Criteria Comparison for Classifying Peatland Vegetation Types Using In Situ Hyperspectral Measurements
Abstract
:1. Introduction
2. Material
2.1. Study Site
2.2. Field Data Collection
2.3. Data Preprocessing
3. Method Description
- similarity measures calculated on spectral reflectance,
- supervised classification based on “local” information (spectral vegetation indices),
- supervised classification based on “global” information (spectral ranges).
3.1. Transformed Spectral Signatures
3.2. Similarity Measures
3.3. Relative Spectral Discriminatory Probability
Spectral Reference Database
3.4. Feature Selection of Spectral Indices
3.4.1. Spectral Index Description
3.4.2. Classical Feature Selection Method—The Kruskal-Wallis H-Test
3.4.3. Principle of the Applied Feature Selection Method
ine | ∅ | ||
- | ∅ | ||
- | - | ∅ |
3.4.4. The Bhattacharyya Coefficient and the Hellinger Distance
- if then the classes can be separated,
- if the separation is fairly good,
- if the separation is poor.
3.5. Spectral Ranges
- visible: 350 –750 ,
- near infrared: 750 –1350 ,
- shortwave infrared a: 1410 –1810 ,
- shortwave infrared b: 1940 –2400 .
3.6. Supervised Classification
3.6.1. Random Forest (RF)
3.6.2. Support Vector Machines (SVM)
3.6.3. Regularized Logistic Regression (RLR)
3.6.4. Partial Least Squares-Discriminant analysis (PLS-DA)
3.7. Classification Accuracy Evaluation
4. Results and Discussion
4.1. Similarity Measures
4.2. Supervised Classification Based on Feature Selection of Spectral Vegetation Indices
4.2.1. Feature Selection
4.2.2. Supervised Classification
4.3. Supervised Classification According to the Spectral Ranges
5. Conclusions and Perspectives
- similarity measures calculated on spectral reflectance,
- supervised classification based on “local” information (spectral vegetation indices),
- supervised classification based on “global” information (spectral ranges).
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Composition of Vegetation Types
Plant Species/Plots | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Code | SPHA | SPHA | SPHA | SPHA | SPHA | CAVU | CAVU | ELQU | ELQU | PING | METR | JUCO | JUCO | RHFR | RHFR | SALI |
Alchemilla glabra | ||||||||||||||||
Anthoxanthum odoratum | 2 | 2 | 2 | 1 | + | |||||||||||
Apiaceae | ||||||||||||||||
Bare ground | 1 | 5 | 4 | 15 | ||||||||||||
Briza media | 2 | + | ||||||||||||||
Calluna vulgaris | 2 | 5 | 15 | 70 | 25 | + | ||||||||||
Caltha palustris | 5 | |||||||||||||||
Campyllium stellatum | 35 | |||||||||||||||
Cardamine pratensis | + | + | ||||||||||||||
Carex demissa | ||||||||||||||||
Carex echinata | 5 | 2 | 2 | + | 2 | + | + | 5 | ||||||||
Carex flava | + | + | ||||||||||||||
Carex nigra | 5 | 2 | 2 | 2 | 10 | 5 | ||||||||||
Carex panicea | + | + | + | 5 | 1 | |||||||||||
Carex paniculata | ||||||||||||||||
Carex rostrata | 5 | |||||||||||||||
Carex sp. | 2 | 25 | ||||||||||||||
Circaea lutetiana | 4 | |||||||||||||||
Cirsium palustre | 2 | |||||||||||||||
Dactylorhiza masculata | 2 | + | + | |||||||||||||
Drepanocladus revolvens | 30 | |||||||||||||||
Drosera rotundifolia | + | + | 1 | + | ||||||||||||
Dryopteraceae | + | |||||||||||||||
Eleocharis quinqueflora | 60 | 40 | 40 | |||||||||||||
Epikeros pyrenaeus | + | + | + | |||||||||||||
Equisetum sp. | 1 | + | + | + | 5 | |||||||||||
Eriophorum angustifolium | 5 | 10 | ||||||||||||||
Festuca rubra | 3 | |||||||||||||||
Galium palustre | ||||||||||||||||
Galium saxatile | 1 | 2 | ||||||||||||||
Gentiana ciliata | + | |||||||||||||||
Hylocomium brevirostre | ||||||||||||||||
Hypnum cupressiforme | 2 | |||||||||||||||
Juncus alpinus | + | |||||||||||||||
Juncus bulbosus | ||||||||||||||||
Juncus sp. | ||||||||||||||||
Juniperus communis | 5 | 95 | 80 | |||||||||||||
Lathyrus montanus | 5 | + | ||||||||||||||
Leotodon hispidus | ||||||||||||||||
Lotus sp. | + | 2 | ||||||||||||||
Luzula sp. | ||||||||||||||||
Lychnis floscuculi | 4 | |||||||||||||||
Mentha arvensis | ||||||||||||||||
Menyanthes trifoliata | 10 | |||||||||||||||
Moliniacaerulea ssp. caerulae | 15 | 25 | 30 | 15 | 20 | 10 | 20 | 15 | 5 | 10 | 30 | 5 | ||||
Narthecium ossifragum | 2 | |||||||||||||||
Parnassia palustris | 1 | 4 | + | 1 | 2 | 3 | ||||||||||
Pedicularis sylvatica | 1 | + | ||||||||||||||
Pilosella lactucella | + | 1 | ||||||||||||||
Pinguicula sp. | 1 | |||||||||||||||
Pinguicula vulgaris | + | 5 | ||||||||||||||
Plagiomnium elatum | ||||||||||||||||
Plantago lanceolata | ||||||||||||||||
Polytrichum sp. | 2 | |||||||||||||||
Potentilla erecta | 5 | 5 | 5 | 5 | 10 | 5 | 6 | 5 | 2 | + | ||||||
Potentilla sp. | ||||||||||||||||
Prunella vulgaris | + | 2 | ||||||||||||||
Ranunculus acris | + | |||||||||||||||
Rhododendron ferrugineum | ||||||||||||||||
Salix atrocinerea | ||||||||||||||||
Scorpidium sp. | ||||||||||||||||
Selaginella selaginoides | + | 1 | ||||||||||||||
Sphagnum capillifolium | 10 | 5 | 5 | 70 | 25 | |||||||||||
Sphagnum palustre | 90 | 75 | 65 | 10 | 80 | 20 | 20 | 8 | ||||||||
Sphagum papillosum | 15 | 25 | ||||||||||||||
Sphagunm cuspidatum | ||||||||||||||||
Succisa pratensis | + | |||||||||||||||
Tofieldia calyculata | + | |||||||||||||||
Tomenthypnum nitens | 3 | 30 | 10 | |||||||||||||
Trichophorum cespitosum | + | |||||||||||||||
Trifolium arvense | ||||||||||||||||
Trifolium pratense | 1 | 1 | ||||||||||||||
Utricularia sp. | ||||||||||||||||
Vaccinium myrtillus | + | 3 | ||||||||||||||
Vicia sepium | ||||||||||||||||
Viola palustris | 2 | |||||||||||||||
Viola sp. | + | 5 | ||||||||||||||
Water | ||||||||||||||||
Plant Species/Plots | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | |
Code | SALI | SALI | AQ_A | AQ_A | AQ_A | AQ_A | AQ_A | AQ_A | AQ_B | AQ_C | CA_HV | CA_HV | CA_HV | CA_HV | PI_CV | |
Alchemilla glabra | 2 | + | 3 | |||||||||||||
Anthoxanthum odoratum | ||||||||||||||||
Apiaceae | + | |||||||||||||||
Bare ground | 40 | |||||||||||||||
Briza media | 5 | 5 | ||||||||||||||
Calluna vulgaris | ||||||||||||||||
Caltha palustris | 10 | 2 | 1 | |||||||||||||
Campyllium stellatum | ||||||||||||||||
Cardamine pratensis | ||||||||||||||||
Carex demissa | ||||||||||||||||
Carex echinata | 1 | 2 | 2 | |||||||||||||
Carex flava | ||||||||||||||||
Carex nigra | ||||||||||||||||
Carex panicea | ||||||||||||||||
Carex paniculata | 50 | 100 | ||||||||||||||
Carex rostrata | 35 | 70 | 40 | 10 | ||||||||||||
Carex sp. | 2 | 60 | 50 | |||||||||||||
Circaea lutetiana | ||||||||||||||||
Cirsium palustre | 5 | |||||||||||||||
Dactylorhiza masculata | + | |||||||||||||||
Drepanocladus revolvens | + | |||||||||||||||
Drosera rotundifolia | ||||||||||||||||
Dryopteraceae | ||||||||||||||||
Eleocharis quinqueflora | 70 | |||||||||||||||
Epikeros pyrenaeus | ||||||||||||||||
Equisetum sp. | 5 | 1 | 30 | + | + | + | + | + | ||||||||
Eriophorum angustifolium | ||||||||||||||||
Festuca rubra | 1 | + | 10 | |||||||||||||
Galium palustre | + | 2 | ||||||||||||||
Galium saxatile | + | + | 1 | |||||||||||||
Gentiana ciliata | ||||||||||||||||
Hylocomium brevirostre | + | |||||||||||||||
Hypnum cupressiforme | ||||||||||||||||
Juncus alpinus | ||||||||||||||||
Juncus bulbosus | 1 | |||||||||||||||
Juncus sp. | + | |||||||||||||||
Juniperus communis | ||||||||||||||||
Lathyrus montanus | + | |||||||||||||||
Leotodon hispidus | ||||||||||||||||
Lotus sp. | ||||||||||||||||
Luzula sp. | + | |||||||||||||||
Lychnis floscuculi | + | 1 | ||||||||||||||
Mentha arvensis | + | 2 | ||||||||||||||
Menyanthes trifoliata | 5 | 10 | 10 | 4 | ||||||||||||
Moliniacaerulea ssp. caerulae | 5 | 5 | 4 | 60 | 70 | 40 | 50 | |||||||||
Narthecium ossifragum | + | |||||||||||||||
Parnassia palustris | + | 2 | 2 | 2 | + | 1 | ||||||||||
Pedicularis sylvatica | + | |||||||||||||||
Pilosella lactucella | 1 | |||||||||||||||
Pinguicula sp. | ||||||||||||||||
Pinguicula vulgaris | ||||||||||||||||
Plagiomnium elatum | ||||||||||||||||
Plantago lanceolata | + | 2 | + | + | ||||||||||||
Polytrichum sp. | ||||||||||||||||
Potentilla erecta | 3 | 2 | 1 | 2 | ||||||||||||
Potentilla sp. | + | |||||||||||||||
Prunella vulgaris | 4 | 5 | 1 | 1 | ||||||||||||
Ranunculus acris | 1 | + | 2 | + | ||||||||||||
Rhododendron ferrugineum | ||||||||||||||||
