Association between Erythrocyte Membrane Phospholipid Fatty Acids and Sleep Disturbance in Chinese Children and Adolescents
Abstract
:1. Introduction
2. Method
2.1. Study Design and Population
2.2. Questionnaire
2.3. Measurement of Anthropometric and Clinical Parameters
2.4. Laboratory Assessment for Erythrocyte Fas
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Buysse, D.J. Sleep health: Can we define it? Does it matter? Sleep 2014, 37, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Chorney, D.B.; Detweiler, M.F.; Morris, T.L.; Kuhn, B.R. The interplay of sleep disturbance, anxiety, and depression in children. J. Pediatr. Psychol. 2008, 33, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Z.; Jia, C.; Buysse, D.J. Sleep patterns and problems among chinese adolescents. Pediatrics 2008, 121, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Hysing, M.; Pallesen, S.; Stormark, K.M.; Lundervold, A.J.; Sivertsen, B. Sleep patterns and insomnia among adolescents: A population-based study. J. Sleep Res. 2014, 22, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.M.; Bruni, O.; Lucidi, F.; Ferri, R.; Violani, C. Sleep habits and circadian preference in Italian children and adolescents. J. Sleep Res. 2007, 16, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.A.; Mendelsohn, J.; Obermeyer, W.H.; Amromin, J.; Benca, R. Sleep and behavior problems in school-aged children. Pediatrics 2001, 107, E60. [Google Scholar] [CrossRef] [PubMed]
- Gatica, D.; Rodriguez-Nunez, I.; Zenteno, D.; Elso, M.J.; Montesinos, J.J.; Manterola, C. Association between sleep-related breathing disorders and academic performance among children from Concepcion, Chile. Arch. Argent. Pediatr. 2017, 115, 497–500. [Google Scholar] [PubMed]
- Reddy, R.; Palmer, C.A.; Jackson, C.; Farris, S.G.; Alfano, C.A. Impact of sleep restriction versus idealized sleep on emotional experience, reactivity and regulation in healthy adolescents. J. Sleep Res. 2017, 26, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Baum, K.T.; Desai, A.; Field, J.; Miller, L.E.; Rausch, J.; Beebe, D.W. Sleep restriction worsens mood and emotion regulation in adolescents. J. Child Psychol. Psychiatry 2014, 55, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Vorona, R.D.; Szklo-Coxe, M.; Lamichhane, R.; Ware, J.C.; McNallen, A.; Leszczyszyn, D. Adolescent crash rates and school start times in two central Virginia counties, 2009–2011: A follow-up study to a southeastern Virginia study, 2007–2008. J. Clin. Sleep Med. 2014, 10, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Danner, F.; Phillips, B. Adolescent sleep, school start times, and teen motor vehicle crashes. J. Clin. Sleep Med. 2008, 4, 533–535. [Google Scholar] [PubMed]
- Paul, G.R.; Pinto, S. Sleep and the Cardiovascular System in Children. Sleep Med. Clin. 2017, 12, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Holliday, E.G.; Magee, C.A.; Kritharides, L.; Banks, E.; Attia, J. Short sleep duration is associated with risk of future diabetes but not cardiovascular disease: A prospective study and meta-analysis. PLoS ONE 2013, 8, e82305. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.R. Why Sleep Is Important for Health: A Psychoneuroimmunology Perspective. Annu. Rev. Psychol. 2015, 66, 143–172. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, S.; Rabinovitz, S.; Mostofsky, D.I. Essential fