A Remote Sensing Approach to Estimating Cropland Sustainability in the Lateritic Red Soil Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodological Framework for Cropland Sustainability
2.4. Cropland Sustainability Evaluation Based on Remote Sensing
2.4.1. Natural Capacity Evaluation Based on Remote Sensing
2.4.2. Management Level Evaluation Based on Remote Sensing
2.4.3. Food Productivity Evaluation Based on Remote Sensing
2.4.4. Comprehensive Index for Cropland Sustainability
2.5. Accuracy Evaluation Method
3. Results
3.1. Accuracy Verification of Cropland Sustainability Indicators
3.1.1. Accuracy Verification of SOM and Soil pH
3.1.2. Accuracy Verification of IGC
3.1.3. Accuracy Verification of Food Productivity
3.2. Spatial Patterns of Cropland Sustainability in the Lateritic Red Soil Region of Guangdong
3.2.1. Spatial Heterogeneity of Cropland Sustainability
3.2.2. Cropland Sustainability in Different Prefecture-Level Regions
3.3. Temporal Dynamics of Cropland Sustainability in the Lateritic Red Soil Region of Guangdong
3.3.1. Dynamic Changes in Cropland Sustainability from 2010 to 2020
3.3.2. Changes in Cropland Sustainability in Different Prefecture-Level Regions
4. Discussion
4.1. Constructing Comprehensive Evaluation Indicators for Cropland Sustainability via Remote Sensing
4.2. Underlying Mechanisms of Cropland Sustainability in Lateritic Red Soil Region
4.3. Management Measures and Policy Implications for Improving Cropland Sustainability in a Lateritic Red Soil Region
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Demetriou, D. The assessment of land valuation in land consolidation schemes: The need for a new land valuation framework. Land Use Policy 2016, 54, 487–498. [Google Scholar] [CrossRef]
- Jarosław, J.; Jarosław, T. Spatial differentiation of indicators presenting selected barriers in the productivity of agricultural areas: A regional approach to setting land consolidation priorities. Ecol. Indic. 2018, 93, 718–729. [Google Scholar] [CrossRef]
- Li, J.L.; Wu, W.J.; Ye, X.X.; Jiang, H.; Gan, R.J.; Wu, H.L.; He, J.L.; Jiang, Y.L. Innovative trend analysis of main agriculture natural hazards in China during 1989–2014. Nat. Hazards 2019, 95, 677–720. [Google Scholar] [CrossRef]
- Csikós, N.; Szabó, B.; Hermann, T.; Laborczi, A.; Matus, J.; Pásztor, L.; Szatmári, G.; Takács, K.; Tóth, G. Cropland productivity evaluation: A 100 m resolution country assessment combining earth observation and direct measurements. Remote Sens. 2023, 15, 1236. [Google Scholar] [CrossRef]
- Yang, R.J.; Xiao, W.; Ye, Y.M.; Wang, K.C.; Dong, Y.X.; Chen, S. One-third of cropland within protected areas could be retired in China for inferior sustainability and effects. Sci. Total Environ. 2023, 905, 167084. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.J.; Hu, Z.Q.; Li, G.S.; Zhang, Y.H.; Zhang, X.; Zhang, H. Improving mine reclamation efficiency for farmland sustainable use: Insights from optimizing mining scheme. J. Clean. Prod. 2022, 379, 134615. [Google Scholar] [CrossRef]
- Smith, A.; Snapp, S.; Dimes, J.; Gwenambira, C.; Chikowo, R. Doubled-up legume rotations improve soil fertility and maintain productivity under variable conditions in maize-based cropping systems in Malawi. Agric. Syst. 2016, 145, 139–149. [Google Scholar] [CrossRef]