Salix atrocinerea | 90 | 100 | ||||||||||||||
Scorpidium sp. | 4 | 25 | ||||||||||||||
Selaginella selaginoides | 1 | 1 | ||||||||||||||
Sphagnum capillifolium | ||||||||||||||||
Sphagnum palustre | ||||||||||||||||
Sphagum papillosum | ||||||||||||||||
Sphagunm cuspidatum | 25 | |||||||||||||||
Succisa pratensis | 4 | |||||||||||||||
Tofieldia calyculata | ||||||||||||||||
Tomenthypnum nitens | 1 | |||||||||||||||
Trichophorum cespitosum | ||||||||||||||||
Trifolium arvense | 1 | |||||||||||||||
Trifolium pratense | 4 | 5 | 2 | 1 | ||||||||||||
Utricularia sp. | 5 | 80 | ||||||||||||||
Vaccinium myrtillus | ||||||||||||||||
Vicia sepium | ||||||||||||||||
Viola palustris | ||||||||||||||||
Viola sp. | + | 1 | + | |||||||||||||
Water | 50 | 25 | 70 | 30 | 60 | 90 | 20 |
Appendix B. Data from Vegetation Types
Appendix B.1. Sphagnum sp. (SPHA)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
1 | 1.423156 | 42.802105 | 1343.715 | 4 | |
2 | 1.423080 | 42.802068 | 1344.046 | 4 | |
3 | 1.423143 | 42.802005 | 1344.004 | 4 | |
4 | 1.423771 | 42.802907 | 1344.747 | 7 | |
5 | 1.424118 | 42.803025 | 1346.327 | 3 |
Appendix B.2. Calluna vulgaris (CAVU)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
6 | 1.423564 | 42.80234 | 1343.762 | 7 | |
7 | 1.42446 | 42.802773 | 1343.636 | 7 |
Appendix B.3. Eleocharis quinqueflora (ELQU)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
8 | 1.423728 | 42.802918 | 1344.617 | 3 | |
9 | 1.423602 | 42.802983 | 1344.650 | 12 |
Appendix B.4. Pinguicula sp. (PING)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
10 | 1.423687 | 42.803021 | 1345.138 | 8 |
Appendix B.5. Menyanthes trifoliata (METR)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
11 | 1.424057 | 42.802733 | 1343.781 | 12 |
Appendix B.6. Juniperus communis (JUCO)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
12 | 1.42368 | 42.803132 | 1345.667 | 12 | |
13 | 1.424437 | 42.802841 | 1344.217 | 7 |
Appendix B.7. Rhododendron ferrugineum (RHFR)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
14 | 1.423429 | 42.802376 | 1343.301 | 7 | |
15 | 1.422769 | 42.801989 | 1344.606 | 7 |
Appendix B.8. Salix sp. (SALI)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
16 | 1.423492 | 42.802575 | 1343.198 | 9 | |
17 | 1.424283 | 42.802505 | 1343.082 | 4 | |
18 | 1.423997 | 42.802472 | 1343.025 | 4 |
Appendix B.9. Aquatic Type a (AQ_A)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude () | No. of Spectra |
---|---|---|---|---|---|
19 | 1.422872 | 42.801917 | 1344.375 | 7 | |
20 | 1.423569 | 42.80256 | 1343.070 | 12 | |
21 | 1.424258 | 42.802863 | 1344.285 | 6 | |
22 | 1.423466 | 42.80221 | 1343.305 | 4 | |
23 | 1.423495 | 42.802963 | 1344.493 | 12 | |
24 | 1.42338 | 42.802993 | 1344.632 | 12 |
Appendix B.10. Aquatic Type b (AQ_B)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
25 | 1.423539 | 42.802234 | 1343.04 | 7 |
Appendix B.11. Aquatic Type c (AQ_C)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
26 | 1.423972 | 42.802653 | 1343.362 | 12 |
Appendix B.12. Carex sp. Homogeneous Vegetation (CA_HV)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
27 | 1.423499 | 42.802124 | 1343.533 | 4 | |
28 | 1.423547 | 42.802071 | 1344.568 | 4 | |
29 | 1.42441 | 42.803316 | 1351.678 | 9 | |
30 | 1.424173 | 42.802804 | 1344.481 | 10 |
Appendix B.13. Pinguicula sp. Combined Vegetation (PI_CV)
Picture | Plot | Longitude (DD) | Latitude (DD) | Altitude (m) | No. of Spectra |
---|---|---|---|---|---|
31 | 1.42316 | 42.802875 | 1344.344 | 12 | |
32 | 1.423421 | 42.80287 | 1344.247 | 3 |
References
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Loisel, J.; Brosseau, D.P.; Beilman, D.W.; Hunt, S.J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Rydin, H.; Jeglum, J.K. The Biology of Peatlands, 2nd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Kent, M.; Coker, P. Vegetation Description and Analysis: A Practical Approach; Belhaven Press: Totnes, UK, 1992. [Google Scholar]
- Schmidt, K.; Skidmore, A. Spectral discrimination of vegetation types in a coastal wetland. Remote Sens. Environ. 2003, 85, 92–108. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O. Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry. ISPRS J. Photogramm. Remote Sens. 2009, 64, 612–620. [Google Scholar] [CrossRef]
- Seher, J.S.; Tueller, P.T. Color aerial photos for marshland. Photogramm. Eng. 1973, 9, 489–499. [Google Scholar]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Guyot, G. Optical properties of vegetation canopies. In Applications of Remote Sensing in Agriculture; Butterworths: Sevenoaks, UK, 1990; pp. 19–43. [Google Scholar]
- Yuan, L.; Zhang, L. Identification of the spectral characteristics of submerged plant Vallisneria spiralis. Acta Ecol. Sin. 2006, 26, 1005–1010. [Google Scholar] [CrossRef]
- Hestir, E.L.; Khanna, S.; Andrew, M.E.; Santos, M.J.; Viers, J.H.; Greenberg, J.A.; Rajapakse, S.S.; Ustin, S.L. Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sens. Environ. 2008, 112, 4034–4047. [Google Scholar] [CrossRef]
- Torbick, N.; Becker, B.; Qi, J.; Lusch, D. Characterizing field-level hyperspectral measurements for identifying wetland invasive plant species. In Invasive Species: Detection, Impact and Control; Nova Science Publishers: Hauppauge, NY, USA, 2009; pp. 97–115. [Google Scholar]
- Hamada, Y.; Stow, D.A.; Coulter, L.L.; Jafolla, J.C.; Hendricks, L.W. Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery. Remote Sens. Environ. 2007, 109, 237–248. [Google Scholar] [CrossRef]
- Vaiphasa, C.; Skidmore, A.K.; de Boer, W.F.; Vaiphasa, T. A hyperspectral band selector for plant species discrimination. ISPRS J. Photogramm. Remote Sens. 2007, 62, 225–235. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Y.; Wang, Z.; Song, K.; Ren, C. Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 226–231. [Google Scholar] [CrossRef]
- Prospere, K.; McLaren, K.; Wilson, B. Plant species discrimination in a tropical wetland using in situ hyperspectral data. Remote Sens. 2014, 6, 8494–8523. [Google Scholar] [CrossRef]
- Krankina, O.; Pflugmacher, D.; Friedl, M.; Cohen, W.; Nelson, P.; Baccini, A. Meeting the challenge of mapping peatlands with remotely sensed data. Biogeosciences 2008, 5, 1809–1820. [Google Scholar] [CrossRef]
- Hubert-Moy, L.; Clément, B.; Lennon, M.; Houet, T.; Lefeuvre, E. Etude de zones humides de fond de vallées à partir d’images hyperspectrales CASI: Application à un bassin versant de la région de Pleine-Fougères (Bretagne, France). Photo-Interprétation 2003, 39, 33–43. [Google Scholar]
- Thomas, V.; Treitz, P.; Jelinski, D.; Miller, J.; Lafleur, P.; McCaughey, J.H. Image classification of a northern peatland complex using spectral and plant community data. Remote Sens. Environ. 2003, 84, 83–99. [Google Scholar] [CrossRef]
- Knoth, C.; Klein, B.; Prinz, T.; Kleinebecker, T. Unmanned aerial vehicles as innovative remote sensing platforms for high-resolution infrared imagery to support restoration monitoring in cut-over bogs. Appl. Veg. Sci. 2013, 16, 509–517. [Google Scholar] [CrossRef]
- Yagoub, H.; Belbachir, A.H.; Benabadji, N. Detection and mapping vegetation cover based on the Spectral Angle Mapper algorithm using NOAA AVHRR data. Adv. Space Res. 2014, 53, 1686–1693. [Google Scholar] [CrossRef]
- Bahri, E.M.; Haboudane, D.; Bannari, A.; Bonn, F.; Chillasse, L. Essai de cartographie des espèces forestières dominantes dans le moyen atlas (Maroc) à l’aide des données Aster. Revue Télédétection 2007, 7, 283–301. [Google Scholar]
- Sobhan, I. Species Discrimination from a Hyperspectral Perspective. Ph.D. Thesis, International Institute for Geo-Information Science & Earth Observation, University of Twente, Enschede, The Netherlands, 2007. [Google Scholar]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Dalponte, M.; ∅rka, H.O.; Gobakken, T.; Gianelle, D.; Næsset, E. Tree species classification in boreal forests with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2632–2645. [Google Scholar] [CrossRef]
- Vyas, D.; Krishnayya, N.; Manjunath, K.; Ray, S.; Panigrahy, S. Evaluation of classifiers for processing Hyperion (EO-1) data of tropical vegetation. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 228–235. [Google Scholar] [CrossRef]
