Multispectral and Texture Feature Application in Image-Object Analysis of Summer Vegetation in Eastern Tajikistan Pamirs
Abstract
:1. Introduction
2. Study Area
3. Datasets and Methods
3.1. Field Data and Class Selection
3.2. Landsat Data
3.3. Image Preprocessing
3.4. Predictor Variables
No. | Variables | Data Sources |
---|---|---|
1 | Normalized Difference Vegetation Index (NDVI) | Landsat 8 |
2 | Digital Elevation Model (DEM) | Shuttle Radar Topography Mission (SRTM) |
3 | Modified Soil-adjusted Vegetation Index (MSAVI) | Landsat 8 |
4 | Band 2 Blue (480 nm) | Landsat 8 |
5 | Band 3 Green (560 nm) | Landsat 8 |
6 | Band 4 Red (660 nm) | Landsat 8 |
7 | Band 5 NIR (870 nm) | Landsat 8 |
8 | Band 6 SWIR 1 (1610 nm) | Landsat 8 |
9 | Band 7 SWIR 2 (2200 nm) | Landsat 8 |
10 | Slope | DEM |
11 | Aspect | DEM |
12 | MDI | Landsat 8 |
3.5. Image Segmentation
Class | Set 1 (with MDI) | Set 2 (without MDI) | ||
---|---|---|---|---|
Area (ha) | Share (%) | Area (ha) | Share (%) | |
Dense Vegetation | 3902.03 | 1.62 | 2697.12 | 1.12 |
Medium Dense Vegetation | 11676.41 | 4.86 | 6633.74 | 2.76 |
Sparse Vegetation | 20121.37 | 8.37 | 9452.93 | 3.93 |
Barren Land | 204208.17 | 84.96 | 220951.70 | 91.93 |
Water Bodies | 446.11 | 0.19 | 618.60 | 0.26 |
Total | 240354.09 | 100.00 | 240354.09 | 100.00 |
3.6. Random Forest Classifier
3.7. Classification Assessment
4. Results
Set of Variables | Set 1 (with MDI) | Set 2 (without MDI) | ||||||
---|---|---|---|---|---|---|---|---|
Class | PA (%) | UA (%) | OA (%) | Kappa Statistics | PA (%) | UA (%) | OA (%) | Kappa Statistics |
2014 Landsat Image | ||||||||
Dense Vegetation | 95.9 | 94.7 | 92.1 | 0.89 | 93.4 | 91.2 | 84.0 | 0.79 |
Medium Dense Vegetation | 86.3 | 88.0 | 75.9 | 79.0 | ||||
Sparse Vegetation | 83.2 | 89.0 | 68.5 | 76.0 | ||||
Barren Land | 95.8 | 91.3 | 86.9 | 79.3 | ||||
Water Bodies | 100 | 100 | 96.1 | 100 |
5. Discussion
5.1. Classification Accuracy
5.2. Contribution of Predictor Variables
5.2.1. Importance of Spectral Variables
5.2.2. Importance of Topographic Variables
5.2.3. Importance of Texture Features
5.2.4. Importance of MDI
5.2.5. Importance of Scale
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blaschke, T. Object-based contextual image classification built on image segmentation. In Proceedings of the 2003 IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Greenbelt, MD, USA, 27–28 October 2003; pp. 113–119.
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Manavalan, P.; Sathyanath, P.; Rajegowda, G.L. Digital image analysis techniques to estimate waterspread for capacity evaluations of reservoirs. Photogramm. Eng. Remote Sens. 1993, 59, 1389–1395. [Google Scholar]
- Brady, A.; Shaikh, M.; King, A.; Sharma, P. Remote sensing and the Great Cumbung Swamp. Wetl. Aust. 1999, 7, 596–606. [Google Scholar]
- Nath, R.K.; Deb, S.K. Water-body area extraction from high resolution satellite images—An introduction, review, and comparison. Int. J. Image Process. 2010, 3, 353–372. [Google Scholar]
- Forster, B. Some urban measurements from Landsat data. Photogramm. Eng. Remote Sens. 1983, 49, 1293–1707. [Google Scholar]
- Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665. [Google Scholar] [CrossRef]
- Dymond, C.C.; Mladenoff, D.J.; Radeloff, V.C. Phenological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sens. Environ. 2002, 80, 460–472. [Google Scholar] [CrossRef]
- Mehner, H.; Cutler, M.; Fairbairn, D.; Thompson, G. Remote sensing of upland vegetation: The potential of high spatial resolution satellite sensors. Glob. Ecol. Biogeogr. 2004, 13, 359–369. [Google Scholar] [CrossRef]
- Gong, P.; Howarth, P. Performance analyses of probabilistic relaxation methods for land-cover classification. Remote Sens. Environ. 1989, 30, 33–42. [Google Scholar] [CrossRef]
- Csathó, B.; Schenk, T.; Lee, D.C.; Filin, S. Inclusion of multispectral data into object recognition. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 1999, 32, 53–61. [Google Scholar]
- Wang, Z.; Wei, W.; Zhao, S.; Chen, X. Object-oriented classification and application in land use classification using SPOT-5 PAN imagery. In Proceedings of the IEEE International, Geoscience and Remote Sensing Symposium, IGARSS ’04, Anchorage, AK, USA, 20–24 September 2004; pp. 3158–3160.