- Xu, W.Y.; Jin, J.X.; Jin, X.B.; Xiao, Y.Y.; Ren, J.; Liu, J.; Sun, R.; Zhou, Y.K. Analysis of changes and potential characteristics of cultivated land productivity based on MODIS EVI: A case study of Jiangsu Province, China. Remote Sens. 2019, 11, 2041. [Google Scholar] [CrossRef]
- Sun, X.B.; Li, Q.F.; Kong, X.B.; Cai, W.M.; Zhang, B.L.; Lei, M. Spatial characteristics and obstacle factors of cultivated land quality in an intensive agricultural region of the North China Plain. Land 2023, 12, 1552. [Google Scholar] [CrossRef]
- Wu, B.S.; Liu, M.F.; Wan, Y.F.; Song, Z.J. Evolution and coordination of cultivated land multifunctionality in Poyang lake ecological economic zone. Sustainability 2023, 15, 5307. [Google Scholar] [CrossRef]
- Fan, H. The impact of land remediation projects on the quality grade assessment of cultivated land. Front. Sci. Eng. 2023, 3, 49–52. [Google Scholar] [CrossRef]
- Ma, J.N.; Zhang, C.; Yun, W.J.; Lv, Y.H.; Chen, W.L.; Zhu, D.H. The temporal analysis of regional cultivated land productivity with GPP based on 2000–2018 MODIS data. Sustainability 2020, 12, 411. [Google Scholar] [CrossRef]
- Wu, F.Q.; Mo, C.J.; Dai, X.J.; Li, H.M. Spatial analysis of cultivated land productivity, site condition and cultivated land health at county scale. Int. J. Environ. Res. Public Health 2022, 19, 12266. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.Q.; Peng, Y.P.; Lin, C.J.; Wen, Y.; Liu, H.M.; Liu, Z.H. A spatial frequency/spectral indicator-driven model for estimating cultivated land quality using the gradient boosting decision tree and genetic algorithm-back propagation neural network. Int. Soil Water Conserv. Res. 2022, 10, 635–648. [Google Scholar] [CrossRef]
- Peng, Y.P.; Liu, Z.H.; Lin, C.J.; Hu, Y.M.; Zhao, L.; Zou, R.Y.; Wen, Y.; Mao, X.Y. A new method for estimating soil fertility using extreme gradient boosting and a backpropagation neural network. Remote Sens. 2022, 14, 3311. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, Y.; Jiang, J.H.; Xiao, P.N.; Wu, H. Spatial characteristics of cultivated land quality accounting for ecological environmental condition: A case study in hilly area of northern Hubei province, China. Sci. Total Environ. 2021, 774, 145765. [Google Scholar] [CrossRef]
- Duan, D.D.; Sun, X.; Liang, S.F.; Sun, J.; Fan, L.L.; Chen, H.; Xia, L.; Zhao, F.; Yang, W.Q.; Yang, P. Spatiotemporal patterns of cultivated land quality integrated with multi-source remote sensing: A case study of Guangzhou, China. Remote Sens. 2022, 14, 1250. [Google Scholar] [CrossRef]
- Mujiyo; Nariyant, S.; Suntoro; Herawati, A.; Herdiansyah, G.; Irianto, H.; Riptanti, E.W.; Qonita, A. Soil fertility index based on altitude: A comprehensive assessment for the cassava development area in Indonesia. Ann. Agric. Sci. 2022, 67, 158–165. [Google Scholar] [CrossRef]
- Wu, Z.F.; Sun, X.M.; Sun, Y.Q.; Yan, J.Y.; Zhao, Y.F.; Chen, J. Soil acidification and factors controlling topsoil pH shift of cropland in central China from 2008 to 2018. Geoderma 2022, 408, 115586. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.C.; Yu, Q.Y.; Cai, Z.J.; Zhou, Q.B.; Bellingrath-Kimura, S.D.; Wu, W.B. Improving digital mapping of soil organic matter in cropland by incorporating crop rotation. Geoderma 2023, 438, 116620. [Google Scholar] [CrossRef]
- Kiani, M.; Hernandez-Ramirez, G.; Quideau, S.; Smith, E.; Janzen, H.; Larney, F.J.; Puurveen, D. Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes. Agric. Ecosyst. Environ. 2017, 248, 123–135. [Google Scholar] [CrossRef]
- Scholten, T.; Goebes, P.; Kühn, P.; Seitz, S.; Assmann, T.; Bauhus, J.; Bruelheide, H.; Buscot, F.; Erfmeier, A.; Fischer, M. On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems-a study from SE China. J. Plant Ecol. 2017, 10, 111–127. [Google Scholar] [CrossRef]
- Yao, M.L.; Shao, D.G.; Lv, C.H.; An, R.H.; Gu, W.Q.; Zhou, C. Evaluation of arable land suitability based on the suitability function-A case study of the Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 787, 147414. [Google Scholar] [CrossRef]
- Golabi, M.; Hasily, M.A.; Nasab, S.B. Study and evaluation of irrigation and drainage networks using analytic hierarchy process in Khuzestan Province: A virtual water approach. Agric. Water Manag. 2020, 241, 106305. [Google Scholar] [CrossRef]
- Greslova, P.; Lastovicka, J.; Stych, P.; Kabrda, J. Land cover flows and land use intensity in the three decades of the post-communist Czechia: Changing trends and driving forces. Anthropocene 2023, 43, 100395. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Li, Q.; Xu, T.; Wu, Z.X.; Liu, J.Y. Application of three deep machine-learning algorithms in a construction assessment model of farmland quality at the county scale: Case study of Xiangzhou, Hubei Province, China. Agriculture 2021, 11, 72. [Google Scholar] [CrossRef]
- Cheng, H.R.; Zhu, L.K.; Meng, J.J. Fuzzy evaluation of the ecological security of land resources in mainland China based on the Pressure-State-Response framework. Sci. Total Environ. 2022, 804, 150053. [Google Scholar] [CrossRef]
- Jatav, S.S.; Naik, K. Measuring the agricultural sustainability of India: An application of pressure-state-response model. Reg. Sustain. 2023, 4, 218–234. [Google Scholar] [CrossRef]
- Li, Y.S.; Chang, C.Y.; Wang, Z.R.; Li, T.; Li, J.W.; Zhao, G.X. Identification of cultivated land quality grade using fused multi-source data and multi-temporal crop remote sensing information. Remote Sens. 2022, 14, 2109. [Google Scholar] [CrossRef]
- Yang, W.H.; Peng, Y.P.; Lin, C.J.; Yang, H.; Cheng, X.R.; Wu, X.F.; Wen, Y.; Liu, Z.H. Optimal deployment of cultivated land quality monitoring points based on satellite image-driven assessment and improved spatial simulated annealing. Land Degrad. Dev. 2023, 34, 4614. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, L.; Hu, Y.M.; Liu, Z.H.; Wang, L.; Ye, C.D.; Mao, X.Y.; Xie, X. Cultivated land quality evaluated using the RNN algorithm based on multisource data. Remote Sens. 2022, 14, 6014. [Google Scholar] [CrossRef]
- Zhong, J.L.; Li, Z.Z.; Zhang, D.; Yang, J.; Zhu, J.X. An evaluation framework for urban ecological compensation priority in China based on meta-analysis and fuzzy comprehensive evaluation. Ecol. Indic. 2023, 158, 111284. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Qiao, W.B.; Lu, Y.H.; Sun, S.F.; Yin, Q.W. Construction and application of urban water system connectivity evaluation index system based on PSR-AHP-Fuzzy evaluation method coupling. Ecol. Indic. 2023, 153, 110421. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhang, Y.Y.; Guo, L.Y. Towards realistic assessment of cultivated land quality in an ecologically fragile environment: A satellite imagery-based approach. Appl. Geogr. 2010, 30, 271–281. [Google Scholar] [CrossRef]
- Blanchet, G.; Libohova, Z.; Joost, S.; Rossier, N.; Schneider, A.; Jeangros, B.; Sinaj, S. Spatial variability of potassium in agricultural soils of the canton of Fribourg, Switzerland. Geoderma 2017, 290, 107–121. [Google Scholar] [CrossRef]
- Grinand, C.; Le Maire, G.; Vieilledent, G.; Razakarnanarivo, H.; Razafimbelo, T.; Bernoux, M. Estimating temporal changes in soil carbon stocks at ecoregional scale in Madagascar using remote-sensing. Int. J. Appl. Earth Obs. 2017, 54, 1–14. [Google Scholar] [CrossRef]
- Bogunovic, I.; Trevisani, S.; Pereira, P.; Vukadinovic, V. Mapping soil organic matter in the Baranja region (Croatia): Geological and anthropic forcing parameters. Sci. Total Environ. 2018, 643, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.M.; Lal, R.; Zhang, H.; Margenot, A.J.; Wu, J.T.; Wu, P.B.; Zhang, L.M.; Yao, J.T.; Chen, F.R.; Gao, C. Variability and determinants of soil organic matter under different land uses and soil types in eastern China. Soil Till. Res. 2020, 198, 104544. [Google Scholar] [CrossRef]
- Dou, X.; Wang, X.; Liu, H.J.; Zhang, X.L.; Meng, L.H.; Pan, Y.; Yu, Z.Y.; Cui, Y. Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China. Geoderma 2019, 356, 113896. [Google Scholar] [CrossRef]
- Meng, X.T.; Bao, Y.L.; Liu, J.G.; Liu, H.J.; Zhang, X.L.; Zhang, Y.; Wang, P.; Tang, H.T.; Kong, F.C. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. 2020, 89, 102111. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.O.; Wang, Z.M. Estimating temporal changes in soil pH in the black soil region of Northeast China using remote sensing. Comput. Electron. Agric. 2018, 154, 204–212. [Google Scholar] [CrossRef]
- Chen, D.; Chang, N.J.; Xiao, J.F.; Zhou, Q.B.; Wu, W.B. Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Sci. Total Environ. 2019, 669, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Hu, J.S.; Lu, Y.; Qiu, J.C.; Dong, Y.Q.; Li, B. Soil C, N, P stocks and stoichiometry as related to land use types and erosion conditions in lateritic red soil region, south China. Catena 2022, 210, 105888. [Google Scholar] [CrossRef]
- Li, Y.; Mo, Y.Q.; Are, K.S.; Huang, Z.G.; Guo, H.; Tang, C.; Abegunrin, T.P.; Qin, Z.H.; Kang, Z.W.; Wang, X. Sugarcane planting patterns control ephemeral gully erosion and associated nutrient losses: Evidence from hillslope observation. Agric. Ecosyst. Environ. 2021, 309, 107289. [Google Scholar] [CrossRef]
- Shi, X.Z.; Yu, D.S.; Sun, W.X.; Wang, H.J.; Zhao, Q.G.; Gong, Z.T. Reference benchmarks relating to great groups of genetic soil classification of China with soil taxonomy. Chin. Sci. Bull. 2004, 49, 1507–1511. [Google Scholar] [CrossRef]