- Pant, P.; Heikkinen, V.; Korpela, I.; Hauta-Kasari, M.; Tokola, T. Logistic regression-based spectral band selection for tree species classification: Effects of spatial scale and balance in training samples. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1604–1608. [Google Scholar] [CrossRef]
- Pal, M. Multinomial logistic regression-based feature selection for hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 214–220. [Google Scholar] [CrossRef]
- Merot, P.; Hubert-Moy, L.; Gascuel-Odoux, C.; Clement, B.; Durand, P.; Baudry, J.; Thenail, C. A Method for Improving the Management of Controversial Wetland. Environ. Manag. 2006, 37, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Feilhauer, H.; Asner, G.P.; Martin, R.E.; Schmidtlein, S. Brightness-normalized partial least squares regression for hyperspectral data. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1947–1957. [Google Scholar] [CrossRef]
- Tsai, F.; Philpot, W. Derivative analysis of hyperspectral data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Serrano, L.; Peñuelas, J.; Ustin, S.L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sens. Environ. 2002, 81, 355–364. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K.; Prins, H. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens. Environ. 2004, 89, 393–408. [Google Scholar] [CrossRef]
- Hu, B.; Lévesque, J.; Ardouin, J.P. Vegetation Species Identification Using Hyperspectral Imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; Volume 2, pp. II299–II302. [Google Scholar]
- Ghiyamat, A.; Shafri, H.Z.M.; Mahdiraji, G.A.; Shariff, A.R.M.; Mansor, S. Hyperspectral discrimination of tree species with different classifications using single-and multiple-endmember. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.I.; Ren, H. An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1044–1063. [Google Scholar] [CrossRef]
- Chauhan, H.; Mohan, B.K. Effectiveness of spectral similarity measures to develop precise crop spectra for hyperspectral data analysis. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 83–90. [Google Scholar] [CrossRef]
- Lance, G.N.; Williams, W.T. Computer programs for hierarchical polythetic classification (“similarity analyses”). Comput. J. 1966, 9, 60–64. [Google Scholar] [CrossRef]
- Kruse, F.; Lefkoff, A.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Chang, C.I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 2000, 46, 1927–1932. [Google Scholar] [CrossRef]
- Du, Y.; Chang, C.I.; Ren, H.; Chang, C.C.; Jensen, J.O.; D’Amico, F.M. New hyperspectral discrimination measure for spectral characterization. Opt. Eng. 2004, 43, 1777–1786. [Google Scholar]
- Van der Meer, F.; Bakker, W. Cross correlogram spectral matching: application to surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada. Remote Sens. Environ. 1997, 61, 371–382. [Google Scholar] [CrossRef]
- Farifteh, J.; Van Der Meer, F.; Carranza, E. Similarity measures for spectral discrimination of salt-affected soils. Int. J. Remote Sens. 2007, 28, 5273–5293. [Google Scholar] [CrossRef]
- De Carvalho, O.A., Jr.; Meneses, P.R. Spectral correlation mapper (SCM): An improvement on the spectral angle mapper (SAM). In Summaries of the Ninth JPL Airborne Earth Science Workshop; Jet Propulsion Laboratory, National Aeronautics and Space Administration; JPL Publication: Pasadena, CA, USA, 2000; Volume 9. [Google Scholar]
- Robila, S. An analysis of spectral metrics for hyperspectral image processing. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; IEEE: Anchorage, AK, USA, 2004; Volume 5, pp. 3233–3236. [Google Scholar]
- Angelopoulou, E.; Lee, S.W.; Bajcsy, R. Spectral Gradient: A Material Descriptor Invariant to Geometry and Incident Illumination. In Proceedings of the Seventh International Conference on Computer Vision, Kerkyra, Greece, 23–27 September 1999; IEEE Computer Society Press: Kerkyra, Greece, 1999; Volume 2, pp. 861–867. [Google Scholar]
- Boochs, F.; Kupfer, G.; Dockter, K.; Kühbauch, W. Shape of the red edge as vitality indicator for plants. Remote Sens. 1990, 11, 1741–1753. [Google Scholar] [CrossRef]
- Nagler, P.; Daughtry, C.; Goward, S. Plant litter and soil reflectance. Remote Sens. Environ. 2000, 71, 207–215. [Google Scholar] [CrossRef]
- Kim, M.S.; Daughtry, C.S.; Chappelle, E.; McMurtrey, J.; Walthall, C.L. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par). In Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, D’Isere, France, 17–21 January 1994. [Google Scholar]
- Zarco-Tejada, P.J.; Pushnik, J.; Dobrowski, S.; Ustin, S. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens. Environ. 2003, 84, 283–294. [Google Scholar] [CrossRef]
- Sims, D.A.; Luo, H.; Hastings, S.; Oechel, W.C.; Rahman, A.F.; Gamon, J.A. Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem. Remote Sens. Environ. 2006, 103, 289–303. [Google Scholar] [CrossRef]
- Barnes, E.; Clarke, T.; Richards, S.; Colaizzi, P.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Bloomington, MN, USA, 2000; pp. 1–15. [Google Scholar]
- Carter, G.A.; Miller, R.L. Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. Remote Sens. Environ. 1994, 50, 295–302. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Datt, B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Datt, B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.; Noland, T.; Sampson, P. Vegetation Stress Detection through Chlorophyll+ Estimation and Fluorescence Effects on Hyperspectral Imagery. J. Environ. Qual. 2002, 31, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Haboudane, D.; Tremblay, N.; Wang, J.; Vigneault, P.; Li, B. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997. [Google Scholar] [CrossRef]
- Le Maire, G.; François, C.; Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Le Maire, G.; François, C.; Soudani, K.; Berveiller, D.; Pontailler, J.Y.; Bréda, N.; Genet, H.; Davi, H.; Dufrêne, E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [Google Scholar] [CrossRef]
- Filella, I.; Peñuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Huete, A.; Liu, H.; Batchily, K.; Van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.; Fredeen, A.; Merino, J.; Field, C. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Pinty, B.; Verstraete, M. GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio 1992, 101, 15–20. [Google Scholar] [CrossRef]
- Smith, R.; Adams, J.; Stephens, D.; Hick, P. Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Crop Pasture Sci. 1995, 46, 113–125. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. The chlorophyll fluorescence ratio F 735/F 700 as an accurate measure of the chlorophyll content in plants. Remote Sens. Environ. 1999, 69, 296–302. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Maccioni, A.; Agati, G.; Mazzinghi, P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J. Photochem. Photobiol. B Biol. 2001, 61, 52–61. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. Bot. 2009, 96, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Daughtry, C.; Walthall, C.; Kim, M.; De Colstoun, E.B.; McMurtrey, J. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Eitel, J.; Long, D.; Gessler, P.; Smith, A. Using in-situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. Int. J. Remote Sens. 2007, 28, 4183–4190. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.; Kerr, Y.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Hunt, E.R.; Rock, B.N. Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Hardisky, M.A.; Klemas, V.; Smart, R.M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gandia, S.; Fernández, G.; García, J.; Moreno, J. Retrieval of vegetation biophysical variables from CHRIS/PROBA data in the SPARC campaign. In Proceedings of the 2nd ESA CHRIS/Proba Workshop, Frascati, Italy, 28–30 April 2004; Volume 578, pp. 40–48. [Google Scholar]
- Hansen, P.; Schjoerring, J. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Uto, K.; Kosugi, Y. Hyperspectral manipulation for the water stress evaluation of plants. Contemp. Mater. 2012, 1, 18–25. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Griffin, K.L.; Field, C.B. Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sens. Environ. 1993, 46, 110–118. [Google Scholar] [CrossRef]
