Integrating SBAS-InSAR and Random Forest for Identifying and Controlling Land Subsidence and Uplift in a Multi-Layered Porous System of North China Plain
Abstract
:1. Introduction
Study Area
2. Data and Methods
2.1. Synthetic Aperture Radar Data
2.2. SBAS-InSAR
2.3. The Predictor Variables
2.4. Random Forest
2.4.1. Construction of Random Forest
2.4.2. Validation of RF Model
2.4.3. Extraction of Importance Scores
2.4.4. Threshold of Influencing Factors for Deformation Control
3. Results
3.1. Spatiotemporal Variations of Land Deformation and the Identified Subsidence and Uplift Areas
3.2. Spatiotemporal Variations of the Influencing Factors
3.2.1. Groundwater Table Depth and Its Change Rate
3.2.2. Thickness of Compressible Sediments
3.3. Prediction of Land Subsidence and Uplift
3.3.1. The RF Prediction Accuracy
3.3.2. The Relative Importance of the Influencing Factors
3.3.3. The Appropriate Values of Influencing Factors for Mitigating Land Deformation
4. Discussion
4.1. The Effect of Groundwater Level Rising on Land Subsidence
4.2. The Effect of Groundwater Table Rising on Land Uplift
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef]
- Shirzaei, M.; Bürgmann, R. Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Sci. Adv. 2018, 4, 9234. [Google Scholar] [CrossRef] [PubMed]
- Cigna, F.; Tapete, D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112254. [Google Scholar] [CrossRef]
- Kumar, H.; Syed, T.H.; Amelung, F.; Agrawal, R.; Venkatesh, A.S. Space-time evolution of land subsidence in the National Capital Region of India using ALOS-1 and Sentinel-1 SAR data: Evidence for groundwater overexploitation. J. Hydrol. 2022, 605, 127329. [Google Scholar] [CrossRef]
- Hasan, M.F.; Smith, R.; Vajedian, S.; Pommerenke, R.; Majumdar, S. Global land subsidence mapping reveals widespread loss of aquifer storage capacity. Nat. Commun. 2023, 14, 6180. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 2015, 51, 3922–3955. [Google Scholar] [CrossRef]
- Teatini, P.; Gambolati, G.; Ferronato, M.; Settari, A.; Walters, D. Land uplift due to subsurface fluid injection. J. Geodyn. 2011, 51, 1–16. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Fernández, J.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef]
- Yao, G.; Mu, J. D-InSAR Technique for Land Subsidence Monitoring. Earth Sci. Front. 2008, 15, 239–243. [Google Scholar] [CrossRef]
- Anjasmara, I.M.; Yulyta, S.A.; Taufik, M. Application of time series InSAR (SBAS) method using sentinel-1A data for land subsidence detection in Surabaya city. Int. J. Adv. Sci. Eng. Inf. Technol. 2020, 10, 191–197. [Google Scholar] [CrossRef]
- Peng, M.; Lu, Z.; Zhao, C.; Motagh, M.; Bai, L.; Conway, B.D.; Chen, H. Mapping land subsidence and aquifer system properties of the Willcox Basin, Arizona, from InSAR observations and independent component analysis. Remote Sens. Environ. 2022, 271, 112894. [Google Scholar] [CrossRef]
- Orellana, F.; Rivera, D.; Montalva, G.; Arumi, J.L. InSAR-Based Early Warning Monitoring Framework to Assess Aquifer Deterioration. Remote Sens. 2023, 15, 1786. [Google Scholar] [CrossRef]
- Galve, J.P.; Pérez-Peña, J.V.; Azañón, J.M.; Closson, D.; Caló, F.; Reyes-Carmona, C.; Jabaloy, A.; Ruano, P.; Mateos, R.M.; Notti, D.; et al. Evaluation of the SBAS InSAR Service of the European Space Agency’s Geohazard Exploitation Platform (GEP). Remote Sens. 2017, 9, 1291. [Google Scholar] [CrossRef]
