Monitoring of the 2011 Super Algal Bloom in Indian River Lagoon, FL, USA, Using MERIS
Abstract
:1. Introduction
Method | Algorithm | R2 | RMSE (mg∙m−3) |
---|---|---|---|
Dall’Olmo and Gitelson [24] | 0.43 | 3.09 | |
Moses et al., 2009 [25] | 0.59 | 2.57 | |
Mishra 2011 [22] | 0.72 | 2.15 |
2. Methods
2.1. Study Area
2.2. MERIS Data Acquisition and Preprocessing
Date | Number of Samples | Date | Number of Samples | |
---|---|---|---|---|
11/12/2003 | 6 | 1/8/2009 | 2 | |
11/8/2004 | 1 | 3/3/2009 | 3 | |
9/13/2005 | 2 | 3/4/2010 | 4 | |
1/9/2006 | 5 | 4/7/2010 | 2 | |
1/12/2006 | 6 | 5/9/2011 | 4 | |
12/3/2007 | 7 | 1/4/2012 | 1 | |
12/3/2008 | 7 |
2.3. In-Situ Water Quality and Ancillary Data
3. Data Analysis
3.1. MERIS Chl a Index Calculation
3.2. MERIS Chl a Index Assessments with Field Data
3.3. 2011 Algal Bloom Mapping Using MERIS Chl a Index
4. Results and Discussion
4.1. Algorithm Assessment
4.1.1. MERIS Chl a Estimation Index Calibration
Algorithm | Chl a | Depth | Turbidity | TSS | |
---|---|---|---|---|---|
Moses | 0.433 * | 0.058 | 0.015 | 0.058 | |
NDCI | 0.508 * | 0.027 | 0.001 | 0.038 |
4.1.2. MERIS L1 Chl a Estimation Validation
Algorithm | N | % Error | RMSE (μg∙L−1) | R2 |
---|---|---|---|---|
NDCI | 40 | −62.9 ± 25% | 33.39 | 0.798 |
Moses | 40 | −118 ± 180% | 34.75 | 0.686 |
4.1.3. MERIS NDCI and Moses Accuracy
4.2. In-situ Water Quality Monitoring Data
Whole IRL | 1996–2010 | 2011 | 2012 |
Salinity | 25.82 ± 5 | 35.05 ± 4 | 32.74 ± 4 |
TSS | 13.28 ± 12 | 13.92 ± 9 | 6.42 ± 7 |
Turbidity | 4.85 ± 4.84 | 7.51 ± 4 | 4.13 ± 5 |
Chl a | 6.79 ± 10 | 23.7 ± 27 | 9.95 ± 9 |
ML | 1996–2010 | 2011 | 2012 |
Salinity | 33.13 ± 5 | 39.77 ± 2 | 39.69 ± 1 |
TSS | 22.96 ± 25 | 15.91 ± 6 | 20.86 ± 10 |
Turbidity | 5.75 ± 6 | 8.16 ± 4 | 13.34 ± 6 |
Chl a | 3.91 ± 3 | 26.22± 29 | 22.76 ± 14 |
BR | 1996–2010 | 2011 | 2012 |
Salinity | 22.46 ± 4 | 33.64 ± 3 | 31.86 ± 2 |
TSS | 14.32 ± 13 | 16.83 ± 9 | 5.91 ± 3 |
Turbidity | 4.65 ± 4 | 9.01 ± 3 | 3.51 ± 1 |
Chl a | 6.45 ± 6 | 41.49 ± 34 | 10.38 ± 8 |
N-NIRL | 1996–2010 | 2011 | 2012 |
Salinity | 28.09 ± 5 | 38.15 ± 2 | 37.37 ± 2 |
TSS | 14.21 ± 11 | 16.16 ± 7 | 8.51 ± 10 |
Turbidity | 3.73 ± 4 | 8.58 ± 4 | 6.71 ± 7 |
Chl a | 5.62 ± 7 | 43.83 ± 41 | 10.45 ± 13 |
C-NIRL | 1996–2010 | 2011 | 2012 |
Salinity | 22.8 ± 4 | 32.95 ± 2 | 31.81 ± 2 |
TSS | 14.21 ± 10 | 14.32 ± 6 | 4.11 ± 2 |
Turbidity | 4.54 ± 4 | 7.76 ± 3 | 2.72 ± 1 |
Chl a | 8.38 ± 13 | 29.91 ± 22 | 10.37 ± 5 |
SIRL | 1996–2010 | 2011 | 2012 |
Salinity | 22.61 ± 6 | 30.78 ± 4 | 29.35 ± 2 |
TSS | 12.39 ± 9 | 13.76 ± 7 | 3.1 ± 2 |
Turbidity | 3.71 ± 4 | 6.52 ± 3 | 1.44 ± 1 |
Chl a | 7.23 ± 8 | 15.06 ± 6 | 5.41 ± 3 |
4.3. 2011 Algal Bloom Time Series MERIS Maps
Date | ML | N-NIRL | C-NIRL | BR |
---|---|---|---|---|
1/12/2011 | 3.9 | 3.7 | 2.2 | 5.0 |
1/23/2011 | 3.5 | 3.4 | 2.0 | 3.5 |
2/13/2011 | 6.1 | 4.4 | 4.2 | 6.3 |
3/13/2011 | 3.7 | 1.9 | 1.9 | 3.0 |
4/1/2011 | 4.0 | 3.3 | 3.3 | 9.0 |
5/4/2011 | 4.6 | 3.9 | 6.7 | 12.3 |
5/31/2011 | 5.9 | 5.7 | 8.8 | 21.3 |
