Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Diet and Supplemental Protocol
2.3. Study Protocol
2.4. Biochemical Assays
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Ergogenic Effects and Mechanism
4.2. Anaerobic Performance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Noakes, T.D.; St Clair Gibson, A.; Lambert, E.V. From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans: Summary and conclusions. J. Sports Med. 2005, 39, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.; Cholewa, J.; Poprzecki, S. Effects of sodium bicarbonate ingestion on swim performance in youth athletes. J. Sports Sci. Med. 2009, 8, 45–50. [Google Scholar] [PubMed]
- McNaughton, L.R.; Siegler, J.; Midgley, A. Ergogenic effects of sodium bicarbonate. Curr. Sports Med. Rep. 2008, 7, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Fitts, R.H. The cross-bridge cycle and skeletal muscle fatigue. J. Appl. Physiol. 2008, 104, 551–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcora, S.M.; Staiano, W. The limit to exercise tolerance in humans: Mind over muscle? Eur. J. Appl. Physiol. 2010, 109, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Madsen, K.; Kiens, B.E.A.; Richter, E.A. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J. Physiol. 1996, 495, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Price, M.J.; Cripps, D. The effects of combined glucose-electrolyte and sodium bicarbonate ingestion on prolonged intermittent exercise performance. J. Sports Sci. 2012, 30, 975–983. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, L.; Lovell, R.; Madden, L. Heat shock proteins in exercise: A review. J. Exerc. Sci. Physiother. 2006, 2, 13–26. [Google Scholar]
- McNaughton, L.R.; Gough, L.; Deb, S.; Bentley, D.; Sparks, S.A. Recent Developments in the Use of Sodium Bicarbonate as an Ergogenic Aid. Curr. Sports Med. Rep. 2016, 15, 233–244. [Google Scholar] [PubMed]
- Price, M.J.; Simons, C. The effect of sodium bicarbonate ingestion on high-intensity intermittent running and subsequent performance. J. Strength Cond. Res. 2010, 24, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Chycki, J.; Zajac, T.; Maszczyk, A.; Kurylas, A. The effect of mineral-based alkaline water on hydration status and the metabolic response to short-term anaerobic exercise. Biol. Sport 2017, 34, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Kurylas, A.; Zajac, T.; Zydek, G.; Zajac, A. The Effectiveness of Alkaline Water in Hydrating Athletes. J. Nutr. Health Food Sci. 2017, 5, 1–4. [Google Scholar]
- Miller, P.; Robinson, A.; Sparks, A. The effects of sodium bicarbonate ingestion on repeated sprint ability. J. Strength Cond. Res. 2016, 30, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Ermidis, G.; Mohr, M. Sodium bicarbonate intake improves high-intensity intermittent exercise performance in trained young men. J. Int. Soc. Sports Nutr. 2012, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Tobias, G.; Benatti, F.B.; de Salles Painelli, V. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids 2013, 45, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edge, J.; Bishop, D.; Goodman, C. Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J. Appl. Physiol. 2006, 101, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Renfree, A. The time course for changes in plasma [H+] after sodium bicarbonate ingestion. Int. J. Sports Physiol. Perform. 2007, 2, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Siegler, J.C.; Gleadall-Siddall, D.O. Sodium bicarbonate ingestion and repeated swim sprint performance. J. Strenghth Cond. Res. 2010, 24, 3105–3111. [Google Scholar] [CrossRef] [PubMed]
- Afman, G.; Garside, R.M.; Dinan, N. Effect of carbohydrate or sodium bicarbonate ingestion on performance during a validated basketball simulation test. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 632–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, S.L.; McLay-Cooke, R.T.; Brown, R.C. Increased blood pH but not performance with sodium bicarbonate supplementation in elite rugby union players. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Driller, M.W.; Gregory, J.R.; Williams, A.D.; Fell, J.W. The effects of chronic sodium bicarbonate ingestion and interval training in highly trained rowers. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.M.; Gehrig, S.M.; Frese, S. Multiday acute sodium bicarbonate intake improves endurance capacity and reduces acidosis in men. J. Int. Soc. Sports Nutr. 2013, 10, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, C.; Delfour-Peyrethon, R.; Bishop, D.J. Effects of pre-exercise alkalosis on the decrease in VO2max at the end of all-out exercise. Eur. J. Appl. Physiol. 2016, 116, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Pruscino, C.L.; Ross, M.L.R.; Gregory, J.R.; Savage, B.; Flanagan, T.R. Effects of Sodium Bicarbonate, Caffeine, and Their Combination on Repeated 200-m Freestyle Performance. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Artioli, G.G.; Gualano, B.; Coelho, D.F. Does sodium-bicarbonate ingestion improve simulated judo performance? Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Shih, M.C.; Yang, C.C. Sodium bicarbonate supplementation prevents skilled tennis performance decline after a simulated match. J. Int. Soc. Sports Nutr. 2010, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.J.; Gore, C.J.; Dawson, B. Induced alkalosis and caffeine supplementa- tion: Effects on 2,000-m rowing performance. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.J.; Hopkins, W.G.; Gore, C.J. Effects of acute alkalosis and acidosis on performance: A meta-analysis. Sports Med. 2011, 41, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.J.; Slater, G.J.; Gore, C.J.; Burke, L.M. Reliability and effect of sodium bicarbonate: Buffering and 2000-m rowing performance. Int. J. Sports Physiol. Perform. 2012, 7, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.J.; Slater, G.J.; Gore, C.J. Effect of sodium bicarbonate on [HCO3−], pH and gastrointestinal symptoms. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Siegler, J.C.; Marshall, P.W.M.; Bray, J.; Towlson, C. Sodium bicarbonate supplementation and ingestion timing: Does it matter. J. Strength Cond. Res. 2012, 26, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Pyne, D.B. Bicarbonate loading to enhance training and competitive performance. Int. J. Sports Physiol. Perform. 2007, 2, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Dias, G.F.A.; Painelli, V.S.; Sale, C. Consistencies in responses to sodium bicarbonate supplementation: A randomised, repeated measures, counterbalanced and double-blind study. PLoS ONE 2015, 10, 1–13. [Google Scholar]
- Barber, J.J.; McDermott, A.Y.; McGaughey, K.J. Effects of combined crea- tine and sodium bicarbonate supplementation on repeated sprint performance in trained men. J. Strength Cond. Res. 2013, 27, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, P.M.; Howe, S.T.; Shing, C.M.; Fell, J.W. Effect of combined A-alanine and sodium bicarbonate supplementation on cycling performance. Med. Sci. Sports Exerc. 2012, 44, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Hobson, R.M.; Harric, R.C.; Martin, D. Effect of beta-alanine, with and without sodium bicarbonate, on 2000-m rowing performance. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Kilding, A.E.; Overton, C.; Gleave, J. Effects of caffeine, sodium bicarbonate, and their combined ingestion on high-intensity cycling performance. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Ducker, K.J.; Dawson, B.; Wallman, K.E. Effect of beta-alanine supplementation on 2000-m rowing-ergometer performance. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Higgins, M.F.; James, R.S.; Price, M.J. The effects of sodium bicarbonate (NaHCO3) ingestion on high intensity cycling capacity. J. Sports Sci. 2013, 31, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.; Sale, C.; Harris, R.; Sunderland, C. Effect of sodium bicarbonate and beta-alanine on repeated sprints during intermittent exercise performance at hypoxia. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.; Polglaze, T.; Cox, G. Effects of induced alkalosis on simulated match performance in elite female water polo players. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Laia, F.; Krustrup, P. Metabolic response and fatigue in soccer. Int. J. Sports Physiol. Perform. 2007, 2, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Drust, B.; Atkinson, G.; Reilly, T. Future perspectives in the evaluation of the physiological demands of soccer. Sports Med. 2007, 37, 783–805. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Maszczyk, A.; Roczniok, R.; Waskiewicz, Z.; Czuba, M.; Mikolajec, K.; Zajac, A.; Stanula, A. Application of regression and neural models to predict competitive swimming performance. Percept. Mot. Ski. 2012, 114, 610–626. [Google Scholar] [CrossRef] [PubMed]
- Maszczyk, A.; Golas, A.; Pietraszewski, P.; Roczniok, R.; Zajac, A.; Stanula, A. Application of Neural and Regression Models in Sports Results Prediction. Procedia Soc. Behav. Sci. 2014, 117, 482–487. [Google Scholar] [CrossRef]
- Maszczyk, A.; Golas, A.; Czuba, M.; Krol, H.; Wilk, M.; Stastny, P.; Goodwin, J.; Kostrzewa, M.; Zajac, A. EMG analysis and modelling of flat bench press using artificial neural networks. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2016, 38, 91–103. [Google Scholar]