- Du, Q.; Li, G.; Chen, D.; Zhou, Y.; Qi, S.; Wu, G.; Chai, M.; Tang, L.; Jia, H.; Peng, W. SBAS-InSAR-Based Analysis of Surface Deformation in the Eastern Tianshan Mountains, China. Front. Earth Sci. 2021, 9, 729454. [Google Scholar] [CrossRef]
- Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Terzaghi, K. Principles of soil mechanics, IV—Settlement and consolidation of clay. ENR 1925, 95, 874–878. [Google Scholar] [CrossRef]
- Hoffmann, J.; Zebker, H.A.; Galloway, D.L.; Amelung, F. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by Synthetic Aperture Radar Interferometry. Water Resour. Res. 2001, 37, 1551–1566. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, Y.; Cao, G.; Wang, Q.; Ma, M.; Li, E.; Deng, H. Threat of land subsidence to the groundwater supply capacity of a multi-layer aquifer system. J. Hydrol. Reg. Stud. 2022, 44, 101240. [Google Scholar] [CrossRef]
- Coda, S.; Tessitore, S.; Di Martire, D.; Calcaterra, D.; De Vita, P.; Allocca, V. Coupled ground uplift and groundwater rebound in the metropolitan city of Naples (southern Italy). J. Hydrol. 2019, 569, 470–482. [Google Scholar] [CrossRef]
- Chandra Joshi, R.; Ryu, D.; Lane, P.N.J.; Sheridan, G.J. Seasonal forecast of soil moisture over Mediterranean-climate forest catchments using a machine learning approach. J. Hydrol. 2023, 619, 129307. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhou, C.; Lei, K.; Zhu, L.; Duan, L.; Zhao, X. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 13911. [Google Scholar] [CrossRef]
- Fu, G.; Schmid, W.; Castellazzi, P. Understanding the Spatial Variability of the Relationship between InSAR-Derived Deformation and Groundwater Level Using Machine Learning. Geosicences 2023, 13, 133. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, L.; Zhao, Y.; Li, Z.; Cao, G.; Zhao, C.; Liu, R.; Wang, H. Quantifying the influence of long-term overexploitation on deep groundwater resources across Cangzhou in the North China Plain using InSAR measurements. J. Hydrol. 2022, 605, 127368. [Google Scholar] [CrossRef]
- Zhang, Z.; Fei, Y.; Chen, Z. Survey and Evaluation of Groundwater Sustainable Utilization in North China Plain; Geological Publishing House: Beijing, China, 2009; pp. 226–239. (In Chinese) [Google Scholar]
- Jiang, L.; Bai, L.; Zhao, Y.; Cao, G.; Wang, H.; Sun, Q. Combining InSAR and Hydraulic Head Measurements to Estimate Aquifer Parameters and Storage Variations of Confined Aquifer System in Cangzhou, North China Plain. Water Resour. Res. 2018, 54, 8234–8252. [Google Scholar] [CrossRef]
- Gong, H.; Pan, Y.; Zheng, L.; Li, X.; Zhu, L.; Zhang, C.; Huang, Z.; Li, Z.; Wang, H.; Zhou, C. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeol. J. 2018, 26, 1417–1427. [Google Scholar] [CrossRef]
- Liu, R.; Zhong, B.; Li, X.; Zheng, K.; Liang, H.; Cao, J.; Yan, X.; Lyu, H. Analysis of groundwater changes (2003–2020) in the North China Plain using geodetic measurements. J. Hydrol. Reg. Stud. 2022, 41, 101085. [Google Scholar] [CrossRef]
- Wang, G.-y.; Zhu, J.-q.; You, G.; Yu, J.; Gong, X.-l.; Li, W.; Gou, F.-g. Land rebound after banning deep groundwater extraction in Changzhou, China. Eng. Geol. 2017, 229, 13–20. [Google Scholar] [CrossRef]
- Shi, M.; Gong, H.; Gao, M.; Chen, B.; Zhang, S.; Zhou, C. Recent Ground Subsidence in the North China Plain, China, Revealed by Sentinel-1A Datasets. Remote Sens. 2020, 12, 3579. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, R.; Zeng, R. Atlas of Hydrogeologic Structural Characteristics of the Plain Area of Hebei Province; Hebei Hydrological Engineering Geological Survey Institute Co., Ltd.: Shijiazhuang, China, 2019; pp. 14–15. [Google Scholar]