- Liao, Q.; Hu, Y.M.; Hu, X.F.; Zhao, J.Y.; Wang, L. Spatial variability of topsoil nutrients in typical lateritic red soil areas of Guangdong Province. Bull. Soil Water Conserv. 2015, 35, 322–328. (In Chinese) [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.Y.; Kuang, W.H.; Xu, X.L.; Zhang, S.W.; Yan, C.Z.; Li, R.D.; Wu, S.X.; Hu, Y.F.; Du, G.M. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Lai, Y.Q.; Wang, H.L.; Sun, X.L. A comparison of importance of modelling method and sample size for mapping soil organic matter in Guangdong, China. Ecol. Indic. 2021, 126, 107618. [Google Scholar] [CrossRef]
- Roelofsen, H.D.; van Bodegom, P.M.; Kooistra, L.; van Amerongen, J.J.; Witte, J.P.M. An evaluation of remote sensing derived soil pH and average spring groundwater table for ecological assessments. Int. J. Appl. Earth Obs. 2015, 43, 149–159. [Google Scholar] [CrossRef]
- Rana, S.; Cheng, X.N.; Wu, Y.F.; Hu, C.W.; Jemim, R.S.; Liu, Z.; Wang, Y.M.; Cai, Q.F.; Geng, X.D.; Guo, X.M. Evaluation of soil and water conservation function in the Wugong mountain meadow based on the comprehensive index method. Heliyon 2022, 8, e11867. [Google Scholar] [CrossRef]
- Peng, L.N.; Hu, Y.; Li, J.Y.; Du, Q.Y. An improved evaluation scheme for performing quality assessments of unconsolidated cultivated land. Sustainability 2017, 9, 1312. [Google Scholar] [CrossRef]
- Lai, Z.Q.; Chang, D.; Li, S.; Li, D. Optimizing land use systems of an agricultural watershed in China to meet ecological and economic requirements for future sustainability. Glob. Ecol. Conserv. 2022, 33, e01975. [Google Scholar] [CrossRef]
- Liu, X.X.; Zheng, J.P.; Yu, L.; Hao, P.Y.; Chen, B.; Xin, Q.C.; Fu, H.H.; Gong, P. Annual dynamic dataset of global cropping intensity from 2001 to 2019. Sci. Data 2021, 8, 283. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.K.; Lal, R.; Wang, Q.B. Land evaluation and site assessment for the basic farmland protection in Lingyuan County, Northeast China. J. Clean. Prod. 2021, 314, 128097. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, R.; Yang, Z.; Ning, K.; Chen, P.; Wu, J. Ecosystem health risk assessment of lakes in the Inner Mongolian Plateau based on the coupled AHP-SOM-CGT model. Ecol. Indic. 2023, 156, 111168. [Google Scholar] [CrossRef]
- Fan, Y.T.; Jin, X.B.; Xiang, X.M.; Gan, L.; Yang, X.H.; Zhang, Z.H.; Zhou, Y.K. Evaluating and predicting the effectiveness of farmland consolidation on improving agricultural productivity in China. PLoS ONE 2018, 13, e0198171. [Google Scholar] [CrossRef] [PubMed]
- Vijith, H.; Dodge-Wan, D. Spatial and temporal characteristics of rainfall over a forested river basin in NW Borneo. Meteorol. Atmos. Phys. 2020, 132, 683–702. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid. Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Garroutte, E.L.; Hansen, A.J.; Lawrence, R.L. Using NDVI and EVI to map spatiotemporal variation in the biomass and quality of forage for migratory elk in the Greater Yellowstone Ecosystem. Remote Sens. 2016, 8, 404. [Google Scholar] [CrossRef]
- Li, Z.; Lun, F.; Liu, M.; Xiao, X.; Wang, C.Y.; Wang, L.L.; Xu, Y.Q.; Qi, W.; Sun, D.F. Rapid diagnosis of agricultural soil health: A novel soil health index based on natural soil productivity and human management. J. Environ Manag. 2021, 277, 111402. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water Res. 2022, 219, 118532. [Google Scholar] [CrossRef]
