Decadal Scale Changes in Glacier Area in the Hohe Tauern National Park (Austria) Determined by Object-Based Image Analysis
Abstract
:1. Introduction
- (1)
- To semi-automatically assess the changes in glacier area in Hohe Tauern National Park in the Austrian Alps by using Object-Based Image Analysis (OBIA).
- (2)
- To assess the potential of using high resolution topographic data to detect debris-covered ice by using edge detection of the surface slope. Although debris-covered ice is not of a major concern in the Austrian Alps, other glacierized regions such as the Himalayas contain considerable amounts of debris-covered ice and, as such, any semi-automatic methods would be beneficial for estimating ice reserves and assessing glacier change.
2. Study Area and Data Used
Scene ID | Date | Sensor | Resolution (m) |
---|---|---|---|
LC81920272013247LGN00 | 4 September 2013 | Landsat 8 | 30 (15 pan-sharp) |
LT51920272003236MTI01 | 24 August 2003 | Landsat 5 | 30 |
LT51920271985234KIS00 | 22 August 1985 | Landsat 5 | 30 |
2006–2013 | LiDAR | 10 | |
SRTM1N47E012V3 | 11 February 2000 | SRTM | 30 |
Track 637 Frame 930 | 01 July 2007 | ALOS PALSAR | 16 m × 13 m, geo-coded to 1 arc-second (~30 m) |
Track 637 Frame 930 | 16 August 2007 | ALOS PALSAR | 16 m × 13 m, geo-coded to 1 arc-second (~30 m) |
3. Methods
Segmentation Level | Scale Parameter | Shape | Compactness | Bands Used | Purpose |
---|---|---|---|---|---|
1 | 3 (5 *) | 0.3 | 0.6 | Blue, Green, NIR, Red, Slope, SWIR 1, SWIR 2, Thermal | Input for level 2 |
2 | 5 (8 *) | 0.8 | 0.6 | Blue, Green, NIR, Red, Slope, SWIR 1, SWIR 2, Thermal | Classifying clean Ice |
2B | Maximum spectral difference = 10 | n/a | n/a | NIR | Classifying transient snowline |
3 | 10 (12 *) | 0.25 | 0.5 | NIR, Red, Slope, NDVI, canny edge detection (slope) ** | Classifying debris covered Ice |
3.1. Clean Ice and Transient Snowline (TSL)
- The Normalized Difference Snow Index (NDSI) with a threshold of ≥−0.05–0.1 (after [43])
- The Normalized Difference Water Index (NDWI) with a threshold <0.15–0.4. It has been highlighted by others that turbid proglacial meltwater can be misclassified as clean ice (for example [4]), and the NDWI was therefore used to exclude proglacial lakes.
- Constraints of altitude of ≥2000 m and an upper threshold for the slope between 40° and 60°.
- The classified image objects that bordered each other were then merged and clean ice smaller than 0.02 km2 was removed from the classification.
3.2. Debris-Covered Ice
- −0.05–0 ≤ NDVI values ≤0.01–0.03. The NDVI has been used by others to take advantage of the fact that debris-covered ice typically has less vegetation than the surrounding non-glacierized terrain (for example [24]).
- Red channel ≤59 (in the case of Landsat 8, 11000 was used). This was found to be useful in excluding some paraglacial slopes.
- An upper threshold of the slope between 12° and 20°. Surface slope has been extensively used to delineate debris-covered ice, with a threshold of 20° being used previously in the European Alps (for example, see [18])
- Thermal band ≤12 °C. The thermal signature has often been used to differentiate debris-covered ice (for example, see [17]). The strength of the thermal signature is, however, highly dependent on the thickness and distribution of the glacier debris [44] and care should be taken to not overly rely on the thermal signature. For this reason it was an advantage to include the thermal band as a fuzzy membership function. That way objects that met all other criteria yet did not have a distinct thermal signature could still be considered debris-covered ice.
- Normalized Difference Water Index (NDWI) ≥−0.03. A threshold in the NDWI was included to exclude marginal glacial lakes from the classification.
3.3. Post-Processing
3.4. Manual Delineation and Accuracy Assessment
- User’s accuracy—This is an error of commission and shows the percentage of the final classification that was a glacier.
- Producer’s accuracy—This is an error of omission and describes the percentage of actual glacier area that was successfully classified.