- Guo, H.; Zhang, Z.; Cheng, G.; Li, W.; Li, T.; Jiao, J.J. Groundwater-derived land subsidence in the North China Plain. Environ. Earth Sci. 2015, 74, 1415–1427. [Google Scholar] [CrossRef]
- Ng, A.H.-M.; Ge, L.; Li, X.; Zhang, K. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry. J. Geod. 2011, 86, 375–392. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Fratello, M.; Tagliaferri, R. Decision Trees and Random Forests. Encycl. Bioinform. Comput. Biol. 2019, 9, 374–383. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and regression trees (CART). Biometrics 1984, 40, 358. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Ly, H.-B.; Ho, L.S.; Al-Ansari, N.; Le, H.V.; Tran, V.Q.; Prakash, I.; Pham, B.T. Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Math. Probl. Eng. 2021, 2021, 4832864. [Google Scholar] [CrossRef]
- Buntine, W.; Niblett, T. A further comparison of splitting rules for decision-tree induction. Mach. Learn. 1992, 8, 75–85. [Google Scholar] [CrossRef]
- Foley, M.M.; Martone, R.G.; Fox, M.D.; Kappel, C.V.; Mease, L.A.; Erickson, A.L.; Halpern, B.S.; Selkoe, K.A.; Taylor, P.; Scarborough, C. Using Ecological Thresholds to Inform Resource Management: Current Options and Future Possibilities. Front. Mar. Sci. 2015, 2, 95. [Google Scholar] [CrossRef]
- Hillebrand, H.; Donohue, I.; Harpole, W.S.; Hodapp, D.; Kucera, M.; Lewandowska, A.M.; Merder, J.; Montoya, J.M.; Freund, J.A. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 2020, 4, 1502–1509. [Google Scholar] [CrossRef]
- Krzywinski, M.; Altman, N. Visualizing samples with box plots. Nat. Methods. 2014, 11, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.; Westerhoff, P. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution. Nat. Geosci. 2017, 10, 587–591. [Google Scholar] [CrossRef]
- Yu, X.; Wang, G.; Hu, X.; Liu, Y.; Bao, Y. Land subsidence in Tianjin, China: Before and after the South-to-North Water Diversion. Remote Sens. 2023, 15, 1647. [Google Scholar] [CrossRef]
- Tokunaga, T. Groundwater Potential in the Central District of Tokyo; Springer: Tokyo, Japan, 2008; Volume 2, pp. 61–78. [Google Scholar] [CrossRef]
- Holzer, T.L. Preconsolidation Stress of Aquifer Systems in Areas of Induced Land Subsidence. Water Resour. Res. 1981, 17, 693–704. [Google Scholar] [CrossRef]
- Ye, S.; Xue, Y.; Wu, J.; Yan, X.; Yu, J. Progression and mitigation of land subsidence in China. Hydrogeol. J. 2016, 24, 685–693. [Google Scholar] [CrossRef]
- Su, G.; Wu, Y.; Zhan, W.; Zheng, Z.; Chang, L.; Wang, J. Spatiotemporal evolution characteristics of land subsidence caused by groundwater depletion in the North China plain during the past six decades. J. Hydrol. 2021, 600, 126678. [Google Scholar] [CrossRef]
- Waltham, T. Sinking cities. Geol. Today 2002, 18, 95–100. [Google Scholar] [CrossRef]
- Tang, W.; Zhao, X.; Motagh, M.; Bi, G.; Li, J.; Chen, M.; Chen, H.; Liao, M. Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management. Remote Sens. Environ. 2021, 269, 112792. [Google Scholar] [CrossRef]
- Biot, M.A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
Classified Area | Area (km2) | Ground Deformation (mm/a) | GWD (m) | Change Rate of GWD (m/a) | Compressible Thickness (m) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | |||
A | I & II | 4036 | −22.60 | −88.30–10.35 | 24.96 | 4.19–41.90 | −0.13 | −1.16–0.66 | 75 | 51.40–112.45 |
III | 46.81 | 31.58–63.46 | −0.28 | −1.87–0.60 | 106 | 68.62–135.74 | ||||
IV | 49.91 | 38.28–68.02 | −0.84 | −2.48–−0.08 | 104 | 78.91–123.96 | ||||
B | I & II | 5746 | −23.86 | −78.83–4.30 | 13.43 | 2.79–36.81 | −0.57 | −0.96–−0.23 | 83 | 54.20–122.68 |
III | 74.72 | 52.28–93.48 | −1.16 | −2.52–0.30 | 120 | 67.43–173.67 | ||||
IV | 79.24 | 53.77–98.68 | −1.30 | −2.46–−0.19 | 95 | 68.97–129.29 | ||||
C | I & II | 139 | −17.45 | −46.95 ~−3.78 | 4.79 | 4.30–5.32 | −0.26 | −0.37–−0.22 | 84 | 81.77–87.19 |
III | 69.35 | 66.32–72.03 | −0.38 | −1.04–−0.04 | 135 | 123.98–147.21 | ||||
IV | 61.90 | 59.37–65.70 | −0.60 | −1.06–−0.27 | 87 | 83.14–91.42 | ||||
D | I & II | 675 | 14.47 | 7.13–38.30 | 6.69 | 4.30–5.31 | −0.78 | −1.14–−0.55 | 100 | 91.01–103.94 |
III | 49.41 | 38.99–54.77 | −1.84 | −2.99–−0.75 | 138 | 129.41–160.18 | ||||
IV | 50.72 | 46.57–56.61 | −1.11 | −1.47–−0.89 | 115 | 107.68–122.03 | ||||
E | I & II | 832 | 16.76 | 0.12–28.27 | 4.51 | 2.41–5.73 | −0.32 | −0.46–0 | 92 | 76.21–100.84 |
III | 62.62 | 52.25–73.54 | −1.22 | −2.57–−0.60 | 84 | 60.65–104.52 | ||||
IV | 61.09 | 53.24–77.13 | −1.31 | −2.36–−0.40 | 85 | 75.94–94.57 | ||||
F | I & II | 716 | 11.15 | 4.89–48.36 | 8.26 | 6.64–12.78 | −0.59 | −0.84–−0.39 | 61 | 44.01–96.27 |
III | 65.48 | 44.30–75.44 | −2.38 | −3.05–−1.19 | 69 | 45.82–149.81 | ||||
IV | 72.04 | 65.42–79.34 | −2.44 | −2.92–−1.70 | 99 | 80.39–111.69 |
Area | Mean GWD (MGD, m) | Change Rate of MGD (m/a) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I and II | III | IV | I and II | III | IV | |||||||
M | C | M | C | M | C | M | C | M | C | M | C | |
A | 24.96 | 15.22 (7.04–19.7) | 46.81 | 53.59 (41.72–64.27) | 49.91 | 58.94 (49.22–67.75) | −0.13 | −0.69 (0.59–0.77) | −0.28 | −1.50 (1.34–1.65) | −0.84 | −1.53 (1.05–2.06) |
B | 13.43 | 74.72 | 79.24 | −0.57 | −1.16 | −1.30 | ||||||
C | 4.79 | 69.35 | 61.90 | −0.26 | −0.38 | −0.60 | ||||||
D | 6.69 | 4.80 (3.48–5.69) | 49.41 | 54.94 (42.90–66.91) | 50.72 | 70.79 (67.17–75.31) | −0.78 | −0.15 (0.05 ~0.23) | −1.84 | −1.10 (−0.64–−1.58) | −1.11 | −1.45 (−0.54–−2.27) |
E | 4.51 | 62.62 | 61.09 | −0.32 | −1.22 | −1.31 | ||||||
F | 8.26 | 65.48 | 72.04 | −0.59 | −2.38 | −2.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, X.; Wang, Z.; Gao, M.; Wang, L. Integrating SBAS-InSAR and Random Forest for Identifying and Controlling Land Subsidence and Uplift in a Multi-Layered Porous System of North China Plain. Remote Sens. 2024, 16, 830. https://doi.org/10.3390/rs16050830
Wang Y, Chen X, Wang Z, Gao M, Wang L. Integrating SBAS-InSAR and Random Forest for Identifying and Controlling Land Subsidence and Uplift in a Multi-Layered Porous System of North China Plain. Remote Sensing. 2024; 16(5):830. https://doi.org/10.3390/rs16050830
Chicago/Turabian StyleWang, Yuyi, Xi Chen, Zhe Wang, Man Gao, and Lichun Wang. 2024. "Integrating SBAS-InSAR and Random Forest for Identifying and Controlling Land Subsidence and Uplift in a Multi-Layered Porous System of North China Plain" Remote Sensing 16, no. 5: 830. https://doi.org/10.3390/rs16050830
APA StyleWang, Y., Chen, X., Wang, Z., Gao, M., & Wang, L. (2024). Integrating SBAS-InSAR and Random Forest for Identifying and Controlling Land Subsidence and Uplift in a Multi-Layered Porous System of North China Plain. Remote Sensing, 16(5), 830. https://doi.org/10.3390/rs16050830