Vertical Profiles of Aerosols Induced by Dust, Smoke, and Fireworks in the Cold Region of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Potential Sources of Pollution
2.4. Statistical Analysis
3. Results
3.1. Variation in Aerosol Vertical Distribution
3.2. Variations in Meteorological Parameters and Air Pollutants
3.3. Typical Aerosol Pollution Scenarios
3.3.1. Firework Aerosols
Researcher | Study Area | Period | EC (0–500 m) | AQI | Uncertainty | Aerosol Types |
---|---|---|---|---|---|---|
Zhao et al., 2018 [37] | Shenyang | 31 March 2016 | 0.1–0.5 | 182 | None | Dust |
Zhao et al., 2018 [37] | Shenyang | 5 November 2016 | 0.5–1.1 | 259 | None | Biomass-burning |
Liu et al., 2017 [38] | Shenyang | 7 January 2017 | 0.3–1.1 | 250 | None | None |
Zhao et al., 2020 [39] | Siping | 12 January 2019 | 0.9–1.3 | 210 | None | None |
This study | Changchun | 12 February 2021 | 0.1–0.7 | 143 | 25–35% | Firework |
This study | Changchun | 15 March 2021 | 0.2–0.6 | 152 | 25–35% | Dust |
This study | Changchun | 9 April 2021 | 0.3–0.7 | 188 | 25–35% | Biomass-burning |
3.3.2. Dust Aerosols
3.3.3. Biomass-Burning Aerosols
4. Discussion
4.1. Seasonal Vertical Distribution of Aerosols
4.2. Typical Aerosol Pollution
4.3. Implication for Local Pollution Control
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Standard | PM2.5 (µg/m3) | PM10 (µg/m3) | SO2 (µg/m3) | CO (mg/m3) | NO2 (µg/m3) | O3 (8 h) (µg/m3) |
---|---|---|---|---|---|---|
Grade II | 75 | 150 | 150 | 4 | 80 | 160 |
References
- Prather, K.A.; Hatch, C.D.; Grassian, V.H. Analysis of Atmospheric Aerosols. Annu. Rev. Anal. Chem. 2008, 1, 485–514. [Google Scholar] [CrossRef] [PubMed]
- Burnett, R.T.; Pope, C.A.; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Shin, H.H.; Singh, G.; Hubbell, B.; Brauer, M.; et al. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure. Environ. Health Perspect. 2014, 122, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Menon, S. Current uncertainties inassessing aerosol effects on climate. Annu. Rev. Environ. Resour. 2004, 29, 1–30. [Google Scholar] [CrossRef]
- Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Lyapustin, A.; Broday, D.M.; Chatfield, R. Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 2019, 224, 12–28. [Google Scholar] [CrossRef]
- Chen, W.; Duanmu, L.; Qin, Y.; Yang, H.W.; Fu, J.; Lu, C.W.; Feng, W.; Guo, L. Lockdown-induced urban aerosol change over Changchun, China during COVID-19 outbreak with polarization LiDAR. Chin. Geogr. Sci. 2022, 32, 824–833. [Google Scholar] [CrossRef] [PubMed]
- She, L.; Mei, L.L.; Xue, Y.; Che, Y.H.; Guang, J. SAHARA: A Simplified Atmospheric Correction Algorithm for Chinese gaofen Data: 1. Aerosol Algorithm. Remote Sens. 2017, 9, 21. [Google Scholar] [CrossRef]
- Sorribas, M.; Andrews, E.; Ogren, J.A.; del Aguila, A.; Fraile, R.; Sheridan, P.; Yela, M. Climatological study for understanding the aerosol radiative effects at southwest Atlantic coast of Europe. Atmos. Environ. 2019, 205, 52–66. [Google Scholar] [CrossRef]
- Yu, H.B.; Chin, M.; Winker, D.M.; Omar, A.H.; Liu, Z.Y.; Kittaka, C.; Diehl, T. Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations. J. Geophys. Res. Atmos. 2010, 115, 19. [Google Scholar] [CrossRef]