- Reyniers, M.; Walvoort, D.J.; De Baardemaaker, J. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote Sens. 2006, 27, 4159–4179. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gamon, J.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Horler, D.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Horler, D.; Dockray, M.; Barber, J.; Barringer, A. Red edge measurements for remotely sensing plant chlorophyll content. Adv. Space Res. 1983, 3, 273–277. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ. 2006, 101, 181–193. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F. Utilisation de la haute résolution spectrale pour suivre l’état des couverts végétaux. In Signatures Spectrales d’objets en télédétection. 4 ème Colloque International; Agence Spatiale Européenne: Aussois, France, 1988; Volume 287, pp. 279–286. [Google Scholar]
- Zhu, Y.; Yao, X.; Tian, Y.; Liu, X.; Cao, W. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Xue, L.; Cao, W.; Luo, W.; Dai, T.; Zhu, Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agron. J. 2004, 96, 135–142. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Lloret, P.; Muñoz, F.; Vilajeliu, M. Reflectance assessment of mite effects on apple trees. Int. J. Remote Sens. 1995, 16, 2727–2733. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. Angular dependence of maize and sugar beet VIs from directional CHRIS/Proba data. In Proceedings of the 4th ESA CHRIS/Proba Workshop, ESRIN, Frascati, Italy, 19–21 September 2006. [Google Scholar]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- McMurtrey, J.; Chappelle, E.; Kim, M.; Meisinger, J.; Corp, L. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sens. Environ. 1994, 47, 36–44. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R. Land cover mapping at BOREAS using red edge spectral parameters from CASI imagery. J. Geophys. Res. Atmos. (1984–2012) 1999, 104, 27921–27933. [Google Scholar] [CrossRef]
- Lichtenthaler, H.; Lang, M.; Sowinska, M.; Heisel, F.; Miehe, J. Detection of vegetation stress via a new high resolution fluorescence imaging system. J. Plant Physiol. 1996, 148, 599–612. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Chen, Z. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens. Environ. 1995, 54, 38–48. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Vogelmann, J.; Rock, B.; Moss, D. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Pu, R.; Foschi, L.; Gong, P. Spectral feature analysis for assessment of water status and health level in coast live oak (Quercus agrifolia) leaves. Int. J. Remote Sens. 2004, 25, 4267–4286. [Google Scholar] [CrossRef]
- Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance water index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers; Genesis Publishing Pvt Ltd.: Guildford, UK, 1925. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 50–60. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Salisbury, F.B.; Ross, C.W. Plant Physiology; Wadworth: Belmont, CA, USA, 1992. [Google Scholar]
- Gausman, H.W. Visible light reflectance, transmittance, and absorptance of differently pigmented cotton leaves. Remote Sens. Environ. 1983, 13, 233–238. [Google Scholar] [CrossRef]
- Clevers, J. The use of imaging spectrometry for agricultural applications. ISPRS J. Photogramm. Remote Sens. 1999, 54, 299–304. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Red edge shift and biochemical content in grass canopies. ISPRS J. Photogramm. Remote Sens. 2007, 62, 34–42. [Google Scholar] [CrossRef]
- Woolley, J.T. Reflectance and transmittance of light by leaves. Plant Physiol. 1971, 47, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Boyer, M.; Miller, J.; Belanger, M.; Hare, E.; Wu, J. Senescence and spectral reflectance in leaves of northern pin oak (Quercus palustris Muenchh.). Remote Sens. Environ. 1988, 25, 71–87. [Google Scholar] [CrossRef]
- Fourty, T.; Baret, F.; Jacquemoud, S.; Schmuck, G.; Verdebout, J. Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems. Remote Sens. Environ. 1996, 56, 104–117. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Vapnik, V.N. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; Volume 1. [Google Scholar]
- Cawley, G.C.; Talbot, N.L. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics 2006, 22, 2348–2355. [Google Scholar] [CrossRef] [PubMed]
- Dumont, J.; Hirvonen, T.; Heikkinen, V.; Mistretta, M.; Granlund, L.; Himanen, K.; Fauch, L.; Porali, I.; Hiltunen, J.; Keski-Saari, S.; et al. Thermal and hyperspectral imaging for Norway spruce (Picea abies) seeds screening. Comput. Electron. Agric. 2015, 116, 118–124. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. Journal of Chemometrics 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Castillo, R.; Otto, M.; Freer, J.; Valenzuela, S. Multivariate strategies for classification of Eucalyptus globulus genotypes using carbohydrates content and NIR spectra for evaluation of their cold resistance. J. Chemom. 2008, 22, 268–280. [Google Scholar] [CrossRef]
- Lê Cao, K.A.; Boitard, S.; Besse, P. Sparse PLS discriminant analysis: Biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinform. 2011, 12, 253. [Google Scholar] [CrossRef] [PubMed]
- Peerbhay, K.Y.; Mutanga, O.; Ismail, R. Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa. ISPRS J. Photogramm. Remote Sens. 2013, 79, 19–28. [Google Scholar] [CrossRef]
- Apolloni, B.; Pedrycz, W.; Bassis, S.; Malchiodi, D. The Puzzle of Granular Computing; Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Szmidt, E. Distances and Similarities in Intuitionistic Fuzzy Sets; Studies in Fuzziness and Soft Computing; Springer International Publishing: Gewerbestrasse, Switzerland, 2013. [Google Scholar]
- Aggarwal, C.C.; Hinneburg, A.; Keim, D.A. On the surprising behavior of distance metrics in high dimensional space. In International Conference on Database Theory; Springer: Houten, Switzerland, 2001; pp. 420–434. [Google Scholar]
Vegetation Types | Code | Measurements | No. of Locations | No. of Spectra | ||
---|---|---|---|---|---|---|
09/04/2014 | 09/05/2014 | 09/12/2014 | ||||
Calluna vulgaris | CAVU | 2 | 2 | 2 | 14 | |
Sphagnum sp. | SPHA | 2 | 4 | 5 | 22 | |
Eleocharis quinqueflora | ELQU | 1 | 2 | 1 | 2 | 15 |
Pinguicula sp. | PING | 1 | 1 | 1 | 8 | |
Menyanthes trifoliata | METR | 1 | 1 | 1 | 1 | 12 |
Juniperus communis | JUCO | 1 | 2 | 2 | 2 | 19 |
Rhododendron ferrugineum | RHFR | 2 | 2 | 2 | 14 | |
Salix sp. | SALI | 1 | 3 | 3 | 17 | |
Aquatic environment a | AQ_A | 3 | 6 | 7 | 6 | 53 |
Aquatic environment b | AQ_B | 1 | 1 | 1 | 7 | |
Aquatic environment c | AQ_C | 1 | 1 | 1 | 1 | 12 |
Carex sp. homogeneous vegetation | CA_HV | 2 | 2 | 3 | 4 | 26 |
Pinguicula sp. combined vegetation | PI_CV | 1 | 2 | 1 | 2 | 15 |
Spectral Range | Spectral Resolution | Spectral Sampling | |
---|---|---|---|
VNIR (Visible and Near InfraRed) | 0.35 m–1.00 m | at | (0.35 m–1.05 m) |
SWIR (Short Wave InfraRed) | 1.00 m–2.05 m | at | (1.05 m–2.50 m) |
at |
Transformation | Formulation | Reference |
---|---|---|
Brightness-normalized spectral signature | [33] | |
First derivative | where is the separation between adjacent bands, and | [34] |
Second derivative | where . | [34] |
log transformation or pseudo absorbance | [35] | |
Continuum Removal | where C is a convex hull fitting over the top of the spectrum to connect local spectrum maxima. | [36,37] |
Continuum removal derivative reflectance | [38] |
Similarity Measures | Formulation | Comments | Reference |
---|---|---|---|
Minkowski distance | Spectral signatures are represented by vectors from . is the usual Euclidean distance ; is the Manhattan or City Block distance | : [24,39,40]; : [41,42] | |
Canberra distance | It is a weighted version of the Manhattan distance | [43] | |
Spectral Angle Mapper (SAM) | Since the angle between two vectors is invariant with respect to the length of the vectors, this technique is relatively insensitive to illumination and albedo effects | [23,44] | |
Spectral Information Divergence (SID) | It calculates the probabilistic behaviour between spectral signatures | [45] | |