- Blundell, J.S.; Opitz, D.W. Object recognition and feature extraction from imagery: The Feature Analyst approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, C42. [Google Scholar]
- Heumann, B.W. An object-based classification of mangroves using a hybrid decision tree—Support Vector machine approach. Remote Sens. 2011, 3, 2440–2460. [Google Scholar] [CrossRef]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chang, N.B.; Chen, C.R.; Chang, L.Y.; Thanh, B.X. Mangrove mapping and change detection in Ca Mau Peninsula, Vietnam, using Landsat data and object-based image analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 503–510. [Google Scholar] [CrossRef]
- Blaschke, T.; Strobl, J. What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. GeoBIT/GIS 2001, 14, 12–17. [Google Scholar]
- Franklin, S.E.; Wulder, M.A.; Gerylo, G.R. Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia. Int. J. Remote Sens. 2001, 22, 2627–2632. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Wang, J. Urban built-up area extraction from Landsat TM/ETM+ images using spectral information and multivariate texture. Remote Sens. 2014, 6, 7339–7359. [Google Scholar] [CrossRef]
- Coburn, C.A.; Roberts, A.C.B. A multiscale texture analysis procedure for improved forest stand classification. Int. J. Remote Sens. 2004, 25, 4287–4308. [Google Scholar] [CrossRef]
- Agüera, F.; Aguilar, F.J.; Aguilar, M.A. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses. ISPRS J. Photogramm. Remote Sens. 2008, 63, 635–646. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Porto, S.M.C.; Cascone, G. Accuracy of crop-shelter thematic maps: A case study of maps obtained by spectral and textural classification of high-resolution satellite images. J. Food Agric. Environ. 2012, 10, 1071–1074. [Google Scholar]
- Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image texture as a remotely sensed measure of vegetation structure. Remote Sens. Environ. 2012, 121, 516–526. [Google Scholar] [CrossRef]
- St-Louis, V.; Pidgeon, A.M.; Clayton, M.K.; Locke, B.A.; Bash, D.; Radeloff, V.C. Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico. Ecography 2009, 32, 468–480. [Google Scholar] [CrossRef]
- St-Louis, V.; Pidgeon, A.M.; Radeloff, V.C.; Hawbaker, T.J.; Clayton, M.K. High-resolution image texture as a predictor of bird species richness. Remote Sens. Environ. 2006, 105, 299–312. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Ciocca, G.; Corchs, S.; Gasparini, F. Complexity Perception of Texture Images. In New Trends in Image Analysis and Processing—ICIAP 2015 Workshops; Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C., Eds.; Springer International Publishing: New York, NY, USA, 2015; pp. 119–126. [Google Scholar]
- Stefanov, W.L.; Ramsey, M.S.; Christensen, P.R. Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers. Remote Sens. Environ. 2001, 77, 173–185. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. A robust built-up area presence index by anisotropic rotation-invariant textural measure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 180–192. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A. Improved textural built-up presence index for automatic recognition of human settlements in arid regions with scattered vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 16–26. [Google Scholar] [CrossRef]
- Wentz, E.A.; Stefanov, W.L.; Gries, C.; Hope, D. Land use and land cover mapping from diverse data sources for an arid urban environments. Comput. Environ. Urban Syst. 2006, 30, 320–346. [Google Scholar] [CrossRef]
- Gao, T.; Zhu, J.; Zheng, X.; Shang, G.; Huang, L.; Wu, S. Mapping spatial distribution of larch plantations from multi-seasonal Landsat-8 OLI imagery and multi-scale textures using Random Forests. Remote Sens. 2015, 7, 1702–1720. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Hu, L.; Zhao, Y.; Huang, H.; Gong, P. Seasonal land cover dynamics in Beijing derived from Landsat 8 data using a spatio-temporal contextual approach. Remote Sens. 2015, 7, 865–881. [Google Scholar] [CrossRef]
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Salas, E.A.L.; Henebry, G.M. Separability of maize and soybean in the spectral regions of chlorophyll and carotenoids using the Moment Distance Index. Isr. J. Plant Sci. 2012, 60, 65–76. [Google Scholar] [CrossRef]
- Salas, E.A.L.; Henebry, G.M. A new approach for the analysis of hyperspectral data: Theory and sensitivity analysis of the Moment Distance Method. Remote Sens. 2014, 6, 20–41. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic Programming, 2nd ed.; Dover Publications: Mineola, NY, USA, 2003. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Yin, P.; Criminisi, A.; Winn, J.; Essa, I. Tree-based classifiers for bilayer video segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR’07, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.
