Wind Profile Retrieval Based on LSTM Algorithm and Mobile Observation of Brightness Temperature over the Tibetan Plateau
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Dataset
2.3. LSTM Algorithm
- (1)
- Quality control: if the MOTB at channel i and time j satisfies the expression , it is considered an outlier and needs to be removed. Here, and represent the mean and standard deviation of the MOTB for channel i.
- (2)
- Dataset division: the training sets consist of observation TBs at MA station and matching ERA5 reanalysis WP data, while the testing sets consist of MOTB and ERA5 reanalysis WP data.
- (3)
- Model construction and parameter settings: the sequential module is used to build the neural network and initialize the parameters. The time step, output step, dropout, and density are set to 50, 1, 0.5, and 1. The training method is configured through compile. The loss function and optimization algorithm are chosen as MSE and Adam. The number of neurons in the LSTM network, Adam learning rate, batch size, and model iteration count are generated using a random search algorithm and we constructed the best parameter model.
- (4)
- WP inversion: input the testing set features into the best parameter model to obtain the standardized WP and calculate the original value with the mean and standard deviation of WP.
- (5)
- Evaluation of inversion results: assess inversion results using the Raob.
3. TB Verification
4. Results
4.1. Inversion and Verification
4.2. Impact Factors
4.2.1. Weather Conditions
4.2.2. Altitude Elevation
4.2.3. Observation Modes
4.2.4. TB Diurnal Variation
4.3. Vertical Variation Characteristics of Retrieved WP
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Unit | Remark |
TP | - | Tibetan plateau |
TRSR | - | Three-River-Source region |
Raob | - | Radiosonde observation |
MR | - | Microwave radiometer |
GMR | - | Ground-based microwave radiometer |
TB | K | Brightness temperature |
AT | ℃ | Atmospheric temperature |
RH | % | Relative humidity |
WVD | g/m3 | Water vapor density |
MO | - | Mobile observation |
WP | - | Wind profile |
CLW | g/m3 | Cloud liquid water |
MFOCAP | - | Mobile Field Observation Campaign of Atmospheric Profiles |
CMA_GFS | - | Global Forecast System of China Meteorological Administration |
LSTM | - | Long short-term memory |
RNN | - | Recurrent neural network |
MA | - | Mangai (Meteorological station) |
XN | - | Xining (Radiosonde station) |
DR | - | Dari (Radiosonde station) |
YS | - | Yushu (Radiosonde station) |
MOTB | K | Mobile observation brightness temperature |
STB | K | Simulated brightness temperature |
RTM | - | Radiative transfer model |
RTTOV-gb | - | Ground-based radiative transfer model for TOVS |
ECMWF | - | European Centre for Medium-Range Weather Forecasts |
WS | m/s | Wind speed |
In-WS | m/s | Inversion of wind speed |
Re-WS | m/s | Wind speed from the ERA5 reanalysis |
WD | degree (°) | Wind direction |
In-WD | degree (°) | Inversion of wind direction |
Re-WD | degree (°) | Wind direction from the ERA5 reanalysis |
RMSE | - | Root mean square error |
MAE | - | Mean absolute error |
MD | - | Mean difference |
R | - | Correlation coefficient |
References
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Ye, D. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Am. Meteorol. Soc. 1981, 62, 14–19. [Google Scholar] [CrossRef]
- Tao, S.; Ding, Y.H. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Am. Meteorol. Soc. 1981, 62, 23–30. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, Y. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Weather Rev. 1998, 126, 913–927. [Google Scholar] [CrossRef]
- Wu, G.; Duan, A.; Liu, Y.; Mao, J.; Ren, R.; Bao, Q.; He, B.; Liu, B.; Hu, W. Tibetan Plateau climate dynamics: Recent research progress and outlook. Mon. Weather Rev. 2015, 2, 100–116. [Google Scholar] [CrossRef]
- Xu, X.; Lu, C.; Shi, X.; Gao, S. World water tower: An atmospheric perspective. Geophys. Res. Lett. 2008, 35, L20815. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, T.; Lu, C.; Guo, Y.; Chen, B.; Liu, R.; Li, Y.; Shi, X. An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmos. Chem. Phys. 2014, 14, 11287–11295. [Google Scholar] [CrossRef]
- Duan, A.; Wu, G. Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett. 2006, 33, 408. [Google Scholar] [CrossRef]
- Duan, A.; Wu, G.; Liu, Y.; Ma, Y.; Zhao, P. Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci. 2012, 29, 978–992. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, X.; Fu, Y. Diurnal Variation in Clouds and Radiative Budgets Over the Tibetan Plateau During Summer Using CERES Data. J. Geophys. Res. Atmos. 2022, 127, e2021JD036329. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Jia, L. Climatic characteristics of Tibetan Plateau vortex precipitation based on observations. Int. J. Climatol. 2022, 42, 9237–9252. [Google Scholar] [CrossRef]
- Ma, Y.; Zhong, L.; Su, Z.; Ishikawa, H.; Menenti, M.; Koike, T. Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 Enhanced Thematic Mapper data over the central Tibetan Plateau area. J. Geophys. Res. Atmos. 2006, 111, D10305. [Google Scholar] [CrossRef]
- Ueno, K.; Fujii, H.; Yamada, H.; Liu, L. Weak and frequent monsoon precipitation over the Tibetan Plateau. J. Meteorol. Soc. Jpn. Ser. II 2001, 79, 419–434. [Google Scholar] [CrossRef]
- Yang, K.; Pinker, R.T.; Ma, Y.; Koike, T.; Wonsick, M.M.; Cox, S.J.; Zhang, Y.; Stackhouse, P. Evaluation of satellite estimates of downward shortwave radiation over the Tibetan Plateau. J. Geophys. Res. Atmos. 2008, 113, D17204. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; et al. The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Am. Meteorol. Soc. 2018, 99, 757–776. [Google Scholar] [CrossRef]
- Westwater, E.R. Ground-Based Microwave Remote Sensing of Meteorological Variables, 3rd ed.; Atmospheric remote sensing by microwave radiometry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1993; pp. 145–213. [Google Scholar]
- Ware, R.; Carpenter, R.; Güldner, J.; Liljegren, J.; Nehrkorn, T.; Solheim, F.; Vandenberghe, F. A multichannel radiometric profiler of temperature, humidity, and cloud liquid. Radio Sci. 2003, 38, 44-1–44-13. [Google Scholar] [CrossRef]
- Knupp, K.; Coleman, T.; Phillips, D.; Ware, R.; Cimini, D.; Vandenberghe, F.; Vivekanandan, J.; Westwater, E. Ground-based passive microwave profiling during dynamic weather conditions. J. Atmos. Ocean. Technol. 2009, 26, 1057–1073. [Google Scholar] [CrossRef]
- Madhulatha, A.; Rajeevan, M.; Venkat Ratnam, M.; Bhate, J.; Naidu, C. Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations. J. Geophys. Res. Atmos. 2013, 118, 1–13. [Google Scholar] [CrossRef]
- Walbröl, A.; Crewell, S.; Engelmann, R.; Orlandi, E.; Griesche, H.; Radenz, M.; Hofer, J.; Althausen, D.; Maturilli, M.; Ebell, K. Atmospheric temperature, water vapour and liquid water path from two microwave radiometers during MOSAiC. Sci. Data 2022, 9, 534. [Google Scholar] [CrossRef]
- Serafin, R.J.; Szejwach, G.; Phillips, B.B. Applications of airborne remote sensing in atmospheric sciences research. J. Geophys. Res. Ocean. 1986, 91, 2510–2516. [Google Scholar] [CrossRef]
- Huggins, A.W. Mobile Microwave Radiometer Observations: Spatial Characteristics of Supercooled Cloud Water and Cloud Seeding Implications. J. Appl. Meteorol. Climatol. 1995, 34, 432–446. [Google Scholar] [CrossRef]
- Karan, H.; Knupp, K. Mobile Integrated Profiler System (MIPS) observations of low-level convergent boundaries during IHOP. Mon. Weather. Rev. 2006, 134, 92–112. [Google Scholar] [CrossRef]
- Wei, C.; Xin, M.; Wang, P. Analysis of Precipitable Water and Cloud Liquid Water Content over Equatorial Area of Western Pacific Basis of Remote Sensing. Chin. J. Atmos. Sci. 1992, 164, 1–10. [Google Scholar]
- Chen, H.; Lu, D.; Wei, C.; Liu, J. Comparison of the Effects of Different Microwave Channel Combinations and TB Functions in the Algorithm for Retrieving Precipitable Water in the Clear Atmosphere. Chin. J. Atmos. Sci. 1996, 20, 757–762. [Google Scholar]