where where | |||
SAM-SID | It is a combination of probability and geometry spaces that improves discrimination ability | [46] | |
Spectral Correlation Measure (SCM) | It is calculated as the correlation coefficient of the pixel and their respective spectral signatures | [47] | |
Pearson Correlation Coefficient (PCC) | where is the mean of . | ||
Spectral Similarity Value (SSV) | Low value of SSV means high similarity and vice versa | [48] | |
Spectral Correlation Angle (SCA) | It is an improvement of SAM derivated from PCC that has been shown to be able to distinguish between positive and negative correlations and to yield better estimates in some experiments | [49,50] | |
Spectral Gradient Angle (SGA) | It is invariant to illumination conditions | [51] |
Index Name | Formulation | Vegetation Properties Highlighted by the Index | String Type |
---|---|---|---|
Boochs | Chlorophyll | [52] | |
Boochs2 | Chlorophyll | ||
CAI (Cellulose Absorption Index) | Cellulose, soil litter | [53] | |
CARI (Chlorophyll Absorption Ratio Index) | Chlorophyll | [54] | |
where ; | |||
CI (Curvature Index) | Chlorophyll | [55] | |
CCI (Canopy Chlorophyll Index) | Chlorophyll | [56] | |
CCCI (Canopy Chlorophyll Content Index) | Chlorophyll | [57] | |
Carter[695,420] | Stress | [58] | |
Carter[695,760] | Stress | ||
Carter[605,760] | Stress | ||
Carter[710,760] | Stress | ||
Carter[695,670] | Stress | ||
Carter2 | |||
CaCoI[515,550] (Carotenoid Concentration Index) | Carotenoid | [59,60] | |
CaCoI[515,700] | Carotenoid | ||
CaCoI2[770,510,700] | Carotenoid | [59,60] | |
CaCoI2[770,510,550] | Carotenoid | ||
Datt[850] | Chlorophyll | [61] | |
Datt[780] | Chlorophyll | [61] | |
Datt2[850,710] | Chlorophyll | ||
Datt2[672,550] | Chlorophyll | ||
Datt_prime | Chlorophyll | ||
Datt3[672] | Chlorophyll | [62] | |
Datt3[860] | Chlorophyll | [62] | |
DCI | [63] | ||
DCNI (Double-peak Canopy Nitrogen Index) | Nitrogen | [64] | |
DD (Double Difference Index) | Chlorophyll | [65] | |
DDn (new Double Difference Index) | Chlorophyll | [66] | |
DPI (Double Peak Index) | Chlorophyll | [55] | |
dG | Chlorophyll, stress | ||
dRE | Chlorophyll, stress | [67] | |
D[730,706] | Chlorophyll | [55] | |
D[705,722] | |||
EVI (Enhanced Vegetation Index) | Chlorophyll | [68] | |
EGFR (Edge-Green First derivative Ratio) | Chlorophyll, nitrogen | [69] | |
EGFN (Edge-Green first Derivative Normalized difference) | Chlorophyll, nitrogen | ||
GEMI (Global Environment Monitoring Index) | [70] | ||
where | |||
GI (Greeness Index) | Chlorophyll | [71] | |
Gitelson | Chlorophyll | [72] | |
Gitelson2 | Chlorophyll | [59] | |
GMI (Gitelson and Merzlyak Index) | Chlorophyll | [73] | |
Green NDVI | Chlorophyll | [74] | |
Maccioni | Chlorophyll | [75] | |
MARI (Modified Anthocyanin Reflectance Index) | Anthocyanin | [76,77] | |
MCARI[700,670] (Modified Chlorophyll Absorption Index) | Chlorophyll, Leaf Area Index | [78] | |
MCARI[750,705] | Chlorophyll | [79] | |
MCARI[700,670]/OSAVI[800,670] | Chlorophyll | [80] | |
MCARI[750,705]/OSAVI[750,705] | Chlorophyll | [79] | |
MCARI[750,705]/MTVI2[750] | Nitrogen | [81] | |
MNDVI[800,680] (Modified NDVI) | Chlorophyll | [82] | |
MNDVI[750,705] | Chlorophyll | ||
MSAVI (Modified Soil Adjusted Vegetation Index) | Chlorophyll | [83] | |
MSI (Moisture Stress Index) | Water stress | [84] | |
MSR[800,680] (modified Simple Ratio) | Chlorophyll | [82] | |
MSR[750,705] | Chlorophyll | ||
MSR2 | Chlorophyll, Leaf Area Index | [85] | |
MTCI (MERIS 1 Terrestrial Chlorophyll Index) | Chlorophyll | [86] | |
MTVI[800] (Modified Triangular Vegetation Index) | Leaf Area Index | [87] | |
MTVI[750] | Leaf Area Index | [87] | |
MTVI2 [800] | Leaf Area Index | [87] | |
MTVI2 [750] | [87] | ||
NDII (Normalized Difference Infrared Index) | Water status | [88] | |
NDLI (Normalized Difference Lignin Index) | Lignin | [35] | |
NDNI (Normalized Difference Nitrogen Index) | Nitrogen | [35] | |
NDRE (Normalized Difference Red Edge) | , with | [57] | |
NDVI[800,670] (Normalised Difference Vegetation Index) | Chlorophyll, Leaf Area Index | [89] | |
NDVI[750,705] | Chlorophyll | [73] | |
NDVI[682,553] | Chlorophyll | [90] | |
NDVI[573,440] | Nitrogen | [91] | |
NDWI[860,1240] (Normalized Difference Water Index) | |||
NDWI[860,1640] | Water status | [92] | |
NDWI[860,2130] | |||
NDWI[1100,1450] | Water stress | [93] | |
NDWI[1280,1450] | Water stress | [93] | |
NPCI (Normalised Pigment Chlorophyll Index) | (Total pigments)/chlorophyll | [94] | |
VI_opt (Vegetation Index optimal) | Nitrogen | [95] | |
OSAVI[800,670] (Optimised Soil-Adjust Vegetation Index) | Chlorophyll | [96] | |
OSAVI[750,705] | Chlorophyll | [79] | |
PRI (Photochemical Reflectance Index) | Stress | [97] | |
RDVI (Renormalised Difference Vegetation Index) | Chlorophyll, Leaf Area Index | [98] | |
REIP (Red-Edge Inflexion Point) | Chlorophyll, Leaf Area Index | [67,99,100] | |
REMI (Red-Edge Model Index) | Chlorophyll | [101] | |
REP_LE (Red-Edge Position Linear Extrapolation) | where and represent the slope and the intercept of the far-red line and and represent the slope and the intercept of the NIR line | Nitrogen, chlorophyll | [102] |
REP_LI (Red-Edge Position Linear Interpolation) | Chlorophyll | [103] | |
RVI[810,660] (Ratio Vegetation Index) | Nitrogen | [104] | |
RVI[810,560] | Nitrogen | [105] | |
RVI[800,670] | |||
SIPI (Structure Insensitive Pigment Index) | Pigments/chlorophyll, stress | [106] | |
SPVI (Spectral Polygon Vegetation Index) | Chlorophyll × Leaf Area Index | [107] | |
SR[800,680] (Simple Ratio Index) | Chlorophyll | [108] | |
SR[750,700] | [73] | ||
SR[752,690] | |||
SR[750,550] | |||
SR[700,670] | Chlorophyll | [109] | |
SR[675,700] | Chlorophyll | [110] | |
SR[750,710] | Chlorophyll | [111] | |
SR[440,690] | Stress | [112] | |
SRPI (Simple Ratio Pigment Index) | (Total pigments)/chlorophyll, stress | [106] | |
Sum_Dr[625,795] | Chlorophyll | [113] | |
Sum_Dr[680,780] | Chlorophyll, Leaf Area Index | [67] | |
TCARI[700,670] (Transformed Chlorophyll Absorption Ratio Index) | Chlorophyll | [80] | |
TCARI[750,705] | Chlorophyll | [79] | |
TCARI[700,670]/OSAVI[800,670] | Chlorophyll | [80] | |
TCARI[750,705]/OSAVI[750,705] | Chlorophyll | [79] | |
TVI (Triangular Vegetation Index) | Leaf Area Index, Canopy chlorophyll density | [114] | |
Vogelmann | Chlorophyll | [115] | |
Vogelmann2 | Chlorophyll | ||
Vogelmann3 | Chlorophyll | ||
Maximum first derivatives of 8 different regions whithin the spectra | Pigments absorption, w., c., s., l absorption ; refer to Table 2 in [116] for a full description. | [116] | |
A_1D: 495–550 | |||
B_1D: 550–650 | |||
C_1D: 680–780 | |||
D_1D: 970–1090 | |||
E_1D: 1110–1205 | |||
F_1D: 1205–1285 | |||
H_1D: 1455–1640 | |||
J_1D: 1925–2200 | |||
Corresponding spectral positions of the maximum first derivatives | Pigments absorption, w., c., s., l. absorption ; refer to Table 2 in [116] for a full description. | [116] | |
A_WP: 495–550 | |||
B_WP: 550–650 | |||
C_WP: 680–780 | |||
D_WP: 970–1090 | |||
E_WP: 1110–1205 | |||
F_WP: 1205–1285 | |||
H_WP: 1455–1640 | |||
J_WP: 1925–2200 | |||
WI (Water Index) | Water status | [117] | |
WI[1100,1450] | Water stress | [93] | |
WI[1280,1450] | Water stress | [93] | |
WI2 | Water stress | [93] |
Wavelength Range [nm] | Description | Spectral Reflectance of Vegetation | References |
---|---|---|---|
400–700 | Visible | Low reflectance and transmittance due to chlorophyll and biologically active pigments (such as carotene) absorptions | [122,123] |
680–750 | Red-edge | The reflectance is strongly correlated with plant biochemical and biophysical parameters | [124,125] |
700–1300 | Near infrared | High reflectance and transmittance, very low absorption resulting from photon scattering at the air-cell interfaces within the leaf spongy mesophyll | [126,127] |
1300–2500 | Shortwave infrared | Lower reflectance than other spectral regions due to strong water absorption and minor absorption of biochemical contents such as lignin and carbon constituants | [126,128] |
Median Spectra | Median | Mean | |||
---|---|---|---|---|---|
Canberra Dist. | City Block Dist. | Euclidean Dist. | Reflectance | Reflectance | |
