Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Observation
2.2. Satellite-Derived Precipitation Products
2.3. Performance Statistics for Precipitation
2.4. Hydrological Modeling Framework
3. Results
3.1. Temporal Evaluation of Satellite-Derived Precipitation
3.2. Spatial Evaluation of Satellite-Derived Precipitation
3.3. Quantitative Verification of Satellite-Derived Precipitation
3.4. Evaluation of Streamflow Simulations
3.5. Cause of Uncertainties in Streamflow Simulations Using Satellite-Derived Precipitation
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hsu, K.L.; Gao, X.G.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Ushio, T.; Kubota, T.; Shige, S.; Okamoto, K.; Aonashi, K.; Inouge, T.; Takahashi, N.; Iguchi, T.; Kachi, M.; Oki, R.; et al. A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteorol. Soc. Jpn. 2009, 87A, 137–151. [Google Scholar] [CrossRef]
- Sun, W.C.; Ishidaira, H.; Bastola, S. Towards improving river discharge estimation in ungauged basins: Calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet. Hydrol. Earth Syst. Sci. 2010, 14, 2011–2022. [Google Scholar] [CrossRef]
- Samaniego, L.; Kumar, R.; Jackisch, C. Predictions in a data-sparse region using a regionalized grid-based hydrologic model driven by remotely sensed data. Hydrol. Res. 2011, 42, 338–355. [Google Scholar] [CrossRef]
- Khan, S.I.; Hong, Y.; Vergara, H.J.; Gourley, J.J.; Brakenridge, G.R.; De Groeve, T.; Flamig, Z.L.; Policelli, F.; Yong, B. Microwave satellite data for hydrologic modeling in ungauged basins. IEEE Geosci. Remote Sens. 2012, 9, 663–667. [Google Scholar] [CrossRef]
- Xue, X.; Hong, Y.; Limaye, A.S.; Gourley, J.J.; Huffman, G.J.; Khan, S.I.; Dorji, C.; Chen, S. Statistical and hydrological evaluation of TRMM-based multi-satellite precipitation analysis over the Wangchu basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol. 2013, 499, 91–99. [Google Scholar] [CrossRef]
- Hong, Y.; Adler, R.; Huffman, G. Applications of TRMM-based multi-satellite precipitation estimation for global runoff simulation: Prototyping a global flood monitoring system. In Satellite Rainfall Applications for Surface Hydrology, 1st ed.; Gebremichael, M., Hossain, F., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 245–265. [Google Scholar]
- Khan, S.I.; Hong, Y.; Wang, J.; Yilmaz, K.K.; Gourley, J.J.; Adler, R.F.; Brankenridge, G.R.; Policelli, F.; Habib, S.; Irwin, D. Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins. IEEE Trans. Geosci. Remote Sens. 2011, 49, 85–95. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Hong, Y.; Tian, Y.; Policelli, F. Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeorol. 2012, 13, 1268–1284. [Google Scholar] [CrossRef]
- Vernimmen, R.R.E.; Hooijer, A.; Mamenun; Aldrian, E. Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia. Hydrol. Earth Syst. Sci. 2011, 8, 5969–5997. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res. 2011, 47, W06526. [Google Scholar] [CrossRef]
- Sohn, B.J.; Han, H.J.; Seo, E.K. Validation of satellite-based high-resolution rainfall products over the Korean Peninsula using data from a dense rain gauge network. J. Appl. Meteorol. Clim. 2010, 49, 701–714. [Google Scholar] [CrossRef]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Yong, B.; Ren, L.-L.; Hong, Y.; Wang, J.-H.; Gourley, J.J.; Jiang, S.-H.; Chen, X.; Wang, W. Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res. 2010, 46, W07542. [Google Scholar] [CrossRef]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; AghaKouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef]
- Ward, E.; Buytaert, W.; Peaver, L.; Wheater, H. Evaluation of precipitation products over complex mountainous terrain: A water resources perspective. Adv. Water Resour. 2011, 34, 1222–1231. [Google Scholar] [CrossRef]
- Kim, J.P.; Park, K.W.; Jung, I.W.; Han, K.S.; Kim, G. Application of high resolution multi-satellite precipitation products and a distributed hydrological modeling for daily runoff simulation. Korean J. Remote Sens. 2013, 29, 263–274. (In Korean) [Google Scholar] [CrossRef]