6/19/2011 | 8.4 | 7.2 | 11.1 | 20.9 |
6/22/2011 | 14.7 | 6.8 | 11.7 | 15.8 |
7/3/2011 | 8.5 | 8.5 | 14.3 | 27.2 |
7/19/2011 | 11.4 | 15.0 | 16.7 | 17.7 |
7/22/2011 | 16.2 | 11.4 | 19.7 | 19.9 |
8/2/2011 | 13.0 | 15.4 | 17.2 | 20.0 |
9/14/2011 | 16.6 | 19.5 | 16.9 | 20.6 |
10/3/2011 | 35.2 | 45.4 | 30.7 | 29.8 |
10/14/2011 | 28.8 | 31.1 | 23.9 | 26.6 |
10/23/2011 | 28.0 | 33.8 | 11.9 | 14.2 |
11/10/2011 | 12.8 | 13.0 | 13.1 | 13.2 |
12/8/2011 | 12.1 | 12.4 | 11.9 | 7.1 |
12/30/2011 | 13.1 | 14.4 | 4.3 | 1.9 |
1/21/2012 | 9.7 | 5.9 | 1.6 | 2.1 |
3/18/2012 | 10.7 | 1.7 | 3.9 | 10.5 |
4.4. Bloom Event Observed by MERIS Data and Ancillary Data
4.5. Assessment of NDCI for the 2011 IRL Algal Bloom Mapping
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zimba, P.V.; Gitelson, A. Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems: Model tuning and accuracy optimization. Aquaculture 2006, 256, 272–286. [Google Scholar] [CrossRef]
- Trees, C.C.; Clark, D.K.; Bidigare, R.R.; Ondrusek, M.E.; Mueller, J.L. Accessory pigments versus chlorophyll a concentrations within the euphotic zone: A ubiquitous relationship. Limnol. Oceanogr. 2000, 45, 1130–1143. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of variations in ocean color. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Tedetti, M.; Charrière, B.; Bricaud, A.; Para, J.; Raimbault, P.; Sempéré, R. Distribution of normalized water-leaving radiances at UV and visible wave bands in relation with chlorophyll a and colored detrital matter content in the southeast Pacific. J. Geophys. Res. 2010, 115, 2–10. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Merzlyak, M.N.; Lichtenthaler, H.K. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. J. Plant Physiol. 1996, 148, 501–508. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of intense plankton blooms using the MERIS optical imager on ENVISAT. Gayana 2004, 68, 246–251. [Google Scholar]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Miller, R.L.; Belz, M.; Castillo, C.D.; Trzaska, R. Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlength, liquid core waveguide system. Cont. Shelf Res. 2002, 22, 1301–1310. [Google Scholar] [CrossRef]
- Novo, E.M.L.M.; Steffen, C.A.; Zuccari, F.B.C. Results of a laboratory experiment relating spectral reflectance to total suspended solids. Remote Sens. Environ. 1991, 36, 67–72. [Google Scholar] [CrossRef]
- Bricaud, A.; Babin, M.; Morel, A.; Claustre, H. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. J. Geophys. Res. 1995, 100, 13321–13332. [Google Scholar] [CrossRef]
- Gilerson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef] [PubMed]
- Witte, W.G.; Whitlock, C.H.; Harriss, R.C.; Usry, J.W.; Poole, L.R.; Houghton, W.M.; Morris, W.D.; Gurganus, E.A. Influence of dissolved organic materials on turbid water optical properties and remote-sensing reflectance. J. Geophys. Res. 1982, 87, 441–446. [Google Scholar] [CrossRef]
- Tzortziou, M.; Herman, J.R.; Gallegos, C.L.; Neale, P.J.; Subramaniam, A.; Harding, L.W.; Ahmad, Z. Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure. Estuar. Coast. Shelf Sci. 2006, 68, 348–362. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote chlorophyll a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Bargain, A.; Robin, M.; Men, E.L.; Huete, A.; Barillé, L. Spectral response of the seagrass Zostera noltii with different sediment backgrounds. Aquat. Bot. 2011, 98, 45–56. [Google Scholar] [CrossRef]
- Hestir, E.L.; Khanna, S.; Andrew, M.E.; Santos, M.J.; Viers, J.H.; Greenberg, J.A.; Rajapakse, S.S.; Ustin, S.L. Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sens. Environ. 2008, 112, 4034–4047. [Google Scholar] [CrossRef]
- Williams, M.R.; Filoso, S.; Longstaff, B.J.; Dennison, W.C. Long-term trends of water quality and biotic metrics in Chesapeake Bay: 1986 to 2008. Estuar. Coast. 2010, 33, 1279–1299. [Google Scholar] [CrossRef]
- European Space Agency MERIS Program Homepage. Available online: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris (accessed on 9 January 2012).
- Kalogirou, V.; Perez, J.R.; Arino, O. A first analysis on the Culture-MERIS products. Remote Sens. Lett. 2012, 4, 211–218. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll a concentration in turbid productive waters. Remote Sens. Environ. 2011, 117, 394–406. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Goncalves, P. Global monitoring of plankton blooms using MERIS MCI. Int. J. Remote Sens. 2008, 29, 6209–6216. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: Modeling results. Appl. Opt. 2006, 45, 3577–3592. [Google Scholar] [CrossRef] [PubMed]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—Successes and challenges. Environ. Res. Lett. 2009, 44. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Saprygin, V.; Povazhnyi, V. Operational MERIS-based NIR-red algorithms for estimating chlorophyll a concentrations in coastal waters—The Azov Sea case study. Remote Sens. Environ. 2012, 121, 118–124. [Google Scholar] [CrossRef]
- Phlips, E.J.; Badylak, S.; Christman, M.; Wolny, J.; Brame, J.; Garland, J.; Hall, L.; Hart, J.; Landsberg, J.; Lasi, M. Scales of temporal and spatial variability in the distribution of harmful algae species in the Indian River Lagoon, Florida, USA. Harmful Algae 2011, 10, 277–290. [Google Scholar] [CrossRef]
- Steward, J.S.; Virnstein, R.W.; Morris, L.J.; Lowe, E.F. Setting seagrass depth, coverage, and light targets for the Indian River Lagoon system, Florida. Estuar. Coast. 2005, 28, 923–935. [Google Scholar] [CrossRef]
- Steward, J.S.; Virnstein, R.W.; Lasi, M.A.; Morris, L.J.; Miller, J.D.; Hall, L.M.; Tweedale, W.A. The impacts of the 2004 hurricanes on hydrology, water quality, and seagrass in the central Indian River Lagoon, Florida. Estuar. Coast. 2006, 29, 954–965. [Google Scholar] [CrossRef]
- St Johns River Water Management District SJRWMD 2012. Indian River Lagoon 2012 Superbloom Plan of Investigation. Available online: http://floridaswater.com/itsyourlagoon/initiative.html (accessed on 25 June 2012).