- Overall accuracy—This considers both the user’s accuracy and the producer’s accuracy and shows the percentage of points that were correctly classified.
- Kappa coefficient—This is a measure of agreement between the classifications and the ground truth pixels, and of the classification not being due to random chance [47].
4. Results of Glacier Mapping
4.1. Decadal-Scale Changes in Glacier Area
4.2. Change in Transient Snowline Elevation (TSL)
4.3. Accuracy Assessment
User’s Accuracy | Producer’s Accuracy | Overall Accuracy | Kappa |
---|---|---|---|
94.1 | 81.6 | 0.98 | 0.9 |
5. Discussion
5.1. Area Loss Compared with Other Areas in the European Alps
5.2. Use of OBIA for Glacier Mapping
5.3. Topographic Data for Debris-Covered Ice
6. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zemp, M.; Paul, F.; Hoelze, M.; Haeberli, W. Glacier fluctuations in the European Alps, 1850–2000. Darkening Peaks Glacier Retreat Sci. Soc. 2008. [Google Scholar] [CrossRef]
- Fischer, A. Glaciers and climate change: Interpretation of 50 years of direct mass balance of Hintereisferner. Glob. Planet Chang. 2010, 71, 13–26. [Google Scholar] [CrossRef]
- Fischer, M.; Huss, M.; Barboux, C.; Hoelzle, M. The new Swiss Glacier Inventory SGI2010: Relevance of using high-resolution source data in areas dominated by very small glaciers. Arct. Antarct Alp. Res. 2014, 46, 933–945. [Google Scholar] [CrossRef]
- Paul, F.; Frey, H.; le Bris, R. A new glacier inventory for the European Alps from Landsat TM scenes of 2003: Challenges and results. Ann. Glaciol. 2011, 52, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Koboltschnig, G.R.; Schöner, W. The relevance of glacier melt in the water cycle of the Alps: The example of Austria. Hydrol. Earth Syst. Sci. 2011, 15, 2039–2048. [Google Scholar] [CrossRef]
- Schaefli, B.; Hingray, B.; Musy, A. Climate change and hydropower production in the Swiss Alps: Quantification of potential impacts and related modelling uncertainties. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 1191–1205. [Google Scholar] [CrossRef]
- Chiarle, M.; Iannotti, S.; Mortara, G.; Deline, P. Recent debris flow occurrences associated with glaciers in the Alps. Glob. Planet Chang. 2007, 56, 123–136. [Google Scholar] [CrossRef]
- Abermann, J.; Kuhn, M.; Fischer, A. Climatic controls of glacier distribution and glacier changes in Austria. Ann. Glaciol. 2011, 52, 83–90. [Google Scholar] [CrossRef]
- Lambrecht, A.; Kuhn, M. Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann. Glaciol. 2007, 46, 177–184. [Google Scholar] [CrossRef]
- Paul, F.; Haeberli, W. Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Vincent, C. Relative contribution of surface mass-balance and ice-flux changes to the accelerated thinning of Mer de Glace, French Alps, over 1979–2008. J. Glaciol. 2012, 58, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Huggel, C.; Paul, F.; Wessels, R.; Raup, B.; Kieffer, H.; Kargel, J. Glacier Monitoring from ASTER Imagery: Accuracy and Applications. In Proceedings of the EARSeL-LISSIG-Workshop Observing Our Cryosphere from Space, Bern, Switzerland, 11–13 March 2002; pp. 43–53.
- Gardent, M.; Rabatel, A.; Dedieu, J.-P.; Deline, P. Multitemporal glacier inventory of the French Alps from the late 1960s to the late 2000s. Glob. Planet Chang. 2014, 120, 24–37. [Google Scholar] [CrossRef]
- Carturan, L.; Filippi, R.; Seppi, R.; Gabrielli, P.; Notarnicola, C.; Bertoldi, L.; Paul, F.; Rastner, P.; Cazorzi, F.; Dinale, R.; et al. Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): Controls and imbalance of the remaining glaciers. Cryosphere 2013, 7, 1339–1359. [Google Scholar] [CrossRef]
- Mathieu, R.; Chinn, T.; Fitzharris, B. Detecting the equilibrium-line altitudes of New Zealand glaciers using ASTER satellite images. N. Z. J. Geol. Geophys. 2009, 52, 209–222. [Google Scholar] [CrossRef]
- Chinn, T.J.; Heydenrych, C.; Salinger, M.J. Use of the ELA as a practical method of monitoring glacier response to climate in New Zealand’s Southern Alps. J. Glaciol. 2005, 51, 85–95. [Google Scholar] [CrossRef]
- Taschner, S.; Ranzi, R. Comparing the opportunities of Landsat-TM and Aster data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project. In Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1044–1046.
- Paul, F.; Huggel, C.; Kaab, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 2004, 89, 510–518. [Google Scholar] [CrossRef]
- Frey, H.; Paul, F.; Strozzi, T. Compilation of a glacier inventory for the western Himalayas from satellite data: Methods, challenges, and results. Remote Sens. Environ. 2012, 124, 832–843. [Google Scholar] [CrossRef] [Green Version]
- Robson, B.A.; Nuth, C.; Dahl, S.O.; Hölbling, D.; Strozzi, T.; Nielsen, P.R. Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sens. Environ. 2015, 170, 372–387. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; van der Meer, F.; van der Werff, H.; van Coillie, F. Geographic object-based image analysis-towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Rastner, P.; Bolch, T.; Notarnicola, C.; Paul, F. A Comparison of Pixel- and Object-Based Glacier Classification With Optical Satellite Images. IEEE J. STARS 2014, 7, 853–862. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F.; Bajracharya, O.R.; Baidya, S. Glacier Status in Nepal and Decadal Change from 1980 to 2010 Based on Landsat Data; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2014. [Google Scholar]
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F. The status and decadal change of glaciers in Bhutan from the 1980s to 2010 based on satellite data. Ann. Glaciol. 2014, 55, 159–166. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Shrestha, B. The Status of Glaciers in the Hindu Kush-Himalayan Region; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2011. [Google Scholar]
- Eisank, C.; Drăguţ, L.; Götz, J.; Blaschke, T. Developing a semantic model of glacial landforms for object-based terrain classification—The example of glacial cirques. GEOBIA 2010, XXXVIII-4/C7, 1682–1777. [Google Scholar]
- Paul, F.; Arnaud, Y.; Ranzi, R.; Rott, H. European Alps. In Global Land Ice Measurements from Space; Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B.H., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2014; pp. 439–463. [Google Scholar]
- Carinthia Regional Government. Digitales Geländemodell (10 m) Kärnten. Available online: http://data.ktn.gv.at/package/digitales-gelaendemodell-10m-kaernten/ (accessed on 14 October 2015).
- Tirol Regional Government. Digitales Geländemodell Tirol. Available online: https://www.tirol.gv.at/data/datenkatalog/geographie-und-planung/digitales-gelaendemodell-tirol/ (accessed on 28 March 2015).
- Salzburg Regional Goverment. Status Laserscan Befliegung im Bundesland Salzburg. Available online: http://www.salzburg.gv.at/als-status-jahr_2014_09_05.pdf (accessed on 28 March 2015).
- Abermann, J.; Lambrecht, A.; Fischer, A.; Kuhn, M. Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997–2006). Cryosphere Discuss. 2009, 3, 415–441. [Google Scholar] [CrossRef]
- Schicker, I. Changes in Area of Stubai Glaciers analysed by means of Satellite Data for the GLIMS Project; University of Innsbruck: Innsbruck, Austria, 2006. [Google Scholar]
- Van Zyl, J.J. The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography. Acta Astronaut. 2001, 48, 559–565. [Google Scholar] [CrossRef]
- Kellerer-Pirklbauer, A. The Supraglacial Debris System at the Pasterze Glacier, Austria: Spatial Distribution, Characteristics and Transport of Debris. Z. Geomorphol. Suppl. Issues 2008, 52, 3–25. [Google Scholar] [CrossRef]
- Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—A review. Sci. Total Environ. 2014, 493, 1138–1151. [Google Scholar] [CrossRef] [PubMed]
- Auer, I.; Bohm, R.; Jurkovic, A.; Lipa, W.; Orlik, A.; Potzmann, R.; Schoner, W.; Ungersbock, M.; Matulla, C.; Briffa, K. HISTALP-historical instrumental climatological surface time series of the Greater Alpine Region. Int. J. Climatol. 2007, 27, 17–46. [Google Scholar] [CrossRef]
- Behm, M.; Raffeiner, G.; Schöner, W. Climate change and possible impacts on alpinism: A case study on the Nationalpark Hohe Tauern. In Proceedings of the 3rd Symposium of the Hohe Tauern National Park for Research in Protected Areas, Kaprun, Austria, 15–17 September 2005; pp. 21–24.