- Yong, B.; Hong, Y.; Ren, L.-L.; Gourley, J.J.; Huffman, G.J.; Chen, X.; Wang, W.; Khan, S.I. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res.-Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M. Using High-resolution Satellite Rainfall Products to Simulate a Major Flash Flood Event in Northern Italy. J. Hydrometeorol. 2013, 14, 171–185. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; De Roo, A. Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. J. Hydrol. 2013, 499, 324–338. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar] [CrossRef]
- Zulkafli, Z.; Buytaert, W.; Onof, C.; Manz, B.; Tarnavsky, E.; Lavado, W.; Guyot, J.-L. A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean–Amazon river basins. J. Hydrometeorol. 2014, 15, 581–592. [Google Scholar] [CrossRef]
- Mei, Y.; Nikolopoulos, E.I.; Anagnostou, E.N.; Borga, M. Evaluating Satellite Precipitation Error Propagation in Runoff Simulations of Mountainous Basins. J. Hydrometeorol. 2015. [Google Scholar] [CrossRef]
- Bae, D.H.; Jung, I.W.; Lettenmaier, D.P. Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea. J. Hydrol. 2011, 401, 90–105. [Google Scholar] [CrossRef]
- Water Management Information System (WAMIS). Available online: http://www.wamis.go.kr (accessed on 27 April 2016).
- Bae, D.H.; Jung, I.W.; Chang, H. Long-term trend of precipitation and runoff in Korean river basins. Hydrol. Process. 2008, 22, 2644–2656. [Google Scholar] [CrossRef]
- Jung, I.W.; Bae, D.H.; Lee, B.J. Possible change in Korean streamflow seasonality based on multi-model climate projections. Hydrol. Process. 2013, 27, 1033–1045. [Google Scholar] [CrossRef]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1084. [Google Scholar] [CrossRef]
- Korean Meteorological Administration (KMA). Available online: http://www.kma.go.kr (accessed on 27 April 2016).
- TMPAv6 and TMPAv7. Goddard Space Flight Center. Available online: http://trmm.gsfc.nasa.gov (accessed on 27 April 2016).
- CMORPH. Climate Prediction Center. Available online: http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph.shtml (accessed on 27 April 2016).
- GSMaP. Earth Observation Research Center. Available online: http://sharaku.eorc.jaxa.jp/GSMaP_crest/ (accessed on 27 April 2016).
- Tian, Y.; Peters-Lidard, C.D.; Adler, R.F.; Kubota, T.; Ushio, T. Evaluation of GSMaP Precipitation Estimates over the Contiguous United States. J. Hydrometeorol. 2010, 11, 566–574. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Science, 2nd ed.; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Ebert, E.E. Fuzzy verification of high resolution gridded forecasts: A review and proposed framework. Meteorol. Appl. 2008, 15, 51–64. [Google Scholar] [CrossRef]
- Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G. Precipitation runoff modeling system: User’s manual. In U.S. Geological Survey Water Resources Investigation Report 83-4238; U.S. Geological Survey: Denver, CO, USA, 1983; p. 207. [Google Scholar]
- Chang, H.; Jung, I.W. Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon. J. Hydrol. 2010, 388, 186–207. [Google Scholar] [CrossRef]
- Risley, J.; Moradkhani, H.; Hay, L.; Markstrom, S. Statistical Comparisons of Watershed-Scale Response to Climate Change in Selected Basins across the United States. Earth Interact. 2011, 15, 1–26. [Google Scholar] [CrossRef]
- Jung, I.W.; Moradkhani, H.; Chang, H. Uncertainty assessment of climate change impacts for hydrologically distinct river basins. J. Hydrol. 2012, 466, 73–87. [Google Scholar] [CrossRef]
- Markstrom, S.L.; Niswonger, R.G.; Regan, R.S.; Prudic, D.E.; Barlow, P.M. GSFLOW: Coupled ground-water and surface-water flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). In U.S. Geological Survey Techniques and Methods 6–D1; USGS: Reston, VA, USA, 2008. [Google Scholar]
- PRMS. United States Geological Survey. Available online: http://wwwbrr.cr.usgs.gov/projects/SW_MoWS/PRMS.html (accessed on 27 April 2016).
