Comparing Pixel- and Object-Based Approaches for Classifying Multispectral Drone Imagery of a Salt Marsh Restoration and Reference Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.3. Image Acquisition
2.4. Pre-Classification Image Processing
2.5. Image Classification and Accuracy Assessment
3. Results
3.1. Class Spectral Separability
3.2. Classification
3.3. Variable Importance
3.4. Validation Accuracy
4. Discussion
4.1. Comparison of Classification Approaches
4.2. Similarities and Differences in Variable Importance between Classification Approaches
4.3. Further Classification Considerations for Temporal Change, Both Seasonal and Annual
4.4. Assessment of Number of Landcover Classes, including Change Classes
4.5. Challenges and Future Research in Remote Sensing of Salt Marshes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, S.; Zhenguo, N.; Chen, Y.; Li, L.; Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total. Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef]
- Davidson, N.C.; Fluet-Chouinard, E.; Finlayson, C.M. Global extent and distribution of wetlands: Trends and issues. Mar. Freshw. Res. 2018, 69, 620–627. [Google Scholar] [CrossRef]
- Owers, C.J.; Rogers, K.; Woodroffe, C.D. Spatial variation of above-ground carbon storage in temperate coastal wetlands. Estuar. Coast. Shelf Sci. 2018, 210, 55–67. [Google Scholar] [CrossRef]
- Gallant, K.; Withey, P.; Risk, D.; Van Kooten, G.C.; Spafford, L. Measurement and economic valuation of carbon sequestration in Nova Scotian wetlands. Ecol. Econ. 2020, 171, 106619. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. Earth Environ. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Ford, H.; Garbutt, A.; Ladd, C.; Malarkey, J.; Skov, M.W. Soil stabilization linked to plant diversity and environmental context in coastal wetlands. J. Veg. Sci. 2016, 27, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H. Wastewater treatment at the Houghton Lake wetland: Hydrology and water quality. Ecol. Eng. 2009, 35, 1287–1311. [Google Scholar] [CrossRef]
- Straub, J.N.; Gates, R.J.; Schultheis, R.D.; Yerkes, T.; Coluccy, J.M.; Stafford, J.D. Wetland food resources for spring-migrating ducks in the Upper Mississippi River and Great Lakes Region. J. Wildl. Manag. 2012, 76, 768–777. [Google Scholar] [CrossRef]
- Rasool, S.; Rasool, T.; Gani, K.M. Unlocking the potential of wetland biomass: Treatment approaches and sustainable resource management for enhanced utilization. Bioresour. Technol. Rep. 2023, 23, 101553. [Google Scholar] [CrossRef]
- Pedersen, E.; Weisner, S.E.B.; Johansson, M. Wetland areas’ direct contributions to residents’ well-being entitle them to high cultural ecosystem values. Sci. Total Environ. 2019, 646, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, S.; Nummi, P.; Ojala, A. Urban wetlands: A review on ecological and cultural values. Water 2021, 13, 3301. [Google Scholar] [CrossRef]
- Xu, X.; Chen, M.; Yang, G.; Jiang, B.; Zhang, J. Wetland ecosystem services research: A critical review. Glob. Ecol. Conserv. 2020, 22, e01027. [Google Scholar] [CrossRef]
- Lin, W.; Xu, D.; Guo, P.; Wang, D.; Li, L.; Gao, J. Exploring variations of ecosystem service value in Hangzhou Bay Wetland, Eastern China. Ecosyst. Serv. 2019, 37, 100944. [Google Scholar] [CrossRef]
- Balwan, W.K.; Kour, S. Wetland—An ecological boon for the environment. East Afr. Sch. J. Agric. Life Sci. 2021, 4, 38–48. [Google Scholar] [CrossRef]
- Zhang, W.; Ge, Z.-M.; Li, S.-H.; Tan, L.-S.; Zhou, K.; Li, Y.-L.; Xie, L.-N.; Dai, Z.-J. The role of seasonal vegetation properties in determining the wave attenuation capacity of coastal marshes: Implications for building natural defenses. Ecol. Eng. 2022, 175, 106494. [Google Scholar] [CrossRef]
- Ballut-Dajud, G.A.; Sandoval Herazo, L.C.; Fernández-Lambert, G.; Marín-Muñiz, J.L.; López Méndez, M.C.; Betanzo-Torres, E.A. Factors affecting wetland loss: A review. Land 2022, 11, 434. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Romaña, S.S.; DeAngelis, D.L.; Koh, H.L.; Sulaiman, R.B.R.; Zhai, L. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Humpenöder, F.; Karstens, K.; Lotze-Campen, H.; Leifeld, J.; Menichetti, L.; Barthelmes, A.; Popp, A. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 2020, 15, 104093. [Google Scholar] [CrossRef]
- Waltham, N.J.; Alcott, C.; Barbeau, M.A.; Cebrian, J.; Connolly, R.M.; Deegan, L.A.; Dodds, K.; Goodridge Gaines, L.A.; Gilby, B.L.; Henderson, C.J.; et al. Tidal marsh restoration optimism in a changing climate and urbanizing seascape. Estuaries Coasts 2021, 44, 1681–1690. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Meiners, S.J. Ever since Clements: From succession to vegetation dynamics and understanding to intervention. Appl. Veg. Sci. 2009, 12, 9–21. [Google Scholar] [CrossRef]