Spectral signature | 53.62 | 52.34 | 51.91 | 57.02 | 50.64 |
Normalized spectral signature | 51.91 | 52.34 | 50.64 | 55.74 | 57.87 |
log transformation of spectral signature | 52.34 | 52.34 | 51.49 | 55.74 | 51.91 |
First Derivative | 70.64 | 74.47 | 71.49 | ||
Second Derivative | 68.51 | 64.68 | |||
Continuum removed Reflectance | 51.06 | 50.64 | 51.06 | 54.04 | 52.77 |
Continuum Removed Derivative Reflectance | 64.68 | 62.98 | 61.28 | 78.30 | 75.32 |
Distance | SAM | |||
---|---|---|---|---|
Euclid | Manhattan | Canberra | ||
Spectral signature | 50.21 | 51.06 | 41.70 | |
First Derivative | 62.98 | 70.64 | 59.15 | |
Second Derivative | 65.96 | 74.04 | 63.83 | |
CRDR | 71.06 | 74.47 | 69.36 |
350–750 nm | 750–1350 nm | 1410–1810 nm | 1940–2400 nm | 350–2500 nm | |
---|---|---|---|---|---|
Spectral signature | 47.23 | 47.66 | 37.87 | 34.47 | |
First Derivative | 59.15 | 64.68 | 60.43 | 55.74 | |
Second Derivative | 72.34 | 69.79 | 72.34 | 53.19 | |
CRDR | 74.47 | 57.87 | 59.57 | 59.57 |
SPHA | CAVU | RH_FR | CA_HV | AQ_A | SALI | PING | JUQO | ELQU | METR | PI_CV | AQ_B | AQ_C | Producer’s Accuracy (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPHA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.00 | |
CAVU | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 57.14 | |
RHFR | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 78.57 | |
CA_HV | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 0 | 0 | 81.48 | |
AQ_A | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 3 | 4 | 1 | 1 | 6 | 56.60 | |
SALI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.00 | |
PING | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 87.50 | |
JUCO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 94.74 | |
ELQU | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 86.67 | |
METR | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 91.67 | |
PI_CV | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 93.33 | |
AQ_B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.00 | |
AQ_C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.00 | |
User’s accuracy (%) | 95.65 | 100.00 | 100.00 | 84.62 | 100.00 | 85.00 | 38.89 | 100.00 | 76.47 | 68.75 | 63.64 | 87.50 | 66.67 | Overall accuracy: |
F1-score (%) | 97.78 | 72.73 | 88.00 | 83.02 | 72.29 | 91.89 | 53.85 | 97.30 | 81.25 | 78.57 | 75.68 | 93.33 | 80.00 |
Biophysical Component | Index Name | No. of All Occurrences | No. of Single Occurrences | No. of Occurrences within Pair | No. of Occurrences within Triple |
---|---|---|---|---|---|
Chlorophyll | CCCI | 35 | 24 | 10 | 1 |
GMI | 33 | 25 | 8 | 0 | |
DPI | 33 | 16 | 17 | 0 | |
NDVI[750,705] | 32 | 25 | 7 | 0 | |
BOOCHS2 | 32 | 24 | 8 | 0 | |
SR[700,670] | 31 | 25 | 6 | 0 | |
OSAVI[800,670] | 31 | 20 | 8 | 3 | |
DDN | 26 | 18 | 8 | 0 | |
MNDVI[800,680] | 23 | 18 | 5 | 0 | |
GITELSON | 13 | 5 | 5 | 3 | |
Water | WI | 40 | 33 | 6 | 1 |
MSI | 39 | 31 | 8 | 0 | |
NDWI[860,1240] | 38 | 31 | 7 | 0 | |
NDII | 38 | 28 | 9 | 1 | |
NDWI[860,2130] | 35 | 24 | 11 | 0 | |
NDWI[1100,1450] | 32 | 22 | 10 | 0 | |
Stress | CARTER[695,670] | 36 | 26 | 9 | 1 |
CARTER[695,420] | 36 | 16 | 20 | 0 | |
Pigment | MARI | 75 | 13 | 62 | 0 |
PRI | 35 | 9 | 26 | 0 | |
Nitrogen | NDNI | 37 | 18 | 19 | 0 |
MCARI/MTVI2[750,705] | 30 | 22 | 8 | 0 | |
(Total pigments)/chlorophyll | NPCI | 31 | 18 | 13 | 0 |
SRPI | 29 | 16 | 13 | 0 | |
Water, cellulose, starch, lignin | F_1D | 89 | 27 | 62 | 2 |
F_WP | 20 | 15 | 5 | 0 |
CAVU | RHFR | CA_HV | AQ_A | SALI | PING | |
SPHA | F_WP | F_WP | WI | OSAVI[800,670] | F_WP | MSI |
CAVU | - | ∅ | ∅ | F_1D | ∅ | GMI |
RHFR | NPCI-F_1D | - | ∅ | ∅ | ∅ | MNDVI[800, 680] |
CA_HV | MARI-WI | CARTER[695, 670]-MCARI/MTVI2[750, 705] | - | ∅ | ∅ | ∅ |
AQ_A | - | F_1D-WI | NDNI-NDWI[1100,1450] | - | ∅ | ∅ |
SALI | CARTER[695, 420]-NDII | CARTER[695, 670]-BOOCHS2 | SRPI-NDVI[750,705] | F_1D-MSI | - | NPCI |
PING | - | - | NDNI-WI | DDN-NDWI[860,2130] | - | - |
JUCO | - | F_1D-WI | - | - | - | - |
ELQU | - | - | MARI-WI | MARI-MSI | - | - |
METR | - | - | CCCI-NDWI[860,1240] | - | - | DPI-F_ AD |
PI_CV | - | - | - | - | - | - |
AQ_B | - | - | - | - | - | - |
JUCO | ELQU | METR | PI_CV | AQ_B | AQ_C | |
SPHA | F_WP | CCCI | CCCI | WI | WI | OSAVI[800,670] |
CAVU | MARI | CCCI | GMI | GMI | WI | SR[700, 670] |
RHFR | ∅ | SRPI | CCCI | WI | WI | MNDVI[800, 680] |
CA_HV | F_WP | ∅ | ∅ | ∅ | WI | CCCI |
AQ_A | F_1D | ∅ | ∅ | NDNI | WI | MSI |
SALI | F_WP | NPCI | NPCI | NPCI | WI | MNDVI[800,680] |
PING | NDWI[860, 2130] | PRI | ∅ | BOOCHS2 | NDWI[860,1240] | BOOCHS2 |
JUCO | - | F_WP | F_WP | F_WP | WI | MNDVI[800,680] |
ELQU | - | - | MARI | CARTER[695,420] | NDWI[860,1240] | BOOCHS2 |
METR | - | - | - | ∅ | NDWI[860,1240] | BOOCHS2 |
PI_CV | - | - | PRI-WI | - | NDWI[860,1240] | OSAVI[800,670] |
AQ_B | - | - | - | - | - | NDWI[860,1240] |
Biophysical Components | SPHA | CAVU | RHFR | CA_HV | AQ_A | SALI | PING | JUCO | ELQU | METR | PI_CV | AQ_B | AQ_C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water | 33.33 | 8.33 | 16.67 | 16.67 | 16.67 | 8.33 | 25.00 | 16.67 | 8.33 | 8.33 | 25.00 | 100.00 | 16.67 |
Chlorophyll | 33.33 | 41.67 | 25.00 | 8.33 | 8.33 | 8.33 | 33.33 | 8.33 | 25.00 | 33.33 | 25.00 | 0.00 | 83.33 |
Stress | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.33 | 0.00 | 8.33 | 0.00 | 0.00 |
Nitrogen | 0.00 | 0.00 | 0.00 | 0.00 | 8.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 8.33 | 0.00 | 0.00 |
Pigment | 0.00 | 8.33 | 0.00 | 0.00 | 0.00 | 0.00 | 8.33 | 8.33 | 16.67 | 8.33 | 0.00 | 0.00 | 0.00 |
(Total pigments)/chlorophyll | 0.00 | 0.00 | 8.33 | 0.00 | 0.00 | 33.33 | 8.33 | 0.00 | 16.67 | 8.33 | 8.33 | 0.00 | 0.00 |
W., c., s., l. | 33.33 | 16.67 | 8.33 | 8.33 | 16.67 | 16.67 | 0.00 | 58.33 | 8.33 | 8.33 | 8.33 | 0.00 | 0.00 |
Total | 100.00 | 75.00 | 58.33 | 33.33 | 50.00 | 66.67 | 75.00 | 91.67 | 83.33 | 66.67 | 83.33 | 100.00 | 100.00 |
Training Size | Classifier | Overall Accuracy (±Standard Deviation) (%) | ||
---|---|---|---|---|
All Indices | Kruskal-Wallis | Hellinger Distance | ||
50% | SVM linear | 79.17 (±3.51) | 75.45 (±3.95) | 83.31 (±3.95) |
SVM RBF | 77.63 (±2.82) | 75.45 (±3.65) | ||
RLR- | 82.84 (±3.54) | |||
RLR- | 80.55 (±3.33) | 78.07 (±3.48) | 83.22 (±3.48) | |
RF | 78.71 (±3.34) | 71.05 (±3.56) | 81.60 (±3.56) | |
45% | SVM linear | 78.44 (±3.09) | 74.82 (±3.86) | 82.46 (±3.86) |
SVM RBF | 76.59 (±4.39) | 74.49 (±4.53) | 83.21 (±4.53) | |
RLR- | 77.26 (±4.16) | |||
RLR- | 79.85 (±3.36) | 83.13 (±3.80) | ||
RF | 77.26 (±4.14) | 70.33 (±3.04) | 80.26 (±3.04) | |
40% | SVM linear | 76.95 (±3.59) | 73.33 (±3.48) | 81.89 (±3.48) |
SVM RBF | 76.28 (±3.27) | 73.43 (±3.84) | 81.68 (±3.84) | |
RLR- | 79.69 (±3.43) | 77.72 (±3.62) | ||
RLR- | 82.97 (±3.34) | |||
RF | 76.86 (±3.41) | 70.34 (±3.96) | 80.96 (±3.96) | |
35% | SVM linear | 76.02 (±3.35) | 70.41 (±3.57) | 80.02 (±3.57) |
SVM RBF | 73.44 (±4.38) | 71.02 (±4.17) | 79.20 (±4.17) | |
RLR- | 74.98 (±2.74) | 74.87 (±3.78) | 80.89 (±3.78) | |
RLR- | ||||
RF | 75.32 (±3.32) | 67.79 (±3.55) | 79.37 (±3.55) | |
30% | SVM linear | 73.62 (±3.84) | 70.53 (±3.18) | 78.34 (±3.18) |
SVM RBF | 72.71 (±2.82) | 69.68 (±4.33) | 79.13 (±4.33) | |
RLR- | 74.08 (±4.03) | 79.25 (±3.23) | ||
RLR- | 73.39 (±3.33) | |||
RF | 72.53 (±2.60) | 66.00 (±2.74) | 77.17 (±2.74) | |
25% | SVM linear | 71.37 (±3.18) | 68.38 (±3.44) | 75.91 (±3.44) |
SVM RBF | 69.85 (±3.54) | 67.63 (±2.67) | 75.76 (±2.67) | |
RLR- | 69.42 (±4.06) | 70.90 (±3.34) | 76.35 (±3.34) | |
RLR- | ||||
RF | 70.79 (±2.95) | 65.10 (±3.31) | 75.05 (±3.31) |
SPHA | CAVU | RH_FR | CA_HV | AQ_A | SALI | PING | JUCO | ELQU | METR | PI_CV | AQ_B | AQ_C | Producer’s Accuracy (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPHA | 0.73 | 0.43 | 0.33 | 0.00 | 0.17 | 0.00 | 0.00 | 0.07 | 0.03 | 0.03 | 0.00 | 0.00 | 89.46 | |
CAVU | 2.30 | 0.67 | 0.83 | 0.00 | 0.07 | 0.30 | 0.20 | 0.17 | 0.10 | 0.17 | 0.00 | 0.00 | 56.31 | |
RHFR | 1.13 | 0.77 | 0.00 | 0.07 | 1.67 | 0.70 | 1.57 | 0.50 | 0.17 | 0.23 | 0.00 | 0.00 | 38.15 | |
CA_HV | 0.00 | 0.17 | 0.00 | 1.03 | 0.00 | 0.53 | 0.07 | 0.57 | 0.57 | 4.90 | 0.00 | 0.00 | 60.82 | |
AQ_A | 0.00 | 0.00 | 0.07 | 0.47 | 0.20 | 0.83 | 0.00 | 0.80 | 1.60 | 1.00 | 0.17 | 1.47 | 83.48 | |