- Salas, E.A.L.; Valdez, R.; Boykin, K.G. Geographic layers as landscape drivers for the Marco Polo Argali habitat in the southeastern Pamir Mountains of Tajikistan. ISPRS Int. J. Geo-Inf. 2015, 4, 2094–2108. [Google Scholar] [CrossRef]
- Valdez, R.; Michel, S.; Subbotin, A.; Klich, D. Status and population structure of a hunted population of Marco Polo Argali Ovis ammon polii (Cetartiodactyla, Bovidae) in Southeastern Tajikistan. Mammalia 2015. [Google Scholar] [CrossRef]
- Vanselow, K.A.; Kraudzun, T.; Samimi, C. Land stewardship in practice: An example from the eastern Pamirs of Tajikistan. In Rangeland Stewardship in Central Asia; Squires, V., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 71–90. [Google Scholar]
- Breckle, S.W.; Wucherer, W. 16 Vegetation of the Pamir (Tajikistan): Land use and desertification problems. In Land Use Change and Mountain Biodiversity; Spehn, E., Liberman, M., Körner, C., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 225–237. [Google Scholar]
- Breu, T.; Maselli, D.; Hurni, H. Knowledge for sustainable development in the Tajik Pamir Mountains. Mt. Res. Dev. 2005, 25, 139–146. [Google Scholar] [CrossRef]
- PALM. Strategy and Action Plan for Sustainable Land Management in the High Pamir and Pamir-Alai Mountains; PALM, National Project Office in the Kyrgyz Republic: Bishkek, Kyrgyzstan; PALM, National Project Office in the Republic of Tajikistan: Dushanbe, Kyrgyzstan, 2011.
- Hergarten, C. Investigations on Land Cover and Land use of Gorno Badakhshan (GBAO) by Means of Land Cover Classifications Derived from LANDSAT 7 Data Making Use of Remote Sensing and GIS Techniques; University of Bern: Bern, Switzerland, 2004. [Google Scholar]
- U.S. Geological Survey Earth Resources Observation and Science (USGS EROS) Resource Archive. Available online: http://eros.usgs.gov/ (accessed on 20 July 2015).
- Walter, H.; Breckle, S. Spezielle Ökologie der Gemäβigten und Arktischen Zonen Euro-Nordasiens; Fischer: Stuttgart, Germany, 1986. [Google Scholar]
- Giri, C.; Muhlhausen, J. Mangrove forest distributions and dynamics in Madagascar (1975–2005). Sensors 2008, 8, 2104–2117. [Google Scholar] [CrossRef]
- Zandler, H.; Brenning, A.; Samimi, C. Quantifying dwarf shrub biomass in an arid environment: Comparing empirical methods in a high dimensional setting. Remote Sens. Environ. 2015, 158, 140–155. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Urban classification using full spectral information of Landsat ETM+ imagery in Marion County, Indiana. Photogramm. Eng. Remote Sens. 2005, 71, 1275–1284. [Google Scholar] [CrossRef]
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Mather, P.; Koch, M. Computer Processing of Remotely-Sensed Images: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Guyot, G.; Gu, X.F. Effect of radiometric corrections on NDVI-determined from SPOT-HRV and Landsat-TM data. Remote Sens. Environ. 1994, 49, 169–180. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Vanselow, K.A.; Samimi, C. Predictive mapping of dwarf shrub vegetation in an arid high mountain ecosystem using remote sensing and random forests. Remote Sens. 2014, 6, 6709–6726. [Google Scholar] [CrossRef]
- Palacio-Prieto, J.L.; Luna-Gonzalez, L. Improving spectral results in a GTS context. Int. J. Remote Sens. 1996, 17, 2201–2209. [Google Scholar] [CrossRef]
- Strahler, A.H.; Logan, T.L.; Bryant, N.A. Improving forest cover classification accuracy from Landsat by incorporating topographic information. In Proceedings of the 12th International Symposium on Remote Sensing of the Environment, Manila, Philippines, 20–26 April 1978.