- Norris, G.S.; Virgin, S.D.S.; Schneider, D.W.; McCoy, E.M.; Wilson, J.M.; Morrill, K.L.; Hayter, L.; Hicks, M.E.; Barbeau, M.A. Patch-level processes of vegetation underlying site-level restoration patterns in a megatidal salt marsh. Front. Ecol. Evol. 2022, 10, 1000075. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W. Remote Sensing for Wetland Classification: A Comprehensive Review. GIScience Remote Sens. 2018, 55, 623–658. [Google Scholar] [CrossRef]
- Mirmazloumi, S.M.; Moghimi, A.; Ranjgar, B.; Mohseni, F.; Ghorbanian, A.; Ahmadi, S.A.; Amani, M.; Brisco, B. Status and trends of wetland studies in Canada using remote sensing technology with a focus on wetland classification: A bibliographic analysis. Remote Sens. 2021, 13, 4025. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Crawford, M.M.; Provancha, M.J. Mapping of coastal wetlands via hyperspectral AVIRIS data. In Proceedings of the IGARSS ‘98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174), Seattle, WA, USA, 6–10 July 1998. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote. Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef]
- Correll, M.D.; Hantson, W.; Hodgman, T.P.; Cline, B.B.; Elphick, C.S.; Gregory Shriver, W.; Tymkiw, E.L.; Olsen, B.J. Fine-scale mapping of coastal plant communities in the Northeastern USA. Wetlands 2019, 39, 17–28. [Google Scholar] [CrossRef]
- Sun, C.; Li, J.; Liu, Y.; Liu, Y.; Liu, R. Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series. Remote Sens. Environ. 2021, 256, 112320. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Yu, L.; Wang, X.; Chen, Y.; Bai, Y.; Hernández, H.J.; Galleguillos, M.; Estades, C.; Biging, G.S.; et al. Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote Sens. Environ. 2016, 183, 170–185. [Google Scholar] [CrossRef]
- Ramsey, E.W.; Laine, S.C. Comparison of Landsat thematic mapper and high resolution photography to identify change in complex coastal wetlands. J. Coast. Res. 1997, 13, 281–292. [Google Scholar]
- Camilleri, S.; De Giglio, M.; Stecchi, F.; Pérez-Hurtado, A. Land use and land cover change analysis in predominately man-made coastal wetlands: Towards a methodological framework. Wetl. Ecol. Manag. 2016, 25, 23–43. [Google Scholar] [CrossRef]
- Wang, X.; Gao, X.; Zhang, Y.; Fei, X.; Chen, Z.; Wang, J.; Zhang, Y.; Lu, X.; Zhao, H. Land-cover classification of coastal wetlands using the RF algorithm for Worldview-2 and Landsat 8 images. Remote Sens. 2019, 11, 1927. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Chen, Y.; Xu, K.; Wang, D. Coastal wetland classification with GF-3 Polarimetric SAR imagery by using object-oriented Random Forest algorithm. Sensors 2021, 21, 3395. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Perez, A.; Abd-Elrahman, A.; Wilkinson, B.; Johnson, D.J.; Carthy, R.R. Deep and machine learning image classification of coastal wetlands using unpiloted aircraft system multispectral images and LiDAR datasets. Remote Sens. 2022, 14, 3937. [Google Scholar] [CrossRef]
- Norris, G.S.; Leblon, B.; LaRocque, A.; Barbeau, M.A.; Hanson, A.R. Effect of textural features for landcover classification of UAV multispectral imagery of a salt marsh restoration site. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B3-2022, 951–958. [Google Scholar] [CrossRef]
- Abeysinghe, T.; Simic Milas, A.; Arend, K.; Hohman, B.; Reil, P.; Gregory, A.; Vázquez-Ortega, A. Mapping invasive Phragmites australis in the Old Woman Creek Estuary using UAV remote sensing and machine learning classifiers. Remote Sens. 2019, 11, 1380. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, C.; Jia, M.; Wang, Z.; Su, Y.; Su, Y. Plant species classification of coastal wetlands based on UAV images and object- oriented deep learning. Biodiv. Sci. 2023, 31, 22411. [Google Scholar] [CrossRef]
- Nardin, W.; Taddia, Y.; Quitadamo, M.; Vona, I.; Corbau, C.; Franchi, G.; Staver, L.W.; Pellegrinelli, A. Seasonality and characterization mapping of restored tidal marsh by NDVI imageries coupling UAVs and multispectral camera. Remote Sens. 2021, 13, 4207. [Google Scholar] [CrossRef]
- Durgan, S.D.; Zhang, C.; Duecaster, A.; Fourney, F.; Su, H. Unmanned aircraft system photogrammetry for mapping diverse vegetation species in a heterogeneous coastal wetland. Wetlands 2020, 40, 2621–2633. [Google Scholar] [CrossRef]
- Doughty, C.; Cavanaugh, K. Mapping coastal wetland biomass from high resolution Unmanned Aerial Vehicle (UAV) imagery. Remote Sens. 2019, 11, 540. [Google Scholar] [CrossRef]