- Steele, M.O. Effects of HRU Size on PRMS Performance in 30 Western U.S. Basins. Master’s Thesis, Portland State University, Portland, OR, USA, 18 April 2013. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M. Step-wise, multiple-objective calibration of a hydrologic model for a snowmelt-dominated basin. J. Am. Water Resour. 2006, 42, 877–890. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Westerberg, I.K.; Guerrero, J.L.; Younger, P.M.; Beven, K.J.; Seibert, J.; Halldin, S.; Freer, J.E.; Xu, C.Y. Calibration of hydrological models using flow-duration curves. Hydrol. Earth Syst. Sci. 2011, 15, 2205–2227. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 337, 80–91. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar]
- Cohen Liechti, T.; Matos, J.P.; Boillat, J.-L.; Schleiss, A.J. Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin. Hydrol. Earth Syst. Sci. 2012, 16, 489–500. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Hong, Y.; Yong, B.; Yang, X.; Yuan, F.; Ma, M. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol. 2012, 452, 213–225. [Google Scholar] [CrossRef]
- Falck, A.S.; Maggioni, V.; Tomasella, J.; Vila, D.A.; Diniz, F.L. Propagation of satellite precipitation uncertainties through a distributed hydrologic model: A case study in the Tocantins-Araguaia basin in Brazil. J. Hydrol. 2015, 527, 943–957. [Google Scholar] [CrossRef]
- Laviola, S.; Dong, J.; Kongoli, C.; Meng, H.; Ferraro, R.; Levizzani, V. An intercomparison of two passive microwave algorithms for snowfall detection over Europe. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 886–889.
- Kucera, P.A.; Lapeta, B. Leading Efforts to Improve Global Quantitative Precipitation Estimation. Bull. Am. Meteorol. Soc. 2014, 95, ES26–ES29. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Beven, K.; Westerberg, I. On red herrings and real herrings: Disinformation and information in hydrological inference. Hydrol. Process. 2011, 25, 1676–1680. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I. Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling. Hydrol. Process. 2010, 24, 879–891. [Google Scholar] [CrossRef]
- Artan, G.; Gadain, H.; Smith, J.L.; Asante, K.; Bandaragoda, C.J.; Verdin, J.P. Adequacy of satellite derived rainfall data for stream flow modeling. Nat. Hazards 2007, 43, 167–185. [Google Scholar] [CrossRef]
- Yilmaz, K.K.; Hogue, T.S.; Hsu, K.; Sorooshian, S.; Gupta, H.V.; Wagener, T. Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeorol. 2005, 6, 497–517. [Google Scholar] [CrossRef]
Parameter Name | Description | Range | Units |
---|---|---|---|
adjmix_rain | Monthly factor to adjust rain proportion in a mixed rain/snow event | 0.0001–3.0 | decimal fraction |
cecn_coef | Monthly convection condensation energy coefficient | 0.0001–20.0 | calories per degree |
emis_noppt | Average emissivity of air on days without precipitation | 0.757–1.0 | decimal fraction |
freeh2o_cap | Free-water holding capacity of snowpack | 0.01–0.2 | decimal fraction |
potet_sublim | Fraction of potential evapotranspiration that is sublimated from snow in the canopy and snowpack | 0.1–0.75 | decimal fraction |