- Schrott, L.; Otto, J.-C.; Keller, F. Modelling alpine permafrost distribution in the Hohe Tauern region, Austria. Austrian J. Earth Sci. 2012, 105, 169–183. [Google Scholar]
- Dragut, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. Isprs J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Trimble. eCognition Developer Reference Book 9.0; Trimble: Munich, Germany, 2014. [Google Scholar]
- Racoviteanu, A.E.; Paul, F.; Raup, B.; Khalsa, S.J.S.; Armstrong, R. Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann. Glaciol. 2009, 50, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Bolch, T.; Casey, K.; Heid, T.; Kargel, J.; Leonard, G.; Paul, F.; Raup, B. Glacier Mapping and Monitoring Using Multispectral Data. In Global Land Ice Measurements from Space; Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B.H., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2014; pp. 75–112. [Google Scholar]
- Silverio, W.; Jaquet, J.-M. Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens. Environ. 2005, 95, 342–350. [Google Scholar] [CrossRef]
- Mihalcea, C.; Brock, B.W.; Diolaiuti, G.; D’Agata, C.; Citterio, M.; Kirkbride, M.P.; Cutler, M.E.J.; Smiraglia, C. Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy). Cold Reg. Sci. Technol. 2008, 52, 341–354. [Google Scholar] [CrossRef]
- Nuth, C.; Kohler, J.; König, M.; von Deschwanden, A.; Hagen, J.O.; Kääb, A.; Moholdt, G.; Pettersson, R. Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere 2013, 7, 1603–1621. [Google Scholar] [CrossRef]
- Beck, M.W.; Vondracek, B.; Hatch, L.K.; Vinje, J. Semi-automated analysis of high-resolution aerial images to quantify docks in glacial lakes. ISPRS J. Photogramm. Remote Sens. 2013, 81, 60–69. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Bayr, K.J.; Hall, D.K.; Kovalick, W.M. Observations on glaciers in the eastern Austrian Alps using satellite data. Int. J. Remote Sens. 1994, 15, 1733–1742. [Google Scholar] [CrossRef]
- Patzelt, G. The period of glacier advances in the Alps, 1965 to 1980. Z. Gletsch. Glazialgeol. 1985, 21, 403–407. [Google Scholar]
- Paul, F.; Kaab, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. Rapid disintegration of Alpine glaciers observed with satellite data. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Machguth, H.; Kääb, A. On the impact of glacier albedo under conditions of extreme glacier melt: The summer of 2003 in the Alps. EARSeL eProc. 2005, 4, 139–149. [Google Scholar]
- De Bono, A.; Peduzzi, P.; Kluser, S.; Giuliani, G. Impacts of Summer 2003 Heat Wave in Europe. Available online: http://www.unisdr.org/files/1145_ewheatwave.en.pdf (accessed on 14 October 2015).
- Avian, M.; Kellerer-Pirklbauer, A.; Proske, H.; Wack, R.; Bauer, A. Assessment of Landscape Changes using High Resolution LiDAR data: The Proglacial Area of Pasterze Glacier and the DGSD of Zintlwald as Recent Examples in the Eastern Alps. Available online: https://www.researchgate.net/profile/Michael_Avian/publication/228954263_Assessment_of_Landscape_Changes_using_High_Resolution_LiDAR_data_The_Proglacial_Area_of_Pasterze_Glacier_and_the_DGSD_of_Zintlwald_as_Recent_/links/09e415114f5c646a66000000.pdf (accessed on 14 October 2015).