- Janousek, C.N.; Thorne, K.M.; Takekawa, J.Y. Vertical zonation and niche breadth of tidal marsh plants along the Northeast Pacific Coast. Estuar. Coast. 2019, 42, 85–98. [Google Scholar] [CrossRef]
- Gallant, A. The challenges of remote monitoring of wetlands. Remote Sens. 2015, 7, 10938–10950. [Google Scholar] [CrossRef]
- Pande-Chhetri, R.; Abd-Elrahman, A.; Liu, T.; Morton, J.; Wilhelm, V.L. Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. Eur. J. Remote Sens. 2017, 50, 564–576. [Google Scholar] [CrossRef]
- Rebelo, L.-M.; Finlayson, C.M.; Nagabhatla, N. Remote sensing and GIS for wetland inventory, mapping and change analysis. J. Environ. Manag. 2009, 90, 2144–2153. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Kotaridis, I.; Lazaridou, M. Remote sensing image segmentation advances: A meta-analysis. ISPRS J. Photogramm. 2021, 173, 309–322. [Google Scholar] [CrossRef]
- Martínez Prentice, R.; Villoslada Peciña, M.; Ward, R.D.; Bergamo, T.F.; Joyce, C.B.; Sepp, K. Machine learning classification and accuracy assessment from high-resolution images of coastal wetlands. Remote Sens. 2021, 13, 3669. [Google Scholar] [CrossRef]
- Windle, A.E.; Staver, L.W.; Elmore, A.J.; Scherer, S.; Keller, S.; Malmgren, B.; Silsbe, G.M. Multi-temporal high-resolution marsh vegetation mapping using unoccupied aircraft system remote sensing and machine learning. Front. Remote Sens. 2023, 4, 1140999. [Google Scholar] [CrossRef]
- Zheng, J.-Y.; Hao, Y.-Y.; Wang, Y.-C.; Zhou, S.-Q.; Wu, W.-B.; Yuan, Q.; Gao, Y.; Guo, H.-Q.; Cai, X.-X.; Zhao, B. Coastal wetland vegetation classification using pixel-based, object-based and deep learning methods based on RGB-UAV. Land 2022, 11, 2039. [Google Scholar] [CrossRef]
- Moffett, K.B.; Gorelick, S.M. Distinguishing wetland vegetation and channel features with object-based image segmentation. Int. J. Remote Sens. 2013, 34, 1332–1354. [Google Scholar] [CrossRef]
- Du, B.; Mao, D.; Wang, Z.; Qiu, Z.; Yan, H.; Feng, K.; Zhang, Z. Mapping wetland plant communities using unmanned aerial vehicle hyperspectral imagery by comparing object/pixel-based classifications combining multiple machine-learning algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8249–8258. [Google Scholar] [CrossRef]
- Soares, V.P.; Hoffer, R.M. Eucalyptus forest change classification using multi-date Landsat TM data. In Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources; SPIE: Bellingham, WA, USA, 1995; Volume 2314, pp. 281–291. [Google Scholar] [CrossRef]
- Weismiller, R.A.; Kristof, S.J.; Scholz, D.K.; Auta, P.E.; Momin, S.A. Change detection in coastal zone environments. Photogram. Eng. Remote Sens. 1977, 43, 1533–1539. [Google Scholar]
- Desplanque, C.; Mossman, D.J. Tides and their seminal impact on the geology, geography, history, and socio-economics of the Bay of Fundy, Eastern Canada. Atl. Geol. 2004, 40, 1–130. [Google Scholar] [CrossRef]
- Millard, K.; Redden, A.M.; Webster, T.; Stewart, H. Use of GIS and high resolution LiDAR in salt marsh restoration site suitability assessments in the Upper Bay of Fundy, Canada. Wetlands Ecol. Manag. 2013, 21, 243–262. [Google Scholar] [CrossRef]
- Boone, L.K.; Ollerhead, J.; Barbeau, M.A.; Beck, A.D.; Sanderson, B.G.; McLellan, N.R. Returning the tide to dikelands in a macrotidal and ice-influenced environment: Challenges and lessons learned. In Coastal Wetlands: Alteration and Remediation; Finkl, C.W., Makowski, C., Eds.; Coastal Research Library; Springer International Publishing: Cham, Switzerland, 2017; Volume 21, pp. 705–749. ISBN 978-3-319-56178-3. [Google Scholar]
- Virgin, S.D.S.; Beck, A.D.; Boone, L.K.; Dykstra, A.K.; Ollerhead, J.; Barbeau, M.A.; McLellan, N.R. A managed realignment in the Upper Bay of Fundy: Community dynamics during salt marsh restoration over 8 Years in a megatidal, ice-influenced environment. Ecol. Eng. 2020, 149, 105713. [Google Scholar] [CrossRef]
- Peterson, P.M.; Romaschenko, K.; Arrieta, Y.H.; Saarela, J.M. A Molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). Taxon 2014, 63, 1212–1243. [Google Scholar] [CrossRef]
- Bortolus, A.; Adam, P.; Adams, J.B.; Ainouche, M.L.; Ayres, D.; Bertness, M.D.; Bouma, T.J.; Bruno, J.F.; Caçador, I.; Carlton, J.T.; et al. Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus. Ecology 2019, 100, e02863. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.W.; Haas, R.H.; Scell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancements and Retro Gradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC Type III; NASA: Greenbelt, MD, USA, 1974; 371p. [Google Scholar]
- Villa, P.; Mousivand, A.; Bresciani, M. Aquatic vegetation indices assessment through radiative transfer modeling and linear mixture simulation. Int. J. Appl. Earth Obs. 2014, 30, 113–127. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Jaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 457–459. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum I. and Acer platanoides I. leaves: Spectral features and relation to chlorophyll estimation. J. Plant Phys. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Weisz, R. Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agron. J. 2005, 97, 1443–1451. [Google Scholar] [CrossRef]
- Kimura, R.; Okada, S.; Miura, H.; Kamichika, M. Relationships among the leaf area index, moisture availability, and spectral reflectance in an upland rice field. Agric. Water Manag. 2004, 69, 83–100. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Datt, B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. Int. J. Remote Sens. 1999, 20, 2741–2759. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-25128-6. [Google Scholar]
- Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding variable importances in forests of randomized trees. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–8 December 2013. [Google Scholar]
- Fletcher, R. Using vegetation indices as input into Random Forest for soybean and weed classification. Am. J. Plant Sci. 2016, 07, 2186–2198. [Google Scholar] [CrossRef]
- Mesner, N.; Oštir, K. Investigating the impact of spatial and spectral resolution of satellite images on segmentation quality. J. Appl. Remote Sens. 2014, 8, 083696. [Google Scholar] [CrossRef]
- Tian, B.; Zhou, Y.; Zhang, Z.; Yuan, L. Analyzing the habitat suitability for migratory birds at the Chongming Dongtan Nature Reserve in Shanghai, China. Estuar. Coast. Shelf Sci. 2008, 80, 296–302. [Google Scholar] [CrossRef]
- Kose, M.; Heinsoo, K.; Kaljund, K.; Tali, K. 20 years of Baltic Boreal coastal meadow restoration: Has it been long enough? Ecology 2020, 29, e13266. [Google Scholar] [CrossRef]
- Hardisky, M.A.; Gross, M.F.; Klemas, V. Remote sensing of coastal wetlands. BioScience 1986, 36, 453–460. [Google Scholar] [CrossRef]
- Klemas, V. Remote sensing of coastal wetland vegetation and estuarine water properties. In Estuarine Processes; Elsevier: Amsterdam, The Netherlands, 1977; pp. 381–403. ISBN 978-0-12-751802-2. [Google Scholar]
- Sader, S.A.; Ahl, D.; Liou, W.S. Accuracy of Landsat-TM and GIS rule-based methods for forest wetland classification in Maine. Remote Sens. Environ. 1995, 53, 133–144. [Google Scholar] [CrossRef]
- Li, C.; Zhou, L.; Xu, W. Estimating aboveground biomass using Sentinel-2 MSI data and ensemble algorithms for grassland in the Shengjin Lake Wetland, China. Remote Sens. 2021, 13, 1595. [Google Scholar] [CrossRef]
- Turpie, K.R. Explaining the spectral red-edge features of inundated marsh vegetation. J. Coast. Res. 2013, 29, 1111–1117. [Google Scholar] [CrossRef]
- Streher, A.S.; Torres, R.d.S.; Morellato, L.P.C.; Silva, T.S.F. Accuracy and limitations for spectroscopic prediction of leaf traits in seasonally dry tropical environments. Remote Sens. Environ. 2020, 244, 111828. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Klemas, V. Remote sensing of coastal wetland biomass: An overview. J. Coast. Res. 2013, 290, 1016–1028. [Google Scholar] [CrossRef]
- Liu, L.; Chen, J.; Zhao, G.; Fieguth, P.; Chen, X.; Pietikainen, M. Texture classification in extreme scale variations using GANet. IEEE Trans. Image Process 2018, 28, 3910–3922. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.G.; Zhang, L.Q. Multi-seasonal spectral characteristics analysis of coastal salt marsh vegetation in Shanghai, China. Estuar. Coast. Shelf Sci. 2006, 69, 217–224. [Google Scholar] [CrossRef]
- Li, N.; Lu, D.; Wu, M.; Zhang, Y.; Lu, L. Coastal wetland classification with multiseasonal high-spatial resolution satellite imagery. Int. J. Remote Sens. 2018, 39, 8963–8983. [Google Scholar] [CrossRef]
- Hentis, L.; Jurgens, C.; Mucsi, L. Seasonal multitemporal land-cover classification and change detection analysis of Bochum, Germany, using multitemporal Landsat TM data. Int. J. Remote Sens. 2015, 37, 3439–3454. [Google Scholar] [CrossRef]
- Berberoğlu, S.; Akin, A.; Atkinson, P.M.; Curran, P.J. Utilizing image texture to detect land-cover change in Mediterranean Coastal Wetlands. Int. J. Remote Sens. 2010, 31, 2793–2815. [Google Scholar] [CrossRef]
- Kesikoglu, M.H.; Atasever, U.H.; Dadaser-Celik, F.; Ozkan, C. Performance of ANN, SVM, and MLH techniques for land use/cover change detection at Sultan Marshes wetland, Turkey. Water Sci. Technol. 2019, 80, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Jahncke, R.; Leblon, B.; Bush, P.; Armand LaRocque, A. Mapping wetlands in Nova Scotia with multi-beam RADARSAT-2 Polarimetric SAR, optical satellite imagery, and Lidar data. Int. J Appl. Earth Obs. 2018, 68, 139–156. [Google Scholar] [CrossRef]