tmax_allrain | Monthly maximum air temperature when precipitation is assumed to be rain | 20.0–50.0 | degrees Fahrenheit |
tmax_allsnow | Monthly maximum air temperature when precipitation is assumed to be snow | 20.0–40.0 | degrees Fahrenheit |
snowinfil_max | Maximum snow infiltration per day | 1.0~20.0 | inches/day |
soil_moist_max | Maximum available water holding capacity | 3.0–10.0 | inches |
soil2gw_max | Maximum amount of the capillary reservoir excess | 0.0001–5.0 | inches |
sat_threshold | Water holding capacity of the gravity and preferential flow reservoirs | 1.0–20.0 | inches |
smidx_coef | Fraction percolating from upper to lower zone free water storage | 0.0001–1.0 | decimal fraction |
smidx_exp | Exponent in non-linear contributing area | 0.2~0.8 | 1/inch |
fastcoef_lin | Degree-day factor | 0.0001–1.0 | fraction/day |
fastcoef_sq | Temperature criteria at which snow begins to melt | 0.0001–1.0 | - |
slowcoef_lin | Linear coefficient in equation to route preferential flow storage | 0.0001–1.0 | fraction/day |
slowcoef_sq | Non-linear coefficient in equation to route gravity reservoir storage | 0.0001–1.0 | - |
ssr2gw_exp | Non-linear coefficient in equation used to route water from the gravity reservoir to the groundwater reservoir | 0.8–1.2 | - |
ssr2gw_rate | Linear coefficient in equation used to route water from the gravity reservoir to the groundwater reservoir | 0.0001–1.0 | fraction/day |
pref_flow_den | Fraction of the soil zone in which preferential flow occurs | 0.1–1.0 | 0.1~1.0 |
gwflow_coef | Linear coefficient in the equation to compute groundwater discharge | 0.0001–1.0 | 0.0001~1.0 |
Period | Calibration (2002–2005) | Validation (2006–2009) | ||||||
---|---|---|---|---|---|---|---|---|
Goodness of Fit | Corr | KGE | d | P-bias | Corr | KGE | d | P-bias |
Gauged | 0.93 | 0.93 | 0.97 | 2.22 | 0.86 | 0.82 | 0.92 | −3.13 |
TMPAv6 | 0.89 | 0.76 | 0.94 | −17.22 | 0.71 | 0.69 | 0.83 | −5.40 |
TMPAv7 | 0.90 | 0.75 | 0.94 | −12.78 | 0.74 | 0.73 | 0.85 | −3.68 |
GSMaP | 0.86 | −0.31 | 0.84 | −50.91 | 0.74 | −1.24 | 0.67 | −62.73 |
CMORPH | 0.84 | −0.96 | 0.80 | −62.99 | 0.77 | −1.75 | 0.65 | −67.95 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.P.; Jung, I.W.; Park, K.W.; Yoon, S.K.; Lee, D. Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea. Remote Sens. 2016, 8, 608. https://doi.org/10.3390/rs8070608
Kim JP, Jung IW, Park KW, Yoon SK, Lee D. Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea. Remote Sensing. 2016; 8(7):608. https://doi.org/10.3390/rs8070608
Chicago/Turabian StyleKim, Jong Pil, Il Won Jung, Kyung Won Park, Sun Kwon Yoon, and Donghee Lee. 2016. "Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea" Remote Sensing 8, no. 7: 608. https://doi.org/10.3390/rs8070608
APA StyleKim, J. P., Jung, I. W., Park, K. W., Yoon, S. K., & Lee, D. (2016). Hydrological Utility and Uncertainty of Multi-Satellite Precipitation Products in the Mountainous Region of South Korea. Remote Sensing, 8(7), 608. https://doi.org/10.3390/rs8070608