- Amiridis, V.; Wandinger, U.; Marinou, E.; Giannakaki, E.; Tsekeri, A.; Basart, S.; Kazadzis, S.; Gkikas, A.; Taylor, M.; Baldasano, J.; et al. Optimizing CALIPSO Saharan dust retrievals. Atmos. Chem. Phys. 2013, 13, 12089–12106. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Dai, T.; Goto, D.; Schutgens, N.A.J.; Shi, G.Y.; Nakajima, T. Investigating the assimilation of CALIPSO global aerosol vertical observations using a four-dimensional ensemble Kalman filter. Atmos. Chem. Phys. 2019, 19, 13445–13467. [Google Scholar] [CrossRef]
- Li, J.W.; Han, Z.W. Aerosol vertical distribution over east China from RIEMS-Chem simulation in comparison with CALIPSO measurements. Atmos. Environ. 2016, 143, 177–189. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Xu, C.; An, Z. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmos. Environ. 2007, 41, 417–431. [Google Scholar] [CrossRef]
- Lai, Y.; Brimblecombe, P. Changes in Air Pollutants from Fireworks in Chinese Cities. Atmosphere 2022, 13, 1388. [Google Scholar] [CrossRef]
- Yao, W.; Zhao, Y.; Chen, R.; Wang, M.; Song, W.; Yu, D. Emissions of Toxic Substances from Biomass Burning: A Review of Methods and Technical Influencing Factors. Processes 2023, 11, 853. [Google Scholar] [CrossRef]
- Jiang, K.; Xing, R.; Luo, Z.; Huang, W.; Yi, F.; Men, Y.; Zhao, N.; Chang, Z.; Zhao, J.; Pan, B.; et al. Pollutant emissions from biomass burning: A review on emission characteristics, environmental impacts, and research perspectives. Particuology 2023, 85, 296–309. [Google Scholar] [CrossRef]
- Yang, T.; Gbaguidi, A.; Yan, P.Z.; Zhang, W.D.; Zhu, L.L.; Yao, X.F. Model elucidating the sources and formation mechanisms of severe haze pollution over Northeast mega-city cluster in China. Environ. Pollut. 2017, 230, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, L.; Liu, W.; Song, H. Fireworks regulation, air pollution, and public health: Evidence from China. Reg. Sci. Urban Econ. 2022, 92, 103722. [Google Scholar] [CrossRef]
- Tomlin, A.S. Air quality and climate impacts of biomass use as an energy source: A review. Energy Fuels 2021, 35, 14213–14240. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef]
- Yin, S.; Wang, X.F.; Zhang, X.R.; Zhang, Z.X.; Xiao, Y.; Tani, H. Exploring the effects of crop residue burning on local haze pollution in Northeast China using ground and satellite data. Atmos. Environ. 2019, 199, 189–201. [Google Scholar] [CrossRef]
- Li, L.L.; Wang, K.; Chen, W.W.; Zhao, Q.L.; Liu, L.J.; Liu, W.; Liu, Y.; Jiang, J.Q.; Liu, J.M.; Zhang, M.D. Atmospheric pollution of agriculture-oriented cities in Northeast China: A case in Suihua. J. Environ. Sci. 2020, 97, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, M.; Hu, Y.; Wang, H.; Xiong, Z.; Wu, W.; Liu, C.; Zhang, C.; Du, Y. Investigating the vertical distribution patterns of urban air pollution based on unmanned aerial vehicle gradient monitoring. Sustain. Cities Soc. 2022, 86, 104144. [Google Scholar] [CrossRef]
- Dickerson, R.R.; Li, C.; Li, Z.; Marufu, L.T.; Stehr, J.W.; McClure, B.; Krotkov, N.; Chen, H.; Wang, P.; Xia, X.; et al. Aircraft observations of dust and pollutants over northeast China: Insight into the meteorological mechanisms of transport. J. Geophys. Res. 2007, 112, D24S90. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, H.; Dong, Y.; Che, H.; Li, X.; Hong, Y.; Li, X.; Yang, H.; Liu, Y.; Wang, Y.; et al. Comparison of two air pollution episodes over Northeast China in winter 2016/17 using ground-based lidar. J. Meteorol. Res. 2018, 32, 313–323. [Google Scholar] [CrossRef]