- Janssen, L.F.; Jaarsma, J.; van der Linder, E. Integrating topographic data with remote sensing for land-cover classification. Photogramm. Eng. Remote Sens. 1990, 56, 1503–1506. [Google Scholar]
- U.S. Geological Survey Shuttle Radar Topography Mission (SRTM) Resource Archive. Available online: http://srtm.usgs.gov/index.php (accessed on 20 July 2015).
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Chehbouni, A.; Kerr, Y.H.; Qi, J.; Huete, A.R.; Sorooshian, S. Toward the development of a multidirectional vegetation index. Water Resour. Res. 1994, 30, 1281–1286. [Google Scholar] [CrossRef]
- Pickup, G.; Chewings, V.H.; Nelson, D.J. Estimating changes in vegetation cover over time in arid rangelands using landsat MSS data. Remote Sens. Environ. 1993, 43, 243–263. [Google Scholar] [CrossRef]
- Richardson, A.J.; Weigand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Rajesh, K.; Jawahar, C.V.; Sengupta, S.; Sinha, S. Performance analysis of textural features for characterization and classification of SAR images. Int. J. Remote Sens. 2001, 22, 1555–1569. [Google Scholar] [CrossRef]
- Culbert, P.D.; Pidgeon, A.M.; St-Louis, V.; Bash, D.; Radeloff, V.C. The impact of phenological variation on texture measures of remotely sensed imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 299–309. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Pacifici, F.; Chini, M.; Emery, W.J. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 2009, 113, 1276–1292. [Google Scholar] [CrossRef]
- Kimothi, M.M.; Dasari, A. Methodology to map the spread of an invasive plant (Lantana camara L.) in forest ecosystems using Indian remote sensing satellite data. Int. J. Remote Sens. 2010, 31, 3273–3289. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, X.; Jiang, H. Object-oriented method for urban vegetation mapping using IKONOS imagery. Int. J. Remote Sens. 2010, 31, 177–196. [Google Scholar] [CrossRef]
- ENVI Guide. Programmer’s Guide; ITT Visual Information Solutions: Boulder, CO, USA, 2009. [Google Scholar]
- Frohn, R.C.; Autrey, B.C.; Lane, C.R.; Reif, M. Segmentation and object-oriented classification of wetlands in a karst Florida landscape using multi-season Landsat-7 ETM+ imagery. Int. J. Remote Sens. 2011, 32, 1471–1489. [Google Scholar] [CrossRef]
- Gilead, U. Locating and Examining Potential Sites for Vicarious Radiometric Calibration of Space Multi-Spectral Imaging Sensors in the Negev Desert; Ben-Gurion University of the Negev: Beersheba, Israel, 2005. [Google Scholar]
- Staben, G. Mapping the Spatial and Temporal Distribution of Melaleuca spp. on the Magela Floodplain between 1950 & 2004 Using Object-Based Analysis and GIS. Bachelor’s Thesis, Charles Darwin University, Darwin, NT, USA, June 2008. [Google Scholar]
- Tiner, R.W.; Lang, M.W.; Klemas, V.V. Remote Sensing of Wetlands: Applications and Advances; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 national land cover database for the counterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337–341. [Google Scholar]
- Li, F.; Clausi, D.A.; Wong, A. Comparative study of classification methods for surficial materials in the Umiujalik Lake region using RADARSAT-2 polarimetric, Landsat-7 imagery and DEM data. Can. J. Remote Sens. 2015, 41, 29–39. [Google Scholar] [CrossRef]
- Waske, B.; van der Linden, S.; Oldenburg, C.; Jakimow, B.; Rabe, A.; Hostert, P. Imagerf—A user-oriented implementation for remote sensing image analysis with Random Forests. Environ. Model. Softw. 2012, 35, 192–193. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 2012, 33, 4502–4526. [Google Scholar] [CrossRef]
- Congalton, R.; Mead, R. A quantitative method to test for consistency and correctness in photointerpretation. Photogramm. Eng. Remote Sens. 1983, 49, 69–74. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing, 3rd ed.; Prentice-Hall: Upper Saddle, NJ, USA, 2005. [Google Scholar]
- Fuller, R.M.; Smith, G.M.; Devereux, B.J. The characterisation and measurement of land cover change through remote sensing: Problems in operational applications? Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 243–253. [Google Scholar] [CrossRef]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; U.S. Government Printing Office: Washington, DC, USA, 1976.