- Zheng, C.; Guo, Z.X.; Yuan, Y.Z.; Guo., Y.; Chai., M.; Liang., X.Y.; Bi, R.T. Spatial and temporal changes of cropland soil acidification and their influencing factors in different regions of Guangdong Province China. Chin. J. Appl. Ecol. 2019, 30, 593–601. (In Chinese) [Google Scholar] [CrossRef]
- Bucala-Hrabia, A. Long-term impact of socio-economic changes on agricultural land use in the Polish Carpathians. Land Use Policy 2017, 64, 391–404. [Google Scholar] [CrossRef]
- Mitter, H.; Techen, A.K.; Sinabell, F.; Helming, K.; Schmid, E.; Bodirsky, B.L.; Holman, I.; Kok, K.; Lehtonen, H.; Leip, A.; et al. Shared Socio-economic Pathways for European agriculture and food systems: The Eur-Agri-SSPs. Glob. Environ. Chang. 2020, 65, 102159. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, M.H.; Ghalavand, A.; Boojar, M.M.A.; Modarres-Sanavy, S.A.M.; Mokhtassi-Bidgoli, A. Application of manure and biofertilizer to improve soil properties and increase grain yield, essential oil and ω of purslane (L.) under drought stress. Soil Till. Res. 2021, 205, 104633. [Google Scholar] [CrossRef]
- Shanmugavel, D.; Rusyn, I.; Solorza-Feria, O.; Kamaraj, S.K. Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications. Sci. Total Environ. 2023, 904, 166729. [Google Scholar] [CrossRef]
- Li, X.R.; Jiang, W.L.; Duan, D.D. Spatiotemporal analysis of irrigation water use coefficients in China. J. Environ. Manag. 2020, 262, 110242. [Google Scholar] [CrossRef]
- Liu, J.G.; Zang, C.F.; Tian, S.Y.; Liu, J.G.; Yang, H.; Jia, S.F.; You, L.Z.; Liu, B.; Zhang, M. Water conservancy projects in China: Achievements, challenges and way forward. Glob. Environ. Chang. 2013, 23, 633–643. [Google Scholar] [CrossRef]
- Femeena, P.V.; Sudheer, K.P.; Cibin, R.; Chaubey, I. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution. J. Environ. Manag. 2018, 212, 198–209. [Google Scholar] [CrossRef]
- Paudel, G.P.; Bahadur, K.C.D.; Rahut, D.B.; Justice, S.E.; McDonald, A.J. Scale-appropriate mechanization impacts on productivity among smallholders: Evidence from rice systems in the mid-hills of Nepal. Land Use Policy 2019, 85, 104–113. [Google Scholar] [CrossRef]
- Jiang, G.H.; Zhang, R.J.; Ma, W.Q.; Zhou, D.Y.; Wang, X.P.; He, X. Cultivated land productivity potential improvement in land consolidation schemes in Shenyang, China: Assessment and policy implications. Land Use Policy 2017, 68, 80–88. [Google Scholar] [CrossRef]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M.Y. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Zhang, R.R.; Ma, W.M.; Liu, J.J. Impact of government subsidy on agricultural production and pollution: A game-theoretic approach. J. Clean. Prod. 2021, 285, 124806. [Google Scholar] [CrossRef]
Indicator | Sources | Year | Attribute | Resolution |
---|---|---|---|---|
Soil organic matter (SOM) | Ground measured soil data | 2010/2020 | Point | — |
Soil pH | ||||
Soil texture | Basic soil property dataset of high-resolution China Soil Information Grids (http://www.geodata.cn/ 3 March 2023) | 2010–2018 | raster | 1 km × 1 km |
Soil thickness | ||||
Slope | DEM (http://www.gscloud.cn/ 19 January 2023) | 2011 | raster | 500 m × 500 m |
Irrigation guarantee capability | MOD 16 A2 data (https://earthdata.nasa.gov/ 10 April 2023) Meteorological data (http:/data.cma.cn/ 5 April 2023) | 2010/2020 | Raster/point | |