- Cheng, X.; Xu, X.; Bai, G.; Wang, R.; Ma, J.; Zhang, L.; Su, D.; Chen, B.; Ma, S.; Hu, C.; et al. Mobile Observation Field Experiment of Atmospheric Vertical Structure And Its Contribution to Precipitation Forecasts Over the Tibet Plateau. JGR-Atmospheres, 2023; revised. [Google Scholar]
- Bu, J.; Yu, K.; Zuo, X.; Ni, J.; Li, Y.; Huang, W. GloWS-Net: A Deep Learning Framework for Retrieving Global Sea Surface Wind Speed Using Spaceborne GNSS-R Data. Remote Sens. 2023, 15, 590. [Google Scholar] [CrossRef]
- Shi, X.; Duan, B.; Ren, K. F2F-NN: A Field-to-Field Wind Speed Retrieval Method of Microwave Radiometer Data Based on Deep Learning. Remote Sens. 2022, 14, 3517. [Google Scholar] [CrossRef]
- Ouyed, A.; Smith, N.; Zeng, X.; Galarneau, T., Jr.; Su, H.; Dixon, R.D. Global Three-Dimensional Water Vapor Feature-Tracking for Horizontal Winds Using Hyperspectral Infrared Sounder Data From Overlapped Tracks of Two Satellites. Geophys. Res. Lett. 2023, 50, e2022GL101830. [Google Scholar] [CrossRef]
- Ma, Z.; Li, J.; Han, W.; Li, Z.; Zeng, Q.; Menzel, W.P.; Schmit, T.J.; Di, D.; Liu, C.Y. Four-dimensional wind fields from geostationary hyperspectral infrared sounder radiance measurements with high temporal resolution. Geophys. Res. Lett. 2021, 48, e2021GL093794. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Smagulova, K.; James, A.P. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spec. Top. 2019, 228, 2313–2324. [Google Scholar] [CrossRef]
- Jiang, C.; Li, D.; Wang, D.; Zhang, L. Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover change. Ecol. Indic. 2016, 66, 199–211. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, S.; Wang, J.; Qi, D.; Hu, X. Spatiotemporal variations in precipitation in the Three-River Headwater region from 1961 to 2019. Pratacultural Sci. 2022, 39, 10–20. [Google Scholar]
- Meng, X.H.; Chen, H.; Li, Z.; Zhao, L.; Zhou, B.; Lv, S.H.; Deng, M.S.; Liu, Y.M.; Li, G.W. Review of climate change and its environmental influence on the Three-River Regions. PLateau Meteorol 2020, 39, 1133–1143. [Google Scholar]
- Liang, L.; Li, L.; Liu, C.; Cuo, L. Climate change in the Tibetan plateau three rivers source region: 1960–2009. Int. J. Climatol. 2013, 33, 2900–2916. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, T.; Zhong, L.; Wang, B.; Xu, X.; Hu, Z.; Ma, W.; Sun, F.; Han, C.; Li, M.; et al. Comprehensive study of energy and water exchange over the Tibetan Plateau: A review and perspective: From GAME/Tibet and CAMP/Tibet to TORP, TPEORP, and TPEITORP. Earth-Sci. Rev. 2019, 237, 104312. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Y.; Wang, B.; Xu, X.; Cheng, X.; Liu, Y.; Xu, X.; Li, L.; Ma, W. TP-PROFILE monitoring the thermodynamical structure of the troposphere over the Third Pole. Adv. Atmos. Sci. 2023; in press. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef]
- De Angelis, F.; Cimini, D.; Hocking, J.; Martinet, P.; Kneifel, S. RTTOV-gb–adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations. Geosci. Model Dev. 2016, 9, 2721–2739. [Google Scholar] [CrossRef]
- Cimini, D.; Hocking, J.; De Angelis, F.; Cersosimo, A.; Di Paola, F.; Gallucci, D.; Gentile, S.; Geraldi, E.; Larosa, S.; Nilo, S.; et al. RTTOV-gb v1. 0–updates on sensors, absorption models, uncertainty, and availability. Geosci. Model Dev. 2019, 12, 1833–1845. [Google Scholar] [CrossRef]
- Cheng, X.; Su, D.; Li, D.; Chen, L.; Xu, W.; Yang, M.; Li, Y.; Yue, Z.; Wang, Z. An improved method for correction of air temperature measured using different radiation shields. Adv. Atmos. Sci. 2014, 31, 1460–1468. [Google Scholar] [CrossRef]
- Ware, R.; Cimini, D.; Herzegh, P.; Marzano, F.; Vivekanandan, J.; Westwater, E. Ground-based microwave radiometer measure-ments during precipitation. In Proceedings of the 8th Specialist Meeting on Microwave Radiometry, Rome, Italy, 24–27 February 2004; pp. 24–27. [Google Scholar]