- Steward, J.S.; Green, W.C. Setting load limits for nutrients and suspended solids based upon seagrass depth-limit targets. Estuar. Coast. 2007, 30, 657–670. [Google Scholar] [CrossRef]
- Mikkelsen, P.M.; Mikkelsen, P.S.; Karlen, D.J. Molluscan biodiversity in the Indian River Lagoon, Florida. Bull. Mar. Sci. 1995, 571, 94–127. [Google Scholar]
- Raineault, N.A.; Arthur, C.T.; Miller, D.C. Mapping benthic habitats in Delaware Bay and the coastal Atlantic: Acoustic techniques provide greater coverage and high resolution in complex, shallow-water environments. Estuar. Coast. 2012, 35, 682–699. [Google Scholar] [CrossRef]
- Cerco, C.F.; Noel, M.R. Twenty‐one‐year simulation of chesapeake bay water quality using the CE‐QUAL‐ICM eutrophication model. J. Am. Water Resour. Assoc. 2013, 49, 1119–1133. [Google Scholar]
- St Johns River Water Management District SJRWMD 2012. GIS Data Download Table. Available online: http://floridaswater.com/gisdevelopment/docs/themes.html (accessed on 25 June 2012).
- United States Geological Survey USGS 2012. USGS Current Water Data for the Nation. Available online: http://waterdata.usgs.gov/nwis/rt (accessed on 25 June 2012).
- National Aeronautics and Space Administration NASA 2012. Ocean Color Web. Available online: http://oceancolor.gsfc.nasa.gov/cms/ (accessed on 25 June 2012).
- National Oceanic and Atmospheric Administration NOAA 2012. National Weather Service Weather Forecast Office Melbourne, FL. Available online: http://www.srh.noaa.gov/mlb/ (accessed on 25 June 2012).
- National Oceanic and Atmospheric Administration NOAA 2012. National Climatic Data Center. Available online: http://www.ncdc.noaa.gov/ (accessed on 25 June 2012).
- Phlips, E.J.; Badylak, S.; Lasi, M.; Chamberlain, R.; Green, W; Hall, L.; Hart, J.; Lockwood, J.; Miller, J.; Morris, L.; et al. From Red Tides to Green and Brown Tides: Bloom Dynamics in a Restricted Subtropical Lagoon under Shifting Climatic Conditions. Available online: http://link.springer.com/article/10.1007/s12237-014-9874-6?no-access=true (accessed on 6 December 2014).
- Phlips, E.J.; Badylak, S.; Grosskopf, T. Factors affecting the abundance of phytoplankton in a restricted subtropical lagoon, the Indian River Lagoon, Florida, USA. Estuar. Coast. Shelf Sci. 2002, 55, 385–402. [Google Scholar] [CrossRef]
- Phlips, E.J.; Badylak, S.; Christman, M.; Lasi, M. Climatic trends and temporal patterns of phytoplankton composition, abundance, and succession in the Indian River lagoon, Florida, USA. Estuar. Coast. 2010, 33, 498–512. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamerosky, A.; Cho, H.J.; Morris, L. Monitoring of the 2011 Super Algal Bloom in Indian River Lagoon, FL, USA, Using MERIS. Remote Sens. 2015, 7, 1441-1460. https://doi.org/10.3390/rs70201441
Kamerosky A, Cho HJ, Morris L. Monitoring of the 2011 Super Algal Bloom in Indian River Lagoon, FL, USA, Using MERIS. Remote Sensing. 2015; 7(2):1441-1460. https://doi.org/10.3390/rs70201441
Chicago/Turabian StyleKamerosky, Andrew, Hyun Jung Cho, and Lori Morris. 2015. "Monitoring of the 2011 Super Algal Bloom in Indian River Lagoon, FL, USA, Using MERIS" Remote Sensing 7, no. 2: 1441-1460. https://doi.org/10.3390/rs70201441
APA StyleKamerosky, A., Cho, H. J., & Morris, L. (2015). Monitoring of the 2011 Super Algal Bloom in Indian River Lagoon, FL, USA, Using MERIS. Remote Sensing, 7(2), 1441-1460. https://doi.org/10.3390/rs70201441