- Jiang, J.; Johansen, K.; Tu, Y.-H.; McCabe, M.F. Multi-sensor and multi-platform consistency and interoperability between UAV, Planet CubeSat, Sentinel-2, and Landsat reflectance data. GIScience Remote Sens. 2022, 59, 936–958. [Google Scholar] [CrossRef]
- Thomson, E.R.; Spiegel, M.P.; Althuizen, I.H.J.; Bass, P.; Chen, S.; Chmurzynski, A.; Halbritter, A.H.; Henn, J.J.; Jónsdóttir, I.S.; Klanderud, K.; et al. Multiscale mapping of plant functional groups and plant traits in the high arctic using field spectroscopy, UAV imagery and Sentinel-2A data. Environ. Res. Lett. 2021, 16, 055006. [Google Scholar] [CrossRef]
Class Number | Class Color Code | Name | Description |
---|---|---|---|
1 | Bare mud exposed to air | Bay of Fundy mud beyond the seaward edges of the sites. | |
2 | Compacted soil (dark) | Compacted soil along the seaward edges of the sites as a result of past dike construction. | |
3 | Rocks/eroded shoreline pieces | Rocks washed up on shore. Also includes large chunks of shoreline that eroded from the edge of the sites. | |
4 | Wrack | Dead grass and algae that accumulated into mats and washed onto the sites. | |
5 | Spartina alterniflora (muddy) | Assemblage dominated by saltwater cordgrass (Spartina alterniflora), the low-elevation bioengineer species of salt marshes in the region, with blades covered with some tidal mud. | |
6 | Spartina alterniflora (clean, dense) | Assemblage dominated by saltwater cordgrass (S. alterniflora) that is not muddy and is growing densely | |
7 | Spartina patens | Assemblage dominated by salt marsh hay (Spartina patens), the mid-elevation bioengineer species of salt marshes in the region. | |
8 | Deep salt pool water | Deep water contained in salt pools (depressions in the marsh that retain water at low tide). | |
9 | Bare mud exposed to air (June) → clean S. alterniflora growing in dense assemblages (July, August) | Bay of Fundy mud in the June imagery which is colonized by S. alterniflora in the July and August imagery. | |
10 | Compacted soil (light) | Highly compacted soil that appears light in the imagery, likely due to high sand and/or salt content. | |
11 | Wood | Woody debris that has been washed into the site or remnants of past dike construction. | |
12 | Spartina pectinata | Freshwater cordgrass (Spartina pectinata) occupying high-elevation areas next to the dike. | |
13 | S. alterniflora (clean, sparse) | Saltwater cordgrass (S. alterniflora) that is not muddy and is growing in sparse assemblages. | |
14 | S. alterniflora → Wrack | Areas of S. alterniflora in June and July that became covered in wrack by August. | |
15 | Dike vegetation | Unidentified terrestrial plant species that grow on top of the high-elevation dike areas. | |
16 | Triglochin maritima | Assemblage dominated by seaside arrowgrass (Triglochin maritima), a common salt marsh plant with fleshy dark-green stems. | |
17 | Mixed mid-elevation vegetation (S. patens, Puccinellia, etc.) | Mixed assemblages of vegetation, including S. patens, Puccinellia maritima, Lysimachia maritima, Plantago maritima, Solidago sempervirens, Argentina anserina, and Limonium carolinianum. | |
18 | Floating green algae | Green algae (Chlorophyta) floating on top of salt pool water. | |
19 | Emerged salt pool mud (June) → shallow salt pool water (July, August) | Mud within salt pools that was exposed to the air in the June imagery and covered in water in the July and August imagery. Water level is variable in salt pools and controlled by evaporation, spring tides, and rain events. | |
20 | Emerged salt pool mud (salty) | Mud within salt pools that was exposed to the air in the imagery of each month. | |
21 | Submerged aquatic vegetation | Underwater Ruppia maritima and Chlorophyta in salt pools. | |
22 | Deep salt pool water (June) → floating green algae (July, August) | Deep water contained in salt pools in the June imagery which becomes covered in floating green algae in the July and August imagery. | |
23 | Deep salt pool water (June) → submerged aquatic vegetation (July, August) | Deep water contained in salt pools in the June imagery which becomes submerged aquatic vegetation in the July and August imagery. | |
24 | Deep salt pool water (June, July) → submerged aquatic vegetation (August) | Deep water contained in salt pools in the June and July imagery which becomes submerged aquatic vegetation in the August imagery. | |