- Andreassen, L.; Paul, F.; Kääb, A.; Hausberg, J. Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s. Cryosphere 2008, 2, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Kamp, U. Glacier mapping in high mountains using DEMs, Landsat and ASTER data. Grazer Schr. Geogr. Raumforsch. 2006, 41, 37–48. [Google Scholar]
- Paul, F.; Bolch, T.; Kaab, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Bris, R.L.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef]
- Pelto, M. Utility of late summer transient snowline migration rate on Taku Glacier, Alaska. Cryosphere 2011, 5, 1127–1133. [Google Scholar] [CrossRef]
- Klein, A.G.; Isacks, B.L. Spectral mixture analysis of Landsat thematic mapper images applied to the detection of the transient snowline on tropical Andean glaciers. Glob. Planet Chang. 1999, 22, 139–154. [Google Scholar] [CrossRef]
- Evans, I.S. Local aspect asymmetry of mountain glaciation: A global survey of consistency of favoured directions for glacier numbers and altitudes. Geomorphology 2006, 73, 166–184. [Google Scholar] [CrossRef]
- Chinn, T. Glacier fluctuations in the Southern Alps of New Zealand determined from snowline elevations. Arct. Alp. Res. 1995, 187–198. [Google Scholar] [CrossRef]
- Rabatel, A.; Dedieu, J.-P.; Thibert, E.; Letréguilly, A.; Vincent, C. 25 years (1981–2005) of equilibrium-line altitude and mass-balance reconstruction on Glacier Blanc, French Alps, using remote-sensing methods and meteorological data. J. Glaciol. 2008, 54, 307–314. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Joshi, P.K.; Snehmani; Singh, M.K.; Sam, L.; Gupta, R.D. Mapping debris-covered glaciers and identifying factors affecting the accuracy. Cold Reg. Sci. Technol. 2014, 106–107, 161–174. [Google Scholar] [CrossRef]
- Alifu, H.; Tateishi, R.; Johnson, B. A new band ratio technique for mapping debris-covered glaciers using Landsat imagery and a digital elevation model. Int. J. Remote Sens. 2015, 36, 2063–2075. [Google Scholar] [CrossRef]
- Quincey, D.J.; Luckman, A.; Benn, D. Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking. J. Glaciol. 2009, 55, 596–606. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Smith, T.; Bookhagen, B.; Cannon, F. Improving semi-automated glacier mapping with a multi-method approach: Applications in central Asia. Cryosphere 2015, 9, 1747–1759. [Google Scholar] [CrossRef]
- Shukla, A.; Arora, M.K.; Gupta, R.P. Synergistic approach for mapping debris-covered glaciers using optical-thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens. Environ. 2010, 114, 1378–1387. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Martone, M.; Bräutigam, B.; Rizzoli, P.; Gonzalez, C.; Bachmann, M.; Krieger, G. Coherence evaluation of TanDEM-X interferometric data. ISPRS J. Photogramm. Remote Sens. 2012, 73, 21–29. [Google Scholar] [CrossRef]
- Hölbling, D.; Friedl, B.; Eisank, C.; Tsai, T.-T. An object-based method for mapping landslides on various optical satellite imagery-transferability and applicability across spatial resolutions. In Proceedings of the RSPSoc Annual Conference, Aberystwyth, UK, 2–5 September 2014; pp. 2–5.
- Torres-Sánchez, J.; López-Granados, F.; Peña, J.M. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 2015, 114, 43–52. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robson, B.A.; Hölbling, D.; Nuth, C.; Strozzi, T.; Dahl, S.O. Decadal Scale Changes in Glacier Area in the Hohe Tauern National Park (Austria) Determined by Object-Based Image Analysis. Remote Sens. 2016, 8, 67. https://doi.org/10.3390/rs8010067
Robson BA, Hölbling D, Nuth C, Strozzi T, Dahl SO. Decadal Scale Changes in Glacier Area in the Hohe Tauern National Park (Austria) Determined by Object-Based Image Analysis. Remote Sensing. 2016; 8(1):67. https://doi.org/10.3390/rs8010067
Chicago/Turabian StyleRobson, Benjamin Aubrey, Daniel Hölbling, Christopher Nuth, Tazio Strozzi, and Svein Olaf Dahl. 2016. "Decadal Scale Changes in Glacier Area in the Hohe Tauern National Park (Austria) Determined by Object-Based Image Analysis" Remote Sensing 8, no. 1: 67. https://doi.org/10.3390/rs8010067
APA StyleRobson, B. A., Hölbling, D., Nuth, C., Strozzi, T., & Dahl, S. O. (2016). Decadal Scale Changes in Glacier Area in the Hohe Tauern National Park (Austria) Determined by Object-Based Image Analysis. Remote Sensing, 8(1), 67. https://doi.org/10.3390/rs8010067