Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target
Abstract
:1. Introduction
2. TEB On-Orbit Calibration
3. Evaluation Methodology
4. Results and Discussion
4.1. Calibration Stability
4.2. Calibration Consistency
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xiong, X.; Butler, J.; Chiang, K.; Efremova, B.; Fulbright, J.; Lei, N.; McIntire, J.; Oudrari, H.; Sun, J.; Wang, Z.; Wu, A. VIIRS on-orbit calibration methodology and performance. J. Geophys. Res. Atmos. 2014, 119, 5065–5078. [Google Scholar] [CrossRef]
- Xiong, X.; Chiang, K.; Esposito, J.; Guenther, B.; Barnes, W. MODIS on-orbit calibration and characterization. Metrologia 2003, 40, 89–92. [Google Scholar] [CrossRef]
- Turpie, K.R.; Robinson, W.D.; Franz, B.A.; Eplee, R.E.; Meister, G.; Fireman, G.F.; Patt, F.S.; Barnes, R.A.; McClain, C.R. Suomi NPP VIIRS ocean color data product early mission assessment. SPIE Proc. 2012, 8510. [Google Scholar] [CrossRef]
- Justice, C.O.; Romàn, M.O.; Csiszar, I.; Vermote, E.F.; Wolfe, R.E.; Hook, S.J.; Friedl, M.; Wang, Z.; Schaaf, C.B.; Miura, T.; et al. Land and cryosphere products from Suomi VIIRS: Overview and status. J. Geophys. Res. Atoms. 2013, 118, 9753–9765. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Remer, L.A.; Huang, J.; Huang, H.-C.; Kondragunta, S.; Laszlo, I.; Oo, M.; Jackson, J.M. Preliminary evaluation of S-NPP VIIRS aerosol optical thickness. J. Geophys. Res. Atoms. 2013, 119, 3942–3962. [Google Scholar] [CrossRef]
- Xiong, X.; Butler, J.; Wu, A.; Chiang, V.; Efremova, B.; Madhavan, S.; Mcintire, J.; Oudrari, H. Comparison of MODIS and VIIRS onboard blackbody performance. SPIE Proc. 2012, 8533. [Google Scholar] [CrossRef]
- Efremova, B.; Wu, A.; Xiong, X. Relative spectral response corrected calibration inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands. SPIE Proc. 2014, 9218. [Google Scholar] [CrossRef]
- Wenny, B.N.; Xiong, X. Using a Cold Earth Surface Target to Characterize Long-term Stability of the MODIS Thermal Emissive Bands. IEEE Geosci. Remote Sens. Lett. 2008, 5, 162–165. [Google Scholar] [CrossRef]
- Wenny, B.N.; Xiong, X.; Madhavan, S.; Wu, A.; Li, Y. Long-term band-to-band calibration stability of MODIS thermal emissive bands. SPIE Proc. 2013, 8724. [Google Scholar] [CrossRef]
- Wenny, B.N.; Xiong, X.; Madhavan, S. Evaluation of Terra and Aqua MODIS thermal emissive band calibration consistency. SPIE Proc. 2012, 8533. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, A.; Wenny, B.N.; Madhavan, S.; Wang, Z.; Li, Y.; Chen, N.; Barnes, W.; Salomonson, V. Terra and Aqua MODIS thermal emissive bands on-orbit calibration and performance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5709–5721. [Google Scholar] [CrossRef]
- Efremova, B.; McIntire, J.; Moyer, D.; Wu, A.; Xiong, X. S-NPP VIIRS thermal emissive bands on-orbit calibration and performance. J. Geophys. Res. Atmos. 2014, 119, 10859–10875. [Google Scholar] [CrossRef]
- Hook, S.J.; Clodius, W.B.; Balick, L.; Alley, R.E.; Abtahi, A.; Richards, R.C.; Schladow, S.G. In-Flight validation of mid- and thermal infrared data from the Multispectral Thermal Imager (MTI) using an automated high-altitude validation site at Lake Tahoe CA/NV, USA. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1991–1999. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Hook, S.J.; Raqueno, N.G.; Markham, B.L.; Radocinski, R.G. Landsat-8 Thermal Infrared Sensor (TIRS) vicarious radiometric calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Cao, C.; Uprety, S.; Xiong, X.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S. Establishing the antarctic Dome C community reference standard site towards consistent measurements from earth observation satellites. Can. J. Remote Sens. 2010, 36, 498–513. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, A.; Wenny, B. Using Dome C for MODIS Calibration Stability and Consistency. J. Appl. Remote Sens. 2009, 3, 033520. [Google Scholar]