25 | Shallow salt pool water | Shallow water contained in salt pools where the unvegetated pool bottom is visible. | |
26 | Shallow salt pool water (June) → submerged aquatic vegetation (July, August) | Shallow water contained in salt pools in the June imagery which becomes submerged aquatic vegetation in the July and August imagery. | |
27 | Floating green algae (June) → submerged aquatic vegetation (July) → shallow salt pool water (August) | Floating green algae (Chlorophyta) in the June imagery which becomes submerged aquatic vegetation in the July imagery and shallow salt pool water in the August imagery. | |
28 | Floating green algae (June) → deep salt pool water (July, August) | Floating green algae (Chlorophyta) in the June imagery which becomes deep salt pool water in the July and August imagery. | |
29 | Wrack (June) → vegetated areas of S. alterniflora and S. patens (July, August) | Wrack in the June imagery which washes away or becomes colonized by vegetation and appears as S. alterniflora and S. patens in the July and August imagery. | |
30 | Mixed vegetation: S. alterniflora and S. patens | Mixed assemblages of S. alterniflora and S. patens. |
Month | Site | Start Time | Tidal Height (m) * | Cloud Cover | Solar Azimuth (°) | Solar Altitude (°) | Course Angle (°) | No. of Images |
---|---|---|---|---|---|---|---|---|
June | Reference | 12:00 | 6.7 | Cumulus | 139 | 63 | 230 | 8550 |
Restoration | 12:33 | 7.9 | 155 | 66 | 230 | 7730 | ||
July | Reference | 12:38 | 8.9 | Stratus | 155 | 64 | 230 | 7380 |
Restoration | 13:05 | 9.9 | 170 | 66 | 230 | 7560 | ||
August | Reference | 10:43 | 5.5 | Stratus | 119 | 45 | 218 | 8180 |
Restoration | 11:14 | 6.9 | 128 | 50 | 218 | 7940 |
Band Number | Band Name | Center of Wavelength (μm) | Bandwidth (μm) |
---|---|---|---|
1 | Coastal Blue 444 | 444 | 28 |
2 | Blue 475 | 475 | 32 |
3 | Green 531 | 531 | 14 |
4 | Green 560 | 560 | 27 |
5 | Red 650 | 650 | 16 |
6 | Red 668 | 668 | 14 |
7 | Red Edge 705 | 705 | 10 |
8 | Red Edge 717 | 717 | 12 |
9 | Red Edge 740 | 740 | 18 |
10 | NIR 842 | 842 | 57 |
Vegetation Index (VI) | Abbreviation | Formula | Reference |
---|---|---|---|
Normalized Difference VI | NDVI-1 | [63] | |
NDVI-2 | |||
Normalized Difference Aquatic VI | NDAVI-1 | [64] | |
NDAVI-2 | |||
Green Normalized Difference VI | GNDVI-1 | [65] | |
GNDVI-2 | |||
Normalized Difference Red Edge VI | NDRE-1 | [66] | |
NDRE-2 | |||
NDRE-3 | |||
Normalized Green VI | NG-1 | [67] | |
NG-2 | |||
Difference VI | DVI-1 | [68] | |
DVI-2 | |||
Green Difference VI | GDVI-1 | [69] | |
GDVI-2 | |||
Normalized Red VI | NR-1 | [67] | |
NR-2 | |||
Normalized Near Infrared VI | NNIR-1 | [67] | |
NNIR-2 | |||
Green Ratio VI | GRVI-1 | [70] | |
GRVI-2 | |||
Red Ratio VI | RVI-1 | [71] | |
RVI-2 | |||
Red Edge Ratio VI | RERVI-1 | [72] | |
RERVI-2 | |||
RERVI-3 | |||
Water Adjusted VI | WAVI-1 | [64] | |
WAVI-2 |
Textural Feature | Formula (*) |
---|---|
Homogeneity | |
Contrast | |
Dissimilarity | |
Mean | |
Standard deviation | |
Entropy | |
Angular second moment | |
Angular correlation | |
GLDV angular second moment | |
GLDV entropy |
Site | Month | Average JM Distance Value | Minimum JM Distance Value | Class Pairs with JM Distance Values < 1.90 |
---|---|---|---|---|
Reference (Site A) | June | 1.96 | 1.21 | 7 and 17 (mixed mid-elevation vegetation), 16 (Triglochin) and 30 (mixed S. alterniflora and S. patens), 17 and 30, 6 and 7, 6 and 17, 5 and 16, 7 and 30, 6 and 30, 5 and 30 |
July | 1.95 | 1.07 | 7 and 17, 6 and 7, 16 and 30, 17 and 30, 5 and 30, 7 and 30, 18 (floating green algae) and 21 (submerged aquatic vegetation), 6 and 17, 6 and 30, 5 and 16, 16 and 17 | |
August | 1.96 | 1.21 | 7 and17, 16 and 30, 17 and 30, 6 and 7, 5 and 17, 5 and 16, 7 and 30, 6 and 30, 5 and 30 | |
Restoration (Site B) | June | 1.94 | 1.15 | 6 (S. alterniflora clean, dense) and 13 (S. alterniflora clean, sparse), 5 (S. alterniflora muddy) and 13, 5 and 6, 12 (S. pectinata) and 15 (dike vegetation), 3 (rocks) and 10 (compacted soil light) 2 (compacted soil dark) and 3, 6 and 7 (S. patens), 7 and 13 |
July | 1.97 | 1.58 | 7 and 12, 5 and 6, 12 and 15, 3 and 10, 6 and 13 | |
August | 1.97 | 1.72 | 12 and 15, 3 and 10, 7 and 12, 7 and 15, 6 and 13, 2 and 3 |
Class Number | Class Name | OOB Accuracy | |||
---|---|---|---|---|---|
PB | OB | ||||
UA | PA | UA | PA | ||
1 | Bare mud exposed to air | 100 | 100 | 100 | 100 |
2 | Compacted soil (dark) | 100 | 100 | 100 | 100 |
3 | Rocks/eroded shoreline pieces | 100 | 100 | 100 | 100 |
4 | Wrack | 100 | 100 | 100 | 100 |
5 | Spartina alterniflora (muddy) | 100 | 100 | 100 | 98.3 |
6 | Spartina alterniflora (clean, dense) | 100 | 100 | 100 | 100 |
7 | Spartina patens | 100 | 100 | 100 | 100 |