- Mallinis, G.; Emmanoloudis, D.; Giannakopoulos, V.; Maris, F.; Koutsias, N. Mapping and interpreting historical land cover/land use changes in a Natura 2000 site using earth observational data: The case of Nestos delta, Greece. Appl. Geogr. 2011, 31, 312–320. [Google Scholar] [CrossRef]
- Maillard, P. Comparing texture analysis methods through classification. Photogramm. Eng. Remote Sens. 2003, 69, 357–367. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Fredrickson, E.L.; Rango, A. Combining decision trees with hierarchical object-oriented image analysis for mapping arid rangelands. Photogramm. Eng. Remote Sens. 2007, 73, 197–207. [Google Scholar] [CrossRef]
- Eiumnoh, A.; Shrestha, R.P. Application of DEM data to Landsat image classification: Evaluation in a tropical wet-dry landscape of Thailand. Photogramm. Eng. Remote Sens. 2000, 66, 297–304. [Google Scholar]
- Huete, A.R.; Hua, G.; Qi, J.; Chehbouni, A.; van Leeuwen, W.J.D. Normalization of multidirectional red and NIR reflectances with the SAVI. Remote Sens. Environ. 1992, 41, 143–154. [Google Scholar] [CrossRef]
- USGS. What Are the Best Spectral Bands to Use for My Study? Available online: http://landsat.usgs.gov/best_spectral_bands_to_use.php (accessed on 15 October 2015).
- Kraudzun, T.; Vanselow, K.A.; Samimi, C. Realities and myths of the Teresken Syndrome—An evaluation of the exploitation of dwarf shrub resources in the Eastern Pamirs of Tajikistan. J. Environ. Manag. 2014, 132, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Pearlman, J.S.; Barry, P.S.; Segal, C.C.; Shepanski, J.; Beiso, D.; Carman, S.L. Hyperion, a space-based imaging spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1160–1173. [Google Scholar] [CrossRef]
- Mariotto, I.; Thenkabail, P.S.; Huete, A.; Slonecker, E.T.; Platonov, A. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission. Remote Sens. Environ. 2013, 139, 291–305. [Google Scholar] [CrossRef]
- Roberts, D.A.; Roth, K.L.; Perroy, R.L. Hyperspectral remote sensing of vegetation. In Hyperspectral Vegetation Indices; CRC Press: Boca Raton, FL, USA, 2012; pp. 309–328. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salas, E.A.L.; Boykin, K.G.; Valdez, R. Multispectral and Texture Feature Application in Image-Object Analysis of Summer Vegetation in Eastern Tajikistan Pamirs. Remote Sens. 2016, 8, 78. https://doi.org/10.3390/rs8010078
Salas EAL, Boykin KG, Valdez R. Multispectral and Texture Feature Application in Image-Object Analysis of Summer Vegetation in Eastern Tajikistan Pamirs. Remote Sensing. 2016; 8(1):78. https://doi.org/10.3390/rs8010078
Chicago/Turabian StyleSalas, Eric Ariel L., Kenneth G. Boykin, and Raul Valdez. 2016. "Multispectral and Texture Feature Application in Image-Object Analysis of Summer Vegetation in Eastern Tajikistan Pamirs" Remote Sensing 8, no. 1: 78. https://doi.org/10.3390/rs8010078
APA StyleSalas, E. A. L., Boykin, K. G., & Valdez, R. (2016). Multispectral and Texture Feature Application in Image-Object Analysis of Summer Vegetation in Eastern Tajikistan Pamirs. Remote Sensing, 8(1), 78. https://doi.org/10.3390/rs8010078