- Araki, K.; Murakami, M.; Ishimoto, H.; Tajiri, T. Ground-based microwave radiometer variational analysis during no-rain and rain conditions. Sola 2015, 11, 108–112. [Google Scholar] [CrossRef]
- Ahn, M.H.; Won, H.; Han, D.; Kim, Y.H.; Ha, J.C. Characterization of downwelling radiance measured from a ground-based microwave radiometer using numerical weather prediction model data. Atmos. Meas. Tech. 2016, 9, 281–293. [Google Scholar] [CrossRef]
- Li, Q.; Wei, M.; Wang, Z.; Jiang, S.; Chu, Y. Improving the Retrieval of Cloudy Atmospheric Profiles from Brightness Temperatures Observed with a Ground-Based Microwave Radiometer. Atmosphere 2021, 12, 648. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.A.; Shu, J. Characteristics Analysis of the Multi-Channel Ground-Based Microwave Radiometer Observations during Various Weather Conditions. Atmosphere 2022, 13, 1556. [Google Scholar] [CrossRef]
- Che, Y.; Ma, S.; Yang, L. Cloud influence on atmospheric humidity profile retrieval by ground-based microwave radiometer. J. Appl. Meteor. Sci. 2015, 26, 193–202. [Google Scholar]
- Wang, Z.; Zhang, X.; Mao, J. Comparison analysis on detection performance of ground-based microwave radiometers under different weather conditions. J. Appl. Meteor. Sci. 2018, 29, 282–295. [Google Scholar]
- Xing, Y.; Lou, G.; Li, X.; Zhang, G. Influence of cloudy and rainy weather on the brightness of the sky in the 3mm wavelength band. Mod. Def. Technol. 2010, 5, 82–85. [Google Scholar]
- Radinović, D.; Ćurić, M. Measuring scales for daily temperature extremes, precipitation and wind velocity. Meteorol. Appl. 2014, 21, 461–465. [Google Scholar] [CrossRef]
K-Band | V-Band | ||||
---|---|---|---|---|---|
Number | Center Frequency | Channel Number | Center Frequency | Channel Number | Center Frequency |
1 | 22.235 GHZ | 9 | 51.250 GHZ | 16 | 54.940 GHZ |
2 | 22.500 GHZ | 10 | 51.760 GHZ | 17 | 55.500 GHZ |
3 | 23.035 GHZ | 11 | 52.280 GHZ | 18 | 56.020 GHZ |
4 | 23.835 GHZ | 12 | 52.800 GHZ | 19 | 56.660 GHZ |
5 | 25.000 GHZ | 13 | 53.340 GHZ | 20 | 57.290 GHZ |
6 | 26.235 GHZ | 14 | 53.850 GHZ | 21 | 57.960 GHZ |
7 | 28.000 GHZ | 15 | 54.400 GHZ | 22 | 58.800 GHZ |
8 | 30.000 GHZ |
Weather Conditions | Wind Speed (Unit: m/s) | Wind Direction (Unit: °) | TB (Unit: K) | |||||
---|---|---|---|---|---|---|---|---|
RMSE | MAE | R | RMSE | MAE | R | MD | R | |
Clear-Sky | 1.20 | 0.96 | 0.98 | 26.64 | 15.30 | 0.97 | −0.26 | 0.9999 |
Cloudy | 1.66 | 1.26 | 0.97 | 66.80 | 33.31 | 0.86 | 0.93 | 0.9997 |
Rainy | 1.75 | 1.35 | 0.97 | 70.47 | 42.48 | 0.81 | 36.91 | 0.8466 |
Altitude | Wind Speed (Unit: m/s) | Wind Direction (Unit: °) | T (Unit: K) | |||||
---|---|---|---|---|---|---|---|---|
RMSE | MAE | R | RMSE | MAE | R | MD | R | |
0∼2.2 km | 1.25 | 1.05 | 0.99 | 40.06 | 21.35 | 0.95 | 0.08 | 0.9996 |
2.3∼3.6 km | 1.38 | 1.09 | 0.98 | 57.66 | 25.94 | 0.88 | 0.39 | 0.9997 |
3.7∼4.0 km | 1.93 | 1.40 | 0.95 | 64.60 | 32.64 | 0.87 | 0.86 | 0.9998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Cheng, X.; Su, D.; Xu, X.; Ma, S.; Hu, Z. Wind Profile Retrieval Based on LSTM Algorithm and Mobile Observation of Brightness Temperature over the Tibetan Plateau. Remote Sens. 2024, 16, 1068. https://doi.org/10.3390/rs16061068
Chen B, Cheng X, Su D, Xu X, Ma S, Hu Z. Wind Profile Retrieval Based on LSTM Algorithm and Mobile Observation of Brightness Temperature over the Tibetan Plateau. Remote Sensing. 2024; 16(6):1068. https://doi.org/10.3390/rs16061068
Chicago/Turabian StyleChen, Bing, Xinghong Cheng, Debin Su, Xiangde Xu, Siying Ma, and Zhiqun Hu. 2024. "Wind Profile Retrieval Based on LSTM Algorithm and Mobile Observation of Brightness Temperature over the Tibetan Plateau" Remote Sensing 16, no. 6: 1068. https://doi.org/10.3390/rs16061068
APA StyleChen, B., Cheng, X., Su, D., Xu, X., Ma, S., & Hu, Z. (2024). Wind Profile Retrieval Based on LSTM Algorithm and Mobile Observation of Brightness Temperature over the Tibetan Plateau. Remote Sensing, 16(6), 1068. https://doi.org/10.3390/rs16061068