8 | Deep salt pool water | 100 | 100 | 100 | 100 |
9 | Bare mud exposed to air → clean, dense S. alterniflora | 100 | 100 | 100 | 100 |
16 | Triglochin maritima | 100 | 100 | 100 | 100 |
17 | Mixed mid-elevation vegetation (S. patens, Puccinellia, etc.) | 100 | 100 | 100 | 100 |
18 | Floating green algae (Chlorophyta) | 100 | 100 | 100 | 100 |
19 | Emerged salt pool mud → shallow salt pool water | 100 | 100 | 100 | 100 |
20 | Emerged salt pool mud (salty) | 100 | 100 | 100 | 100 |
21 | Submerged aquatic vegetation | 100 | 100 | 100 | 100 |
22 | Deep salt pool water → floating green algae | 100 | 100 | 100 | 100 |
23 | Deep salt pool water (June) → submerged aquatic vegetation (July, August) | 100 | 100 | 100 | 100 |
24 | Deep salt pool water (June, July) → submerged aquatic vegetation (August) | 100 | 100 | 100 | 100 |
25 | Shallow salt pool water | 100 | 100 | 100 | 100 |
26 | Shallow salt pool water → submerged aquatic vegetation | 100 | 100 | 100 | 100 |
27 | Floating green algae → submerged aquatic vegetation → shallow salt pool water | 100 | 100 | 100 | 100 |
28 | Floating green algae → deep salt pool water | 100 | 100 | 100 | 100 |
29 | Wrack → vegetated areas of S. alterniflora and S. patens | 100 | 100 | 100 | 100 |
30 | Mixed vegetation: S. alterniflora and S. patens | 100 | 100 | 98.1 | 100 |
Average accuracy | 100 | 99.8 | |||
Overall accuracy | 100 | 99.8 | |||
Kappa coefficient | 100 | 99.8 |
Class Number | Class Name | OOB Accuracy | |||
---|---|---|---|---|---|
PB | OB | ||||
UA | PA | UA | PA | ||
1 | Bare mud exposed to air | 99.9 | 100 | 100 | 100 |
2 | Compacted soil (dark) | 100 | 99.9 | 100 | 100 |
3 | Rocks/eroded shoreline pieces | 99.7 | 100 | 100 | 100 |
4 | Wrack | 100 | 99.9 | 100 | 100 |
5 | Spartina alterniflora (muddy) | 100 | 100 | 100 | 100 |
6 | Spartina alterniflora (clean, dense) | 100 | 100 | 100 | 100 |
7 | Spartina patens | 100 | 100 | 100 | 100 |
8 | Deep salt pool water | 100 | 100 | 100 | 100 |
9 | Bare mud → S. alterniflora (clean, dense) | 100 | 100 | 100 | 100 |
10 | Compacted soil (light) | 100 | 99.8 | 100 | 100 |
11 | Wood | 99.6 | 100 | 100 | 100 |
12 | Spartina pectinata | 99.6 | 100 | 100 | 95.0 |
13 | S. alterniflora (clean, sparse) | 100 | 100 | 100 | 100 |
14 | S. alterniflora → wrack | 100 | 100 | 100 | 100 |
15 | Dike vegetation | 100 | 99.8 | 97.2 | 100 |
Average accuracy | 99.9 | 99.7 | |||
Overall accuracy | 99.9 | 99.8 | |||
Kappa coefficient | 99.9 | 99.8 |
Rank | PB | OB |
---|---|---|
1 | RedEdge717_TextureMean_August | RedEdge740_TextureMean_July |
2 | Green560_TextureMean_July | Red668_August |
3 | Red668_TextureMean_August | Red668_TextureMean_August |
4 | RedEdge705_TextureMean_August | Green531_August |
5 | Green560_TextureMean_August | NIR842_July |
6 | Green560_TextureAngCorrelation_August | NNIR-1_July |
7 | Green531_TextureMean_August | Red650_TextureMean_August |
8 | Green531_TextureAngCorrelation_August | RedEdge705_TextureMean_August |
9 | Red650_TextureMean_August | RedEdge717_TextureMean_August |
10 | RedEdge717_August | Green560_August |
11 | NDVI.2_June | RedeEdge717_August |
12 | RedEdge717_TextureAngCorrelation_June | NIR842_TextureMean_July |
13 | NR.2_June | Green560_TextureMean_August |
14 | RedEdge705_August | GNDVI-2_July |
15 | Green531_July | NG-2_July |
16 | Blue444_TextureMean_June | RedEdge705_August |
17 | NDAVI.1_June | RedEdge740_July |
18 | Red668_TextureMean_June | NDVI-2_June |
19 | RVI.2_June | Green531_TextureMean_August |
20 | Red668_August | Red668_July |
21 | Green531_TextureMean_July | RERVI-1_June |
22 | Green531_TextureAngCorrelation_July | NG-1_July |
23 | RedEdge740_TextureMean_July | Red650_August |
24 | Blue475_TextureMean_June | Blue475_August |
25 | RedEdge717_TextureAngCorrelation_July | NR-2_June |
Rank | PB | OB |
---|---|---|
1 | RedEdge740_TextureAngCorrelation_August | NR-2_August |
2 | Green531_TextureMean_July | Blue475_August |
3 | Green531_July | NDAVI-1_August |
4 | Green560TextureMean_August | NR-1_August |
5 | NIR842_TextureMean_June | NIR842_TextureMean_June |
6 | GRVI.2_June | Red668_August |
7 | Red668_TextureMean_July | GNDVI-2_July |
8 | RedEdge717_TextureMean_August | RedeEdge717_August |
9 | NIR842_TextureMean_August | NNIR-1_June |
10 | Blue444_TextureMean_August | Green560_TextureMean_August |
11 | Red650_TextureMean_June | NDRE-1_July |
12 | Blue444_TextureMean_July | GNDVI-1_August |
13 | RedEdge740_TextureMean_August | Blue475_TextureMean_August |
14 | NIR842_TextureMean_July | Green560_August |
15 | Green560_July | DVI-2_June |
16 | Red650_TextureMean_July | NDVI-1_August |
17 | NNIR.1_June | NNIR-2_August |