Centralized contiguity | Remote sensing monitoring data of land use/land cover in China (CNLUCC) (https://www.resdc.cn/ 12 December 2022) | 2010/2020 | raster | 30 m × 30 m |
Multiple-cropping index | Annual dynamic dataset of global cropping intensity (https://doi.org/10.6084/m9.figshare.14099402 24 March 2023) | 2010/2019 | raster | 250 m × 250 m |
High food productivity | MOD 09 A1 MOD 17 A3 (https://earthdata.nasa.gov/ 15 August 2023) | 2008–2012 2018–2022 | raster | 500 m × 500 m |
Stable food productivity |
First-Level Indicator | Second-Level Indicators | Third-Level Indicators (Unit) | Weights | The Scores for Different Levels | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ||||
Cropland sustainability | Natural capacity | SOM (g/kg) | 0.1486 | >40 | 30–40 | 20–30 | 10–20 | 6.0–10 | <6.0 | ||||
Soil pH | 0.1199 | 6.5–7.5 | 5.5–6.5 | 4.5–5.5 | 3.5–4.5 | ||||||||
Soil texture | 0.0862 | medium loam | light loam | heavy loam | sandy loam | clay | sand | ||||||
Soil thickness | 0.0757 | >150 | 100–150 | 60–100 | 30–60 | <30 | |||||||
Slope | 0.0641 | 0–2 | 2–5 | 5–8 | 8–15 | 15–25 | >25 | ||||||
Management level | irrigation guarantee capability | 0.1225 | Fully satisfied | satisfied | basically satisfied | not satisfied | |||||||
Centralized contiguity | 0.0538 | ≥0.5 | 0.3–0.5 | <0.3 | |||||||||
Multiple-cropping index | 0.0719 | once | twice | three times | |||||||||
Food productivity | High food productivity | 0.1511 | very high | high | general high | low | very low | ||||||
stable food productivity | 0.1062 | very stable | stable | general stable | unstable | very unstable |
Type | Environmental Variables | Abbreviation | Data Sources | Select |
---|---|---|---|---|
Remote sensing | Band reflectance of MODIS B1 | B1_mean | MOD 09 A1 https://earthdata.nasa.gov/ 15 August 2023 | No |
Band reflectance of MODIS B2 | B2_mean | Yes | ||
Band reflectance of MODIS B3 | B3_mean | No | ||
Band reflectance of MODIS B4 | B4_mean | No | ||
First derivative of reflectance for MODIS B1 band | B1_1st | No | ||
First derivative of reflectance for MODIS B2 band | B2_1st | No | ||
First derivative of reflectance for MODIS B3 band | B3_1st | Yes | ||
First derivative of reflectance for MODIS B4 band | B4_1st | Yes | ||
Second derivative of reflectance for MODIS B1 band | B1_2nd | No | ||
Second derivative of reflectance for MODIS B2 band | B2_2nd | No | ||
Second derivative of reflectance for MODIS B3 band | B3_2nd | No | ||
Second derivative of reflectance for MODIS B4 band | B4_2nd | No | ||
Annual mean of NDVI (Normalized Difference Vegetation Index) | NDVI_mean | No | ||
Annual maximum value of NDVI | NDVI_max | No | ||
Annual mean of EVI (Enhanced Vegetation Index) | EVI_mean | No | ||
Annual maximum value of EVI | EVI_max | Yes | ||
Annual mean of RVI | RVI_mean | No | ||
Annual maximum value of RVI (Ratio Vegetation Index) | RVI_max | No | ||
Annual mean of DVI (Difference Vegetation Index) | DVI_mean | No | ||
Annual maximum value of DVI | DVI_max | No | ||
Annual mean of SAVI (Soil-adjusted Vegetation Index) | SAVI_mean | No | ||
Annual maximum value of SAVI | SAVI_max | Yes | ||