- Price, M.J.; Singh, M. Time course of blood bicarbonate and pH three hours after sodium bicarbonate ingestion. Int. J. Sports Physiol. Perform. 2008, 3, 240–242. [Google Scholar] [CrossRef]
- Siegler, J.C.; Marshall, P. The effect of metabolic alkalosis on central and peripheral mechanisms associated with exercise-induced muscle fatigue in humans. Exp. Physiol. 2015, 100, 519–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, H.B.; Bredmose, P.P.; Strømstad, M. Bicarbonate attenuates arterial desaturation during maximal exercise in humans. J. Appl. Physiol. 2002, 93, 724–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhatalo, A.; McNaughton, L.R.; Siegler, J.; Jones, A.M. Effect of induced alkalosis on the power-duration relationship of Ball-out. Exercise. Med. Sci. Sports Exerc. 2010, 42, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Hollidge-Horvat, M.G.; Parolin, M.L.; Wong, D. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E316–E329. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.; Edge, J.; Davis, C.; Goodman, C. Induced metabolic acidosis affects muscle metabolism and repeated-sprint ability. Med. Sci. Sports Exerc. 2004, 36, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Hunter, A.M.; De Vito, G.; Bolger, C. The effect of induced alkalosis and submaximal cycling on neuromuscular response during sustained isometric contraction. J. Sports Sci. 2009, 27, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, K. Comments on point: Counterpoint: Muscle lactate and H(+) production do/do not have 1:1 association in skeletal muscle. Why add complexity/confusion to a simple issue? J. Appl. Physiol. 2011, 110, 1494. [Google Scholar] [PubMed]
- Roos, A. Intracellular pH and distribution of weak acids across cell membranes. A study D- and L- lactate and of DMO in rat diaphragm. J. Physiol. 1975, 249, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, K.; Alvestrand, A.; Brandt, R. Intracellular pH and bicarbonate concentration in human muscle during recovery from exercise. J. Appl. Physiol. 1978, 45, 474–480. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.J.; Bangsbo, J.; Renaud, J.M. Muscle K+, Na+, and Cl disturbances and Na+ -K+ pump inactivation: Implications for fatigue. J. Appl. Physiol. 1985, 104, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Cairns, S.P.; Lindinger, M.I. Do multiple ionic interactions contribute to skeletal muscle fatigue. J. Physiol. 2008, 586, 4039–4054. [Google Scholar] [CrossRef] [PubMed]
- Brilla, L.R.; Haley, T.F. Effect of magnesium supplementation on strength training in humans. J. Am. Coll. Nutr. 1992, 11, 326. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H.; Lukaski, H.C. Update on the relationship between magnesium and exercise. Magnes Res. 2006, 19, 180–189. [Google Scholar] [PubMed]
- Mooren, F.C.; Golf, S.W.; Lechtermann, A.; Volker, K. Alterations of ionized Mg2+ in human blood after exercise. Life Sci. 2005, 77, 1211–1225. [Google Scholar] [CrossRef] [PubMed]
- Carvil, P.; Cronin, J. Magnesium and implications on muscle function. Strength Cond. J. 2010, 32, 48–54. [Google Scholar] [CrossRef]
- Lukaski, H.C. Vitamin and mineral status: Effects on physical performance. Nutrition 2004, 20, 632–644. [Google Scholar] [CrossRef] [PubMed]
Variables | d | p | F |
---|---|---|---|
LA_post-exercise | 0.884 | 0.0001 | 802.6 |
pH_rest | 0.780 | 0.0001 | 795.5 |
HCO3− rest | 0.989 | 0.0001 | 1766.9 |
Variables | d | p | F |
---|---|---|---|
6 × 30 m | 0.984 | 0.00001 | 4812.9 |
LA post-exercise | 0.960 | 0.00001 | 4653.1 |
pH post-ingestion | 0.689 | 0.00011 | 587.7 |
HCO3− post-ingestion | 0.872 | 0.00001 | 3541.9 |
HCO3− post exercise | 0.798 | 0.00001 | 2862.9 |
Mg2+ rest | 0.589 | 0.00012 | 171.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chycki, J.; Golas, A.; Halz, M.; Maszczyk, A.; Toborek, M.; Zajac, A. Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players. Nutrients 2018, 10, 1610. https://doi.org/10.3390/nu10111610
Chycki J, Golas A, Halz M, Maszczyk A, Toborek M, Zajac A. Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players. Nutrients. 2018; 10(11):1610. https://doi.org/10.3390/nu10111610
Chicago/Turabian StyleChycki, Jakub, Artur Golas, Mateusz Halz, Adam Maszczyk, Michal Toborek, and Adam Zajac. 2018. "Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players" Nutrients 10, no. 11: 1610. https://doi.org/10.3390/nu10111610
APA StyleChycki, J., Golas, A., Halz, M., Maszczyk, A., Toborek, M., & Zajac, A. (2018). Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players. Nutrients, 10(11), 1610. https://doi.org/10.3390/nu10111610