.; Tian, Y.; Wen, B. Cross-Domain Submesoscale Eddy Detection Neural Network for HF Radar. Remote Sens. 2021, 13, 2441. [Google Scholar] [CrossRef]
- Ye, Z.-X.; Chen, Q.; Li, B.-H.; Zou, J.-F.; Zheng, Y. Flow Structure Segmentation for Vortex Identification Using Butterfly Convolutional Neural Networks. Int. J. Mod. Phys. B 2020, 34, 2040121. [Google Scholar] [CrossRef]
- Schaeffer, A.; Gramoulle, A.; Roughan, M.; Mantovanelli, A. Characterizing Frontal Eddies along the East Australian Current from HF Radar Observations. J. Geophys. Res. Ocean. 2017, 122, 3964–3980. [Google Scholar] [CrossRef]
- Li, M.; Wu, X.; Zhang, L.; Yue, X.; Li, C.; Liu, J. A New Algorithm for Surface Currents Inversion With High-Frequency Over-the-Horizon Radar. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1303–1307. [Google Scholar] [CrossRef]
- Li, C.; Wu, X.; Yue, X.; Zhang, L.; Liu, J.; Li, M.; Zhou, H.; Wan, B. Extraction of Wind Direction Spreading Factor From Broad-Beam High-Frequency Surface Wave Radar Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5123–5133. [Google Scholar] [CrossRef]
- Wang, M.; Wu, X.; Zhang, L.; Yue, X.; Yi, X.; Xie, X.; Yu, L. Measurement and Analysis of Antenna Pattern for MIMO HF Surface Wave Radar. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1788–1792. [Google Scholar] [CrossRef]
- Zhou, H.; Wen, B. Observations of the Second-Harmonic Peaks from the Sea Surface with High-Frequency Radars. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1682–1686. [Google Scholar] [CrossRef]
- Wu, X.; Yang, S.; Cheng, F.; Wu, S.; Yang, Z.; Wen, B.; Shi, Z.; Tian, J.; Ke, H.; Gao, H. Ocean Surface Current Detection by HF Surface Wave Radar at the Eastern China Sea. Chin. J. Geophys. 2003, 46, 489–498. [Google Scholar] [CrossRef]
- Wei, G.; He, Z.; Xie, Y.; Shang, S.; Dai, H.; Wu, J.; Liu, K.; Lin, R.; Wan, Y.; Lin, H.; et al. Assessment of HF Radar in Mapping Surface Currents under Different Sea States. J. Atmos. Ocean. Technol. 2020, 37, 1403–1422. [Google Scholar] [CrossRef]
- Chen, G.; Hou, Y.; Chu, X. Mesoscale Eddies in the South China Sea: Mean Properties, Spatiotemporal Variability, and Impact on Thermohaline Structure. J. Geophys. Res. 2011, 116, C06018. [Google Scholar] [CrossRef]
- Chang, M.-H.; Tang, T.Y.; Ho, C.-R.; Chao, S.-Y. Kuroshio-Induced Wake in the Lee of Green Island off Taiwan. J. Geophys. Res. Ocean. 2013, 118, 1508–1519. [Google Scholar] [CrossRef]
- Liu, C.-L.; Chang, M.-H. Numerical Studies of Submesoscale Island Wakes in the Kuroshio. J. Geophys. Res. Ocean. 2018, 123, 5669–5687. [Google Scholar] [CrossRef]
(a, b) | (2, 1) | (2, 2) | (2, 3) | (3, 1) | (3, 2) | (3, 3) | (4, 1) | (4, 2) | (4, 3) |
---|---|---|---|---|---|---|---|---|---|
20 | 17 | 17 | 27 | 24 | 23 | 23 | 22 | 19 | |
5 | 3 | 2 | 3 | 2 | 1 | 1 | 0 | 0 | |
(%) | 64.5 | 54.8 | 54.8 | 87.1 | 77.4 | 72.2 | 72.2 | 71.0 | 61.3 |
(%) | 16.1 | 9.7 | 6.5 | 9.7 | 6.5 | 3.2 | 3.2 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Yue, X.; Wang, L.; Wu, X.; Chen, Z. Submesoscale Short-Lived Eddies in the Southwestern Taiwan Strait Observed by High-Frequency Surface-Wave Radars. Remote Sens. 2024, 16, 589. https://doi.org/10.3390/rs16030589
Zhao H, Yue X, Wang L, Wu X, Chen Z. Submesoscale Short-Lived Eddies in the Southwestern Taiwan Strait Observed by High-Frequency Surface-Wave Radars. Remote Sensing. 2024; 16(3):589. https://doi.org/10.3390/rs16030589
Chicago/Turabian StyleZhao, Hong, Xianchang Yue, Li Wang, Xiongbin Wu, and Zhangyou Chen. 2024. "Submesoscale Short-Lived Eddies in the Southwestern Taiwan Strait Observed by High-Frequency Surface-Wave Radars" Remote Sensing 16, no. 3: 589. https://doi.org/10.3390/rs16030589
APA StyleZhao, H., Yue, X., Wang, L., Wu, X., & Chen, Z. (2024). Submesoscale Short-Lived Eddies in the Southwestern Taiwan Strait Observed by High-Frequency Surface-Wave Radars. Remote Sensing, 16(3), 589. https://doi.org/10.3390/rs16030589