- Zhao, H.; Gui, K.; Ma, Y.; Wang, Y.; Wang, Y.; Wang, H.; Zheng, Y.; Li, L.; Zhang, L.; Che, H.; et al. Seasonal evolution of aerosol loading and its vertical distribution in northeastern China from long-term satellite observations and model reanalysis. Atmos. Environ. 2023, 302, 119720. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Wang, Y.; Wei, W.; Zhang, Y.; Liu, N.; Hong, Y. Vertical Distribution of Particulate Matter and its Relationship with Planetary Boundary Layer Structure in Shenyang, Northeast China. Aerosol Air Qual. Res. 2019, 19, 2464–2476. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Ren, X.; Jiang, Q.; He, H.; Dickerson, R.R.; Lv, F. Vertical distributions of aerosol optical properties during the spring 2016 ARIAs airborne campaign in the North China Plain. Atmos. Chem. Phys. 2018, 18, 8995–9010. [Google Scholar] [CrossRef]
- Zhang, M.D.; Zhang, S.C.; Bao, Q.Y.; Yang, C.J.; Qin, Y.; Fu, J.; Chen, W.W. Temporal Variation and Source Analysis of Carbonaceous Aerosol in Industrial Cities of Northeast China during the Spring Festival: The Case of Changchun. Atmosphere 2020, 11, 18. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Optics 1984, 23, 652. [Google Scholar] [CrossRef]
- Han, Y.; Wu, Y.H.; Wang, T.J.; Zhuang, B.L.; Li, S.; Zhao, K. Impacts of elevated-aerosol-layer and aerosol type on the correlation of AOD and particulate matter with ground-based and satellite measurements in Nanjing, southeast China. Sci. Total Environ. 2015, 532, 195–207. [Google Scholar] [CrossRef]
- Sirois, A.; Bottenheim, J.W. Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. J. Geophys. Res. Atmos. 1995, 100, 2867–2881. [Google Scholar] [CrossRef]
- Han, Y.J.; Holsen, T.M.; Hopke, P.K. Estimation of source locations of total gaseous mercury measured in New York State using trajectory-based models. Atmos. Environ. 2007, 41, 6033–6047. [Google Scholar] [CrossRef]
- Xin, Y.J.; Wang, G.C.; Chen, L. Identification of Long-Range Transport Pathways and Potential Sources of PM10 in Tibetan Plateau Uplift Area: Case Study of Xining, China in 2014. Aerosol. Air Qual. Res. 2016, 16, 1044–1054. [Google Scholar] [CrossRef]
- GB 3095-2012Ambient Air Quality Standards of the People’s Republic of China; The Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2016. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf (accessed on 21 February 2021).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://iris.who.int/handle/10665/345329. (accessed on 21 February 2021).
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B Chem. Phys. Meteorol. 2009, 61, 165–179. [Google Scholar] [CrossRef]
- Zhao, H.; Che, H.; Wang, Y.; Dong, Y.; Ma, Y.; Li, X.; Hong, Y.; Yang, H.; Liu, Y.; Wang, Y.; et al. Aerosol vertical distribution and typical air pollution episodes over northeastern China during 2016 analyzed by ground-based lidar. Aerosol. Air Qual. Res. 2018, 18, 918–937. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, H.; Ma, Y.; Yang, H.; Wang, Y.; Wang, H.; Zhang, Y.; Zou, X.; Wang, H.; Wen, R.; et al. Characteristics of particulate matter and meteorological conditions of a typical air-pollution episode in Shenyang, northeastern China, in winter 2017. Atmos. Pollut. Res. 2021, 12, 316–327. [Google Scholar] [CrossRef]
- Zhao, H.; Che, H.; Zhang, L.; Gui, K.; Ma, Y.; Wang, Y.; Wang, H.; Zheng, Y.; Zhang, X. How aerosol transport from the North China plain contributes to air quality in northeast China. Sci. Total Environ. 2020, 738, 139555. [Google Scholar] [PubMed]