SALI | 0.00 | 0.30 | 1.00 | 0.13 | 1.33 | 0.23 | 0.00 | 0.30 | 0.40 | 0.70 | 0.00 | 0.03 | 65.97 | |
PING | 0.00 | 0.23 | 0.23 | 1.57 | 1.13 | 0.00 | 0.00 | 0.60 | 0.27 | 0.83 | 0.00 | 0.03 | 18.36 | |
JUCO | 0.07 | 0.00 | 0.10 | 0.00 | 0.13 | 0.00 | 0.10 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 95.71 | |
ELQU | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
METR | 0.07 | 0.00 | 0.00 | 1.17 | 1.40 | 0.00 | 0.23 | 0.00 | 0.63 | 1.03 | 0.00 | 0.03 | 49.28 | |
PI_CV | 0.00 | 0.00 | 0.07 | 1.83 | 0.40 | 0.03 | 0.37 | 0.00 | 0.03 | 0.10 | 0.00 | 0.13 | 73.07 | |
AQ_B | 0.23 | 0.00 | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 88.00 | |
AQ_C | 0.00 | 0.07 | 0.00 | 0.10 | 0.67 | 0.03 | 0.03 | 0.00 | 0.00 | 0.07 | 0.30 | 0.00 | 85.89 | |
User’s accuracy (%) | 80.00 | 73.20 | 62.04 | 65.43 | 83.79 | 79.80 | 24.50 | 87.93 | 74.86 | 57.24 | 45.91 | 82.06 | OAA: | |
F1-score (%) | 84.47 | 63.66 | 47.24 | 63.04 | 83.64 | 72.23 | 20.99 | 91.66 | 85.39 | 52.96 | 56.39 | 83.93 |
SPHA | CAVU | RH_FR | CA_HV | AQ_A | SALI | PING | JUCO | ELQU | METR | PI_CV | AQ_B | AQ_C | Producer’s Accuracy (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPHA | 0.90 | 0.13 | 0.47 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.07 | 0.00 | 0.00 | 0.00 | 90.59 | |
CAVU | 0.90 | 0.67 | 0.47 | 0.00 | 0.03 | 0.70 | 0.00 | 0.03 | 0.03 | 0.13 | 0.00 | 0.00 | 73.07 | |
RHFR | 0.47 | 0.30 | 0.03 | 0.00 | 2.53 | 0.43 | 0.20 | 0.13 | 0.20 | 0.00 | 0.00 | 0.00 | 60.96 | |
CA_HV | 0.00 | 0.17 | 0.20 | 0.77 | 0.00 | 0.77 | 0.03 | 0.57 | 0.63 | 4.93 | 0.00 | 0.00 | 59.65 | |
AQ_A | 0.00 | 0.00 | 0.23 | 0.40 | 0.43 | 1.50 | 0.03 | 0.43 | 1.63 | 1.33 | 0.00 | 0.60 | 83.54 | |
SALI | 0.00 | 0.00 | 2.30 | 0.00 | 0.87 | 0.80 | 0.07 | 0.03 | 0.40 | 0.60 | 0.00 | 0.17 | 59.72 | |
PING | 0.00 | 0.27 | 0.17 | 1.67 | 0.37 | 0.00 | 0.00 | 0.17 | 0.40 | 0.73 | 0.00 | 0.03 | 36.61 | |
JUCO | 0.00 | 0.03 | 0.20 | 0.07 | 0.10 | 0.17 | 0.07 | 0.00 | 0.07 | 0.37 | 0.00 | 0.00 | 92.29 | |
ELQU | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
METR | 0.00 | 0.00 | 0.03 | 0.87 | 0.73 | 0.00 | 0.07 | 0.00 | 0.03 | 1.03 | 0.00 | 0.00 | 69.30 | |
PI_CV | 0.00 | 0.00 | 0.10 | 1.23 | 0.17 | 0.07 | 0.23 | 0.00 | 0.00 | 0.37 | 0.00 | 0.00 | 80.27 | |
AQ_B | 0.03 | 0.00 | 0.47 | 0.00 | 0.10 | 0.00 | 0.07 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 84.60 | |
AQ_C | 0.00 | 0.00 | 0.00 | 0.03 | 0.47 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 93.33 | |
User’s accuracy (%) | 91.67 | 82.78 | 59.82 | 69.20 | 90.32 | 70.64 | 30.26 | 97.51 | 88.19 | 61.50 | 49.19 | 91.30 | OAA: | |
F1-score (%) | 91.12 | 77.62 | 60.39 | 64.07 | 86.80 | 64.72 | 33.13 | 92.09 | 65.17 | 61.00 | 91.66 | 92.31 |
Training Size | Classifier | Overall Accuracy (±Standard Deviation) (%) | |||
---|---|---|---|---|---|
Spectral Signature | Second Derivative | First Derivative | Continuum Removed Derivative Reflectance | ||
50% | SVM linear | 80.99 (±6.61) | 86.94 (±5.21) | 85.95 (±3.81) | |
SVM RBF | 67.44 (±4.69) | 78.35 (±2.74) | 81.32 (±2.13) | 86.94 (±3.11) | |
RLR- | 86.45 (±3.57) | 86.94 (±4.10) | 89.75 (±2.48) | 86.94 (±1.76) | |
RLR- | 87.44 (±1.84) | ||||
RF | 62.98 (±3.52) | 84.79 (±4.92) | 73.88 (±2.84) | 86.45 (±4.07) | |
PLS-DA | 75.21 (±3.88) | 71.90 (±4.99) | 73.72 (±3.52) | 75.04 (±3.28) | |
45% | SVM linear | 81.38 (±4.80) | 85.85 (±1.79) | 84.62 (±1.54) | |
SVM RBF | 64.15 (±2.41) | 73.54 (±4.71) | 76.92 (±2.06) | 86.00 (±1.02) | |
RLR- | 83.85 (±4.01) | 84.00 (±2.64) | 85.85 (±4.63) | 86.00 (±1.57) | |
RLR- | 85.69 (±1.66) | ||||
RF | 59.85 (±3.35) | 82.31 (±4.43) | 72.46 (±3.13) | 85.23 (±3.13) | |
PLS-DA | 75.38 (±2.18) | 72.62 (±2.86) | 72.15 (±1.23) | 71.08 (±2.60) | |
40% | SVM linear | 75.97 (±4.31) | 83.60 (±3.23) | ||
SVM RBF | 62.45 (±3.07) | 73.09 (±4.50) | 72.52 (±4.69) | 83.45 (±2.41) | |
RLR- | 80.72 (±2.06) | 82.16 (±1.47) | 83.88 (±2.83) | 82.73 (±1.11) | |
RLR- | 84.60 (±3.85) | 84.32 (±1.79) | |||
RF | 56.69 (±1.95) | 80.29 (±4.50) | 70.36 (±3.17) | 83.74 (±2.93) | |
PLS-DA | 76.69 (±2.75) | 72.52 (±1.79) | 72.81 (±1.32) | 70.22 (±1.62) | |
35% | SVM linear | 69.74 (±7.38) | 80.00 (±3.22) | ||
SVM RBF | 56.23 (±3.09) | 68.05 (±4.01) | 68.31 (±3.86) | 80.39 (±2.07) | |
RLR- | 77.92 (±4.11) | 77.79 (±3.37) | 80.00 (±4.78) | 79.74 (±3.35) | |
RLR- | 78.96 (±3.55) | 81.69 (±2.07) | |||
RF | 53.25 (±3.05) | 77.27 (±3.15) | 67.27 (±2.12) | 80.52 (±2.17) | |
PLS-DA | 75.45 (±3.42) | 69.48 (±2.63) | 70.52 (±2.12) | 68.70 (±1.71) | |
30% | SVM linear | 70.42 (±3.08) | 79.64 (±1.78) | ||
SVM RBF | 55.39 (±5.74) | 67.03 (±4.17) | 68.61 (±3.48) | 80.73 (±1.50) | |
RLR- | 78.30 (±2.08) | 74.91 (±7.86) | 77.94 (±3.77) | 78.79 (±6.37) | |
RLR- | 77.33 (±9.20) | 81.70 (±4.01) | |||
RF | 54.30 (±1.86) | 76.97 (±4.58) | 68.00 (±0.97) | 79.88 (±3.33) | |
PLS-DA | 72.00 (±3.54) | 69.09 (±4.58) | 68.73 (±3.20) | 68.48 (±4.85) | |
25% | SVM linear | 65.65 (±4.57) | 74.46 (±2.33) | ||
SVM RBF | 52.54 (±5.26) | 60.45 (±5.24) | 63.28 (±4.33) | 78.42 (±3.36) | |
RLR- | 75.59 (±2.49) | 71.98 (±3.33) | 75.25 (±4.25) | 75.25 (±4.92) | |
RLR- | 72.99 (±6.61) | 77.63 (±2.52) | |||
RF | 52.66 (±4.40) | 73.79 (±1.41) | 65.42 (±1.69) | 77.40 (±2.34) | |
PLS-DA | 71.53 (±0.92) | 69.72 (±3.96) | 70.40 (±2.44) | 70.40 (±4.18) |
Training Size | Classifier | Overall Accuracy (±Standard Deviation) (%) | |||
---|---|---|---|---|---|
Spectral Signature | Second Derivative | First Derivative | Continuum Removed Derivative Reflectance | ||
50% | SVM linear | 83.31 (±1.10) | 89.09 (±2.05) | 90.91 (±1.38) | 84.13 (±2.42) |
SVM RBF | 57.69 (±4.03) | 79.34 (±4.37) | 87.60 (±2.34) | 78.68 (±2.93) | |
RLR- | 88.76 (±2.19) | 89.92 (±1.42) | 87.44 (±2.42) | ||
RLR- | 86.28 (±3.25) | ||||
RF | 53.88 (±2.05) | 86.28 (±1.70) | 79.83 (±1.44) | 80.66 (±1.53) | |
PLS-DA | 77.52 (±2.30) | 73.72 (±1.91) | 77.69 (±2.96) | 70.74 (±2.84) | |
45% | SVM linear | 78.15 (±5.43) | 84.15 (±1.86) | 86.31 (±4.17) | 82.77 (±3.85) |
SVM RBF | 59.54 (±2.21) | 72.77 (±3.82) | 82.77 (±4.20) | 75.85 (±2.31) | |
RLR- | 85.38 (±3.67) | 87.69 (±2.43) | 82.92 (±1.78) | ||
RLR- | 85.23 (±3.49) | ||||
RF | 53.54 (±1.79) | 80.15 (±2.73) | 76.77 (±3.87) | 77.54 (±2.20) | |
PLS-DA | 73.54 (±3.97) | 70.46 (±2.31) | 74.15 (±3.56) | 68.15 (±3.53) | |
40% | SVM linear | 77.70 (±5.46) | 80.72 (±3.98) | 83.88 (±3.82) | 80.43 (±6.11) |
SVM RBF | 58.85 (±2.20) | 69.64 (±4.20) | 80.29 (±3.04) | 72.95 (±1.62) | |
RLR- | 84.46 (±3.60) | 88.06 (±3.24) | 81.29 (±2.91) | ||
RLR- | 82.88 (±2.25) | ||||
RF | 53.24 (±2.61) | 77.99 (±2.75) | 74.96 (±3.29) | 73.96 (±3.48) | |
PLS-DA | 72.09 (±1.54) | 72.09 (±2.89) | 74.96 (±3.07) | 68.35 (±3.61) | |
35% | SVM linear | 72.86 (±4.33) | 78.44 (±4.81) | 80.65 (±4.47) | 75.84 (±2.83) |
SVM RBF | 55.06 (±2.03) | 67.14 (±4.69) | 76.23 (±3.50) | 66.88 (±2.87) | |
RLR- | 79.22 (±3.60) | 84.55 (±2.89) | 73.90 (±3.27) | ||
RLR- | 78.57 (±3.46) | ||||
RF | 52.99 (±2.08) | 73.64 (±2.89) | 73.51 (±3.00) | 69.61 (±3.14) | |
PLS-DA | 70.65 (±2.80) | 70.52 (±2.92) | 72.47 (±3.66) | 66.23 (±2.82) | |
30% | SVM linear | 74.18 (±1.70) | 80.48 (±3.37) | 81.58 (±2.83) | 75.39 (±2.53) |
SVM RBF | 55.27 (±2.93) | 70.06 (±3.81) | 76.24 (±4.72) | 67.39 (±7.39) | |
RLR- | 79.88 (±2.61) | 84.73 (±3.05) | 76.12 (±1.61) | ||
RLR- | 80.00 (±3.49) | ||||
RF | 52.00 (±1.69) | 74.42 (±2.58) | 73.21 (±2.61) | 70.55 (±2.35) | |
PLS-DA | 72.36 (±3.69) | 70.06 (±4.35) | 73.45 (±3.31) | 64.48 (±0.82) | |
25% | SVM linear | 67.80 (±3.52) | 75.48 (±2.59) | 78.19 (±1.37) | 73.11 (±0.68) |
SVM RBF | 53.11 (±2.20) | 60.90 (±3.90) | 69.94 (±3.63) | 66.78 (±2.98) | |
RLR- | 75.14 (±3.31) | 77.29 (±2.93) | 80.90 (±2.46) | 72.77 (±1.65) | |
RLR- | |||||
RF | 48.59 (±4.14) | 71.64 (±3.87) | 73.11 (±2.04) | 69.83 (±2.36) | |
PLS-DA | 70.62 (±2.70) | 69.83 (±0.68) | 72.09 (±2.28) | 63.95 (±3.12) |
Training Size | Classifier | Overall Accuracy (±Standard Deviation) (%) | |||
---|---|---|---|---|---|
Spectral Signature | Second Derivative | First Derivative | Continuum Removed Derivative Reflectance | ||
50% | SVM linear | 83.47 (±2.77) | 93.22 (±0.96) | 92.40 (±1.42) | 91.57 (±2.24) |