18 | Green531_TextureMean_August | Red650_August |
19 | Green531_TextureContrast_August | Green560_TextureMean_June |
20 | RedEdge717_August | Green531_TextureMean_August |
21 | Blue444_TextureAngCorrelation_August | GNDVI-2_August |
22 | RedEdge717_TextureSt.Dev_August | GRVI-1_July |
23 | Blue475_TextureMean_July | GDVI-1_August |
24 | Blue444_TextureAngCorrelation_July | RVI-1_June |
25 | RedEdge717_TextureDissimilarity_July | NDAVI-2_July |
Class Number | Class Name | OOB Accuracy | |||
---|---|---|---|---|---|
PB | OB | ||||
UA | PA | UA | PA | ||
1 | Bare mud exposed to air | 86.7 | 97.5 | 88.1 | 92.5 |
2 | Compacted soil (dark) | 100 | 86.7 | 100 | 80.0 |
3 | Rocks/eroded shoreline pieces | 80.0 | 80.0 | 75.0 | 90.0 |
4 | Wrack | 100 | 96.7 | 96.7 | 96.7 |
5 | Spartina alterniflora (muddy) | 98.2 | 93.3 | 96.6 | 95.0 |
6 | Spartina alterniflora (clean, dense) | 87.5 | 93.3 | 80.0 | 93.3 |
7 | Spartina patens | 93.2 | 91.7 | 94.6 | 88.3 |
8 | Deep salt pool water | 100 | 100 | 100 | 100 |
9 | Bare mud exposed to air → clean, dense S. alterniflora | 100 | 100 | 100 | 90.0 |
16 | Triglochin maritima | 75.7 | 93.3 | 83.9 | 86.7 |
17 | Mixed mid-elevation vegetation (S. patens, Puccinellia, etc.) | 96.2 | 83.3 | 92.3 | 80.0 |
18 | Floating green algae (Chlorophyta) | 95.0 | 95.0 | 95.0 | 95.0 |
19 | Emerged salt pool mud → shallow salt pool water | 100 | 93.3 | 100 | 93.3 |
20 | Emerged salt pool mud (salty) | 100 | 86.7 | 85.7 | 80.0 |
21 | Submerged aquatic vegetation | 93.3 | 93.3 | 92.9 | 86.7 |
22 | Deep salt pool water → floating green algae | 92.9 | 86.7 | 93.3 | 93.3 |
23 | Deep salt pool water (June) → submerged aquatic vegetation (July, August) | 100 | 100 | 93.8 | 100 |
24 | Deep salt pool water (June, July) → submerged aquatic vegetation (August) | 100 | 100 | 90.9 | 100 |
25 | Shallow salt pool water | 100 | 100 | 100 | 100 |
26 | Shallow salt pool water → submerged aquatic vegetation | 100 | 90.0 | 100 | 90.0 |
27 | Floating green algae → submerged aquatic vegetation → shallow salt pool water | 100 | 90.0 | 100 | 90.0 |
28 | Floating green algae → deep salt pool water | 90.0 | 100 | 90.9 | 100 |
29 | Wrack → vegetated areas of S. alterniflora and S. patens | 93.8 | 100 | 100 | 93.3 |
30 | Mixed vegetation: S. alterniflora and S. patens | 89.4 | 84.0 | 83.0 | 88.0 |
Average accuracy | 93.9 | 92.4 | |||
Overall accuracy | 92.4 | 91.1 | |||
Kappa coefficient | 91.9 | 90.5 |
Class Number | Class Name | Validation Accuracy | |||
---|---|---|---|---|---|
PB | OB | ||||
UA | PA | UA | PA | ||
1 | Bare mud exposed to air | 100 | 100 | 96.8 | 100 |
2 | Compacted soil (dark) | 100 | 96.7 | 100 | 86.7 |
3 | Rocks/eroded shoreline pieces | 100 | 100 | 100 | 100 |
4 | Wrack | 96.6 | 93.3 | 96.6 | 93.3 |
5 | Spartina alterniflora (muddy) | 100 | 100 | 90.9 | 100 |
6 | Spartina alterniflora (clean, dense) | 100 | 95.0 | 86.8 | 82.5 |
7 | Spartina patens | 97.0 | 91.4 | 93.9 | 88.6 |
8 | Deep salt pool water | 100 | 100 | 100 | 100 |
9 | Bare mud → S. alterniflora (clean, dense) | 100 | 86.7 | 92.9 | 86.7 |
10 | Compacted soil (light) | 92.7 | 95.0 | 97.4 | 95.0 |
11 | Wood | 95.2 | 100 | 100 | 100 |
12 | Spartina pectinata | 93.8 | 75.0 | 94.1 | 80.0 |
13 | S. alterniflora (clean, sparse) | 93.0 | 100 | 90.5 | 95.0 |
14 | S. alterniflora → wrack | 100 | 100 | 93.8 | 100 |
15 | Dike vegetation | 84.2 | 94.1 | 86.5 | 91.4 |
Average accuracy | 95.5 | 94.0 | |||
Overall accuracy | 95.2 | 93.2 | |||
Kappa coefficient | 94.8 | 92.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norris, G.S.; LaRocque, A.; Leblon, B.; Barbeau, M.A.; Hanson, A.R. Comparing Pixel- and Object-Based Approaches for Classifying Multispectral Drone Imagery of a Salt Marsh Restoration and Reference Site. Remote Sens. 2024, 16, 1049. https://doi.org/10.3390/rs16061049
Norris GS, LaRocque A, Leblon B, Barbeau MA, Hanson AR. Comparing Pixel- and Object-Based Approaches for Classifying Multispectral Drone Imagery of a Salt Marsh Restoration and Reference Site. Remote Sensing. 2024; 16(6):1049. https://doi.org/10.3390/rs16061049
Chicago/Turabian StyleNorris, Gregory S., Armand LaRocque, Brigitte Leblon, Myriam A. Barbeau, and Alan R. Hanson. 2024. "Comparing Pixel- and Object-Based Approaches for Classifying Multispectral Drone Imagery of a Salt Marsh Restoration and Reference Site" Remote Sensing 16, no. 6: 1049. https://doi.org/10.3390/rs16061049
APA StyleNorris, G. S., LaRocque, A., Leblon, B., Barbeau, M. A., & Hanson, A. R. (2024). Comparing Pixel- and Object-Based Approaches for Classifying Multispectral Drone Imagery of a Salt Marsh Restoration and Reference Site. Remote Sensing, 16(6), 1049. https://doi.org/10.3390/rs16061049