- Fan, W.Z.; Qin, K.; Xu, J.; Yuan, L.M.; Li, D.; Jin, Z.; Zhang, K.F. Aerosol vertical distribution and sources estimation at a site of the Yangtze River Delta region of China. Atmos. Res. 2019, 217, 128–136. [Google Scholar] [CrossRef]
- Tao, M.H.; Chen, L.F.; Li, R.; Wang, L.L.; Wang, J.; Wang, Z.F.; Tang, G.Q.; Tao, J.H. Spatial oscillation of the particle pollution in eastern China during winter: Implications for regional air quality and climate. Atmos. Environ. 2016, 144, 100–110. [Google Scholar] [CrossRef]
- Fu, J.; Song, S.T.; Guo, L.; Chen, W.W.; Wang, P.; Duanmu, L.J.; Shang, Y.J.; Shi, B.W.; He, L.Y. Interprovincial Joint Prevention and Control of Open Straw Burning in Northeast China: Implications for Atmospheric Environment Management. Remote Sens. 2022, 14, 17. [Google Scholar] [CrossRef]
- Miao, Y.C.; Liu, S.H. Linkages between aerosol pollution and planetary boundary layer structure in China. Sci. Total Environ. 2019, 650, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Singh, R.K.; Murari, V.; Singh, A.K.; Singh, R.S.; Banerjee, T. Fireworks induced particle pollution: A spatio-temporal analysis. Atmos. Res. 2016, 180, 78–91. [Google Scholar] [CrossRef]
- Joly, A.; Smargiassi, A.; Kosatsky, T.; Fournier, M.; Dabek-Zlotorzynska, E.; Celo, V.; Mathieu, D.; Servranckx, R.; D’Amours, R.; Malo, A.; et al. Characterisation of particulate exposure during fireworks displays. Atmos. Environ. 2010, 44, 4325–4329. [Google Scholar] [CrossRef]
- Kim, S.W.; Yoon, S.C.; Kim, J.; Kang, J.Y.; Sugimoto, N. Asian dust event observed in Seoul, Korea, during 29–31 May 2008: Analysis of transport and vertical distribution of dust particles from lidar and surface measurements. Sci. Total Environ. 2010, 408, 1707–1718. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.D.; Liu, C.; Xie, Z.Q.; Dong, Y.S.; Hu, Q.H.; Fan, G.Q.; Chen, Z.Y.; Zhang, T.S.; Duan, J.B.; Zhang, P.F.; et al. Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar. Sci. Total Environ. 2018, 628–629, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Zheng, Y.F.; Li, Z.Q.; Flynn, C.; Cribb, M. Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China. J. Geophys. Res. Atmos. 2012, 117, 16. [Google Scholar] [CrossRef]
- Sun, T.Z.; Che, H.Z.; Qi, B.; Wang, Y.Q.; Dong, Y.S.; Xia, X.G.; Wang, H.; Gui, K.; Zheng, Y.; Zhao, H.J.; et al. Characterization of vertical distribution and radiative forcing of ambient aerosol over the Yangtze River Delta during 2013–2015. Sci. Total Environ. 2019, 650, 1846–1857. [Google Scholar] [CrossRef] [PubMed]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Rogers, R.R.; Obland, M.D.; Butler, C.F.; Cook, A.L.; Harper, D.B.; Froyd, K.D. Aerosol classification using airborne High Spectral Resolution Lidar measurements—Methodology and examples. Atmos. Meas. Tech. 2012, 5, 73–98. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.Y.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.B.; Wang, T.; Gao, M.; Zhao, Y.H.; Zhang, Y.H. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Badarinath, K.V.S.; Kharol, S.K.; Sharma, A.R. Long-range transport of aerosols from agriculture crop residue burning in 517 Indo-Gangetic Plains-A study using LIDAR, ground measurements and satellite data. J. Atmos. Sol. Terr. Phys. 2009, 71, 112–120. [Google Scholar] [CrossRef]
- Jin, Y.N.; Andersson, H.; Zhang, S.Q. Air Pollution Control Policies in China: A Retrospective and Prospects. Int. J. Environ. Res. Public Health 2016, 13, 22. [Google Scholar] [CrossRef]