Terrain | Slope | Slope | DEM http://www.gscloud.cn/ 19 January 2023 | Yes |
Aspect | Aspect | Yes | ||
Topographic Wetness Index | TWI | Yes | ||
Climate | Mean annual precipitation | MAP | http:/data.cma.cn/ 5 April 2023 | Yes |
Mean annual temperature | MAT | Yes | ||
Soil | Soil Texture | STT | http://www.geodata.cn/ 3 March 2023 | No |
Soil Bulk Density | SBD | Yes | ||
Cation Exchange Capacity | CEC | Yes | ||
Soil silt content | STC | No | ||
Soil sand content | SDC | Yes | ||
Soil clay content | SCC | Yes | ||
Soil Thickness | ST | Yes |
Model | Parameter | Value Range | Step Size | Value |
---|---|---|---|---|
DT | max_depth | 10–100 | 10 | 40 |
min_samples_split | 1–5 | 1 | 1 | |
min_samples_leaf | 1–5 | 1 | 1 | |
max_leaf_nodes | 1–5 | 1 | 2 | |
AdaBoost | n_estimators | 10–100 | 10 | 80 |
learning_rate | 0.1, 0.01, 0.001, 0.0001 | - | 0.01 | |
RF | n_estimators | 50–200 | 50 | 150 |
max_depth | 10–100 | 10 | 80 | |
min_samples_split | 1–5 | 1 | 2 | |
min_samples_leaf | 1–5 | 1 | 1 | |
max_leaf-nodes | 1–5 | 1 | 1 | |
SVR | kernal | Linear, Poly, RBF, Sigmoid | - | RBF |
gamma | 0.1, 0.01, 0.001, 0.0001 | - | 0.01 | |
C | 1–10 | 1 | 10 |
Model | Indicator | R2 | RMSE | MAE |
---|---|---|---|---|
DT | SOM | 0.48 | 3.84 g/kg | 2.25 g/kg |
Soil pH | 0.48 | 0.41 | 0.32 | |
AdaBoost | SOM | 0.63 | 2.69 g/kg | 1.62 g/kg |
Soil pH | 0.61 | 0.33 | 0.24 | |
RF | SOM | 0.65 | 2.63 g/kg | 1.57 g/kg |
Soil pH | 0.64 | 0.29 | 0.22 | |
SVR | SOM | 0.58 | 3.21 g/kg | 1.71 g/kg |
Soil pH | 0.53 | 0.38 | 0.27 |
Irrigation Grade | Evaluated Results | UA | PA | OA | |||||
---|---|---|---|---|---|---|---|---|---|
Fully Satisfied | Satisfied | Basically Satisfied | Not Satisfied | Total | |||||
Measured results | Fully satisfied | 376 | 50 | 32 | 20 | 478 | 0.79 | 0.90 | 0.75 |
Satisfied | 26 | 123 | 14 | 7 | 170 | 0.72 | 0.62 | ||
Basically satisfied | 9 | 16 | 112 | 32 | 169 | 0.66 | 0.60 | ||
Not Satisfied | 6 | 10 | 28 | 99 | 143 | 0.69 | 0.63 | ||
Total | 417 | 199 | 186 | 158 | 960 |
Index | Temporal Correlation with Statistical Yield (R2) | Spatial Correlation with Measured Yield (R2) |
---|---|---|
NDVI_Max | 0.51 | 0.56 |
NDVI_Mean | 0.62 | 0.43 |
EVI_Max | 0.50 | 0.55 |
EVI_Mean | 0.60 | 0.58 |
NPP | 0.45 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, D.; Sun, X.; Wang, C.; Zha, Y.; Yu, Q.; Yang, P. A Remote Sensing Approach to Estimating Cropland Sustainability in the Lateritic Red Soil Region of China. Remote Sens. 2024, 16, 1069. https://doi.org/10.3390/rs16061069
Duan D, Sun X, Wang C, Zha Y, Yu Q, Yang P. A Remote Sensing Approach to Estimating Cropland Sustainability in the Lateritic Red Soil Region of China. Remote Sensing. 2024; 16(6):1069. https://doi.org/10.3390/rs16061069
Chicago/Turabian StyleDuan, Dingding, Xiao Sun, Chenrui Wang, Yan Zha, Qiangyi Yu, and Peng Yang. 2024. "A Remote Sensing Approach to Estimating Cropland Sustainability in the Lateritic Red Soil Region of China" Remote Sensing 16, no. 6: 1069. https://doi.org/10.3390/rs16061069
APA StyleDuan, D., Sun, X., Wang, C., Zha, Y., Yu, Q., & Yang, P. (2024). A Remote Sensing Approach to Estimating Cropland Sustainability in the Lateritic Red Soil Region of China. Remote Sensing, 16(6), 1069. https://doi.org/10.3390/rs16061069