SVM RBF | 69.75 (±2.98) | 55.04 (±4.10) | 76.20 (±4.66) | 78.02 (±1.53) | |
RLR- | 89.26 (±1.65) | 92.73 (±1.69) | 94.05 (±2.63) | 90.41 (±1.34) | |
RLR- | |||||
RF | 69.75 (±2.80) | 90.25 (±1.91) | 85.45 (±1.44) | 89.26 (±2.45) | |
PLS-DA | 78.51 (±2.45) | 80.83 (±2.05) | 81.49 (±2.80) | 79.17 (±2.24) | |
45% | SVM linear | 80.15 (±4.02) | 87.38 (±2.15) | 88.62 (±3.05) | 91.54 (±1.61) |
SVM RBF | 65.69 (±3.91) | 49.38 (±3.87) | 67.54 (±4.70) | 72.77 (±2.31) | |
RLR- | 86.31 (±3.49) | 90.46 (±1.43) | 90.15 (±3.01) | 88.62 (±0.58) | |
RLR- | |||||
RF | 65.54 (±3.99) | 85.85 (±3.25) | 81.54 (±3.08) | 86.31 (±4.28) | |
PLS-DA | 78.15 (±1.79) | 79.85 (±3.17) | 79.69 (±2.04) | 76.92 (±1.54) | |
40% | SVM linear | 77.55 (±3.71) | 86.76 (±1.62) | 88.49 (±3.44) | |
SVM RBF | 63.31 (±3.37) | 50.79 (±3.60) | 66.76 (±5.62) | 69.35 (±3.24) | |
RLR- | 83.17 (±1.91) | 88.06 (±1.33) | 89.64 (±1.33) | 85.04 (±3.26) | |
RLR- | 89.64 (±1.96) | ||||
RF | 64.60 (±2.51) | 84.46 (±3.17) | 80.86 (±2.64) | 85.32 (±4.70) | |
PLS-DA | 77.99 (±1.68) | 80.00 (±2.00) | 79.42 (±1.33) | 76.40 (±1.24) | |
35% | SVM linear | 68.05 (±5.02) | 83.90 (±3.77) | 84.16 (±2.68) | 85.58 (±2.74) |
SVM RBF | 59.61 (±3.06) | 44.03 (±3.37) | 63.12 (±4.81) | 64.03 (±3.69) | |
RLR- | 80.52 (±2.25) | 85.71 (±2.79) | 85.32 (±2.04) | 80.52 (±5.08) | |
RLR- | |||||
RF | 63.25 (±2.42) | 80.26 (±3.33) | 77.92 (±1.74) | 82.21 (±3.35) | |
PLS-DA | 75.58 (±1.86) | 76.36 (±2.65) | 79.61 (±1.95) | 75.19 (±1.04) | |
30% | SVM linear | 72.61 (±1.93) | 84.61 (±3.22) | 85.58 (±1.97) | 83.76 (±4.10) |
SVM RBF | 60.24 (±2.62) | 42.42 (±3.36) | 62.79 (±7.09) | 65.21 (±3.08) | |
RLR- | 80.48 (±2.11) | 82.55 (±4.01) | 85.58 (±2.95) | 83.03 (±4.29) | |
RLR- | |||||
RF | 65.21 (±3.31) | 79.52 (±4.22) | 77.21 (±1.98) | 81.58 (±3.08) | |
PLS-DA | 76.24 (±3.37) | 76.85 (±4.99) | 77.58 (±4.20) | 74.79 (±3.27) | |
25% | SVM linear | 70.28 (±2.44) | 80.90 (±2.16) | 83.73 (±2.75) | 82.94 (±2.59) |
SVM RBF | 51.64 (±1.54) | 39.89 (±1.91) | 52.54 (±2.84) | 61.58 (±2.34) | |
RLR- | 77.40 (±1.96) | 79.66 (±2.02) | |||
RLR- | 80.79 (±4.42) | 83.16 (±6.33) | |||
RF | 62.03 (±3.86) | 76.16 (±3.20) | 76.84 (±1.86) | 80.45 (±3.67) | |
PLS-DA | 75.93 (±2.74) | 74.58 (±2.88) | 78.76 (±2.28) | 72.66 (±2.49) |
Training Size | Classifier | Overall Accuracy (±Standard Deviation) (%) | |||
---|---|---|---|---|---|
Spectral Signature | Second Derivative | First Derivative | Continuum Removed Derivative Reflectance | ||
50% | SVM linear | 83.47 (±2.34) | 85.29 (±4.10) | ||
SVM RBF | 61.98 (±4.31) | 19.34 (±5.95) | 22.81 (±0.40) | 25.12 (±0.84) | |
RLR- | 91.07 (±2.30) | 82.31 (±3.16) | 83.80 (±3.07) | 88.26 (±1.60) | |
RLR- | 81.49 (±2.37) | 82.81 (±2.05) | 84.79 (±2.37) | ||
RF | 71.24 (±2.63) | 84.96 (±2.42) | 90.58 (±0.40) | ||
PLS-DA | 75.04 (±2.05) | 78.35 (±4.91) | 75.70 (±2.98) | 79.83 (±0.84) | |
45% | SVM linear | 79.08 (±1.32) | 79.38 (±1.57) | ||
SVM RBF | 55.38 (±6.10) | 22.31 (±0.00) | 22.46 (±0.31) | 24.15 (±1.58) | |
RLR- | 85.23 (±2.25) | 79.69 (±2.86) | 81.08 (±2.56) | 84.77 (±2.89) | |
RLR- | 79.23 (±2.33) | 79.54 (±2.36) | 77.69 (±3.61) | ||
RF | 69.08 (±4.42) | 80.92 (±1.32) | 87.69 (±2.96) | ||
PLS-DA | 73.08 (±3.34) | 75.23 (±4.31) | 72.00 (±3.29) | 77.69 (±1.88) | |
40% | SVM linear | 76.12 (±0.84) | 79.42 (±0.86) | ||
SVM RBF | 53.24 (±3.61) | 23.02 (±0.00) | 23.45 (±0.58) | 25.18 (±1.02) | |
RLR- | 83.88 (±3.69) | 79.28 (±1.79) | 79.86 (±3.83) | 82.59 (±3.98) | |
RLR- | 81.01 (±3.11) | 79.57 (±2.35) | 79.28 (±3.57) | ||
RF | 65.90 (±3.48) | 79.28 (±2.67) | 86.04 (±2.60) | ||
PLS-DA | 73.67 (±1.85) | 74.39 (±2.07) | 71.94 (±3.75) | 76.55 (±4.31) | |
35% | SVM linear | 69.74 (±1.13) | 77.27 (±1.09) | ||
SVM RBF | 49.87 (±3.64) | 20.00 (±5.45) | 20.13 (±5.53) | 22.21 (±4.69) | |
RLR- | 82.47 (±3.74) | 74.42 (±2.38) | 76.23 (±2.04) | 78.05 (±1.26) | |
RLR- | 77.27 (±2.87) | 77.14 (±1.99) | 74.94 (±2.80) | ||
RF | 64.03 (±3.01) | 77.27 (±1.23) | 82.47 (±2.82) | ||
PLS-DA | 71.95 (±2.19) | 72.34 (±2.27) | 70.65 (±3.57) | 74.42 (±3.20) | |
30% | SVM linear | 69.94 (±3.90) | 77.33 (±1.82) | ||
SVM RBF | 48.85 (±4.05) | 22.42 (±0.00) | 22.42 (±0.00) | 24.12 (±0.89) | |
RLR- | 79.39 (±2.24) | 71.27 (±3.29) | 76.36 (±3.27) | 78.06 (±5.44) | |
RLR- | 75.88 (±4.64) | 75.52 (±3.03) | 75.15 (±4.11) | ||
RF | 65.21 (±3.83) | 77.21 (±2.67) | 80.00 (±4.25) | ||
PLS-DA | 70.18 (±2.80) | 71.27 (±3.61) | 68.85 (±4.67) | 73.45 (±2.58) | |
25% | SVM linear | 65.31 (±4.24) | 74.24 (±1.54) | ||
SVM RBF | 43.05 (±1.31) | 22.60 (±0.00) | 22.60 (±0.00) | 24.07 (±0.58) | |
RLR- | 74.92 (±1.70) | 67.46 (±3.44) | 71.64 (±2.35) | 75.03 (±5.27) | |
RLR- | 73.79 (±3.57) | 74.35 (±2.19) | 70.73 (±1.84) | ||
RF | 62.49 (±4.15) | 76.61 (±2.22) | 79.10 (±2.95) | ||
PLS-DA | 70.17 (±1.40) | 70.96 (±4.00) | 70.06 (±3.24) | 72.43 (±2.64) |
Training Size | Overall Accuracy (±Standard Deviation) (%) | |||||
---|---|---|---|---|---|---|
Spectral Signature | Second Derivative | First Derivative | Continuum Removal | Continuum Removed Derivative Reflectance | log Transformation | |
50% | 91.07 (±3.56) | 94.05 (±1.32) | 89.59 (±1.93) | 94.05 (±1.76) | 93.72 (±2.13) | |
45% | 90.31 (±3.39) | 92.15 (±2.09) | 87.85 (±2.59) | 91.85 (±2.21) | 89.69 (±4.03) | |
40% | 87.48 (±2.79) | 91.22 (±0.95) | 83.31 (±3.79) | 89.64 (±1.96) | 88.35 (±2.15) | |
35% | 84.68 (±2.83) | 85.97 (±3.71) | 81.56 (±3.45) | 87.27 (±3.73) | 86.23 (±3.45) | |
30% | 84.24 (±4.07) | 87.39 (±4.76) | 82.79 (±4.09) | 86.30 (±4.48) | 84.36 (±4.22) | |
25% | 81.47 (±1.10) | 80.79 (±4.42) | 83.16 (±6.33) | 80.45 (±2.62) | 82.15 (±2.13) |
SPHA | CAVU | RH_FR | CA_HV | AQ_A | SALI | PING | JUQO | ELQU | METR | PI_CV | AQ_B | AQ_C | Producer’s Accuracy (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPHA | 1.40 | 0.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 90.59 | |
CAVU | 3.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.20 | 0.00 | 0.40 | 0.00 | 0.00 | 63.64 | |
RHFR | 1.40 | 0.00 | 0.20 | 0.00 | 0.40 | 0.20 | 0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 74.55 | |
CA_HV | 0.00 | 0.00 | 0.00 | 1.40 | 0.20 | 0.00 | 0.20 | 0.00 | 0.20 | 2.00 | 0.00 | 0.00 | 80.00 | |
AQ_A | 0.20 | 0.00 | 0.00 | 1.80 | 0.00 | 0.00 | 0.20 | 0.40 | 1.40 | 0.20 | 3.20 | 0.80 | 79.50 | |
SALI | 0.00 | 0.00 | 0.20 | 0.40 | 0.20 | 0.00 | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 90.77 | |
PING | 0.00 | 0.20 | 0.00 | 0.40 | 0.40 | 0.00 | 0.00 | 0.40 | 0.00 | 1.40 | 0.00 | 0.00 | 53.33 | |
JUCO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
ELQU | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
METR | 0.00 | 0.00 | 0.00 | 0.00 | 2.60 | 0.00 | 0.00 | 0.00 | 0.60 | 0.00 | 0.00 | 0.00 | 64.44 | |
PI_CV | 0.00 | 0.00 | 0.00 | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 96.36 | |
AQ_B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
AQ_C | 0.00 | 0.00 | 0.00 | 0.00 | 0.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 95.56 | |
User’s accuracy (%) | 76.24 | 81.40 | 82.47 | 86.41 | 95.16 | 88.89 | 90.91 | 87.30 | 78.38 | 72.60 | 60.98 | 91.49 | OAA: | |
F1-score (%) | 82.80 | 71.43 | 84.54 | 81.22 | 82.81 | 92.91 | 66.67 | 93.22 | 70.73 | 82.81 | 75.76 | 93.48 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erudel, T.; Fabre, S.; Houet, T.; Mazier, F.; Briottet, X. Criteria Comparison for Classifying Peatland Vegetation Types Using In Situ Hyperspectral Measurements. Remote Sens. 2017, 9, 748. https://doi.org/10.3390/rs9070748
Erudel T, Fabre S, Houet T, Mazier F, Briottet X. Criteria Comparison for Classifying Peatland Vegetation Types Using In Situ Hyperspectral Measurements. Remote Sensing. 2017; 9(7):748. https://doi.org/10.3390/rs9070748
Chicago/Turabian StyleErudel, Thierry, Sophie Fabre, Thomas Houet, Florence Mazier, and Xavier Briottet. 2017. "Criteria Comparison for Classifying Peatland Vegetation Types Using In Situ Hyperspectral Measurements" Remote Sensing 9, no. 7: 748. https://doi.org/10.3390/rs9070748
APA StyleErudel, T., Fabre, S., Houet, T., Mazier, F., & Briottet, X. (2017). Criteria Comparison for Classifying Peatland Vegetation Types Using In Situ Hyperspectral Measurements. Remote Sensing, 9(7), 748. https://doi.org/10.3390/rs9070748