- Liu, C.; Gao, M.; Hu, Q.H.; Brasseur, G.P.; Carmichael, G.R. Stereoscopic Monitoring A Promising Strategy to Advance Diagnostic and Prediction of Air Pollution. Bull. Am. Meteorol. Soc. 2021, 102, E730–E737. [Google Scholar] [CrossRef]
- Colette, A.; Menut, L.; Haeffelin, M.; Morille, Y. Impact of the transport of aerosols from the free troposphere towards the boundary layer on the air quality in the Paris area. Atmos. Environ. 2008, 42, 390–402. [Google Scholar] [CrossRef]
Season | AOD1 1 | AOD2 2 | AOD3 3 | TAOD 4 | AOD1/ TAOD | AOD2/ TAOD | AOD3/ TAOD |
---|---|---|---|---|---|---|---|
Spring | 0.155 | 0.136 | 0.069 | 0.359 | 43.13% | 37.78% | 19.09% |
Summer | 0.169 | 0.141 | 0.058 | 0.368 | 45.83% | 38.42% | 15.75% |
Autumn | 0.117 | 0.078 | 0.042 | 0.237 | 49.36% | 32.86% | 17.77% |
Winter | 0.180 | 0.067 | 0.032 | 0.279 | 64.59% | 24.09% | 11.32% |
PM2.5 | PM10 | AOD1 | AOD2 | AOD3 | TAOD | PBLH | AT | RH | |
---|---|---|---|---|---|---|---|---|---|
PM2.5 | 1 | 0.736 | 0.277 | −0.169 | −0.245 | 0.032 * | −0.245 | −0.358 | −0.133 |
PM10 | - | 1 | 0.24 | −0.029 * | −0.1 * | 0.112 | −0.159 | −0.166 | −0.343 |
AOD1 | - | - | 1 | 0.387 | −0.048 * | 0.8 | −0.304 | −0.015 * | 0.264 |
AOD2 | - | - | - | 1 | 0.403 | 0.808 | 0.071 * | 0.306 | 0.241 |
AOD3 | - | - | - | - | 1 | 0.44 | 0.419 | 0.174 | 0.139 |
TAOD | - | - | - | - | -− | 1 | −0.041 * | 0.176 | 0.317 |
PBLH | - | - | - | - | - | - | 1 | 0.262 | 0.053 * |
AT | - | - | - | - | - | - | - | 1 | 0.144 |
RH | - | - | - | - | - | - | - | - | 1 |
Period | PM2.5 (GB/WHO) | PM10 (GB/WHO) | SO2 (GB/WHO) | NO2 (GB/WHO) | CO (GB/WHO) | O3 (GB/WHO) |
---|---|---|---|---|---|---|
Jan. 2021 | 6/31 | 1/20 | 0/0 | 1/27 | 0/0 | 0/0 |
Feb. 2021 | 6/28 | 1/16 | 0/0 | 0/15 | 0/0 | 0/2 |
Mar. 2021 | 4/29 | 4/25 | 0/0 | 0/25 | 0/0 | 0/4 |
Apr. 2021 | 4/28 | 2/28 | 0/0 | 0/22 | 0/0 | 1/14 |
May 2021 | 0/28 | 0/25 | 0/0 | 0/20 | 0/0 | 4/15 |
June 2021 | 0/11 | 0/6 | 0/0 | 0/19 | 0/0 | 2/14 |
July 2021 | 0/18 | 0/6 | 0/0 | 0/11 | 0/0 | 0/11 |
Aug. 2021 | 0/10 | 0/5 | 0/0 | 0/8 | 0/0 | 0/7 |
Sept. 2021 | 0/11 | 0/8 | 0/0 | 0/20 | 0/0 | 0/3 |
Oct. 2020 | 1/21 | 0/17 | 0/0 | 0/24 | 0/0 | 0/4 |
Nov. 2020 | 1/25 | 0/20 | 0/0 | 0/24 | 0/0 | 0/0 |
Dec. 2020 | 0/31 | 1/20 | 0/0 | 0/29 | 0/0 | 0/0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duanmu, L.; Chen, W.; Guo, L.; Yuan, Y.; Yang, H.; Fu, J.; Song, G.; Xia, Z. Vertical Profiles of Aerosols Induced by Dust, Smoke, and Fireworks in the Cold Region of Northeast China. Remote Sens. 2024, 16, 1098. https://doi.org/10.3390/rs16061098
Duanmu L, Chen W, Guo L, Yuan Y, Yang H, Fu J, Song G, Xia Z. Vertical Profiles of Aerosols Induced by Dust, Smoke, and Fireworks in the Cold Region of Northeast China. Remote Sensing. 2024; 16(6):1098. https://doi.org/10.3390/rs16061098
Chicago/Turabian StyleDuanmu, Lingjian, Weiwei Chen, Li Guo, Yuan Yuan, Hongwu Yang, Jing Fu, Guoqing Song, and Zixuan Xia. 2024. "Vertical Profiles of Aerosols Induced by Dust, Smoke, and Fireworks in the Cold Region of Northeast China" Remote Sensing 16, no. 6: 1098. https://doi.org/10.3390/rs16061098
APA StyleDuanmu, L., Chen, W., Guo, L., Yuan, Y., Yang, H., Fu, J., Song, G., & Xia, Z. (2024). Vertical Profiles of Aerosols Induced by Dust, Smoke, and Fireworks in the Cold Region of Northeast China. Remote Sensing, 16(6), 1098. https://doi.org/10.3390/rs16061098