- Wu, A.; Xiong, X.; Cao, C. Tracking the calibration stability and consistency of the 3.7, 11.0 and 12.0 micron channels of the NOAA-KLM AVHRR with MODIS. Int. J. Remote Sens. 2009, 30, 5901–5917. [Google Scholar] [CrossRef]
- Walden, V.P.; Roth, W.L.; Stone, R.S.; Halter, B. Radiometric validation of the atmospheric infrared sounder over the Antarctic plateau. J. Geophys. Res. Atoms. 2006, 111. D09 S03. [Google Scholar]
- Weidner, G.; Thom, J.; Lazzara, M. Legacy calibration of the Automatic Weather Station Model 2 of the United States Antarctic Program (A primer). In Proceedings of the 8th Antarctic Meteorological Observation, Modeling, and Forecasting Workshop, Madison, WI, USA, 10–12 June 2013.
- Ackerman, S.; Strabala, K.; Menzel, W.; Frey, R.; Moeller, C.; Gumley, L. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. Atoms. 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Level 1 and Atmosphere Archive and Distribution System (LAADS). Available online: https://ladsweb.nascom.nasa.gov/data/search.html (accessed on 6 August 2015).
- AMRC/AWS FTP Data Server. Available online: ftp://amrc.ssec.wisc.edu/pub/aws/ (accessed on 29 June 2015).
- Li, Y.; Wu, A.; Xiong, X. Inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands using hyperspectral infrared sounder measurements as a transfer reference. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Wenny, B.N.; Wu, A.; Madhavan, S.; Wang, Z.; Li, Y.; Chen, N.; Chiang, V.; Xiong, X. MODIS TEB calibration approach in collection 6. SPIE Proc. 2012, 8533. [Google Scholar] [CrossRef]
- Moeller, C.; Tobin, D.; Quinn, G. S-NPP VIIRS thermal band spectral radiance performance through 18 months of operation on-orbit. SPIE Proc. 2013, 8866. [Google Scholar] [CrossRef]
VIIRS Band (C.W. (µm)) | I4 (3.74) | I5 (11.45) | M12 (3.70) | M13 (4.05) | M14 (8.55) | M15 (10.76) | M16 (12.01) |
MODIS Band (C.W. (µm)) | B20 (3.78) | B31 (11.03) B32 (12.04) | B20 (3.78) | B22 (3.96) | B29 (8.56) | B31 (11.03) | B32 (12.04) |
VIIRS/MODIS Matching Band | M12/B20 | M13/B22 | M14/B29 | M15/B31 | M16/B32 |
---|---|---|---|---|---|
∆T Relative Bias (K) * | 0.019 | 0.163 | −0.076 | 0.030 | −0.003 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhavan, S.; Brinkmann, J.; Wenny, B.N.; Wu, A.; Xiong, X. Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target. Remote Sens. 2016, 8, 158. https://doi.org/10.3390/rs8020158
Madhavan S, Brinkmann J, Wenny BN, Wu A, Xiong X. Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target. Remote Sensing. 2016; 8(2):158. https://doi.org/10.3390/rs8020158
Chicago/Turabian StyleMadhavan, Sriharsha, Jake Brinkmann, Brian N. Wenny, Aisheng Wu, and Xiaoxiong Xiong. 2016. "Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target" Remote Sensing 8, no. 2: 158. https://doi.org/10.3390/rs8020158
APA StyleMadhavan, S., Brinkmann, J., Wenny, B. N., Wu, A., & Xiong, X. (2016). Evaluation of VIIRS and MODIS Thermal Emissive Band Calibration Stability Using Ground Target. Remote Sensing, 8(2), 158. https://doi.org/10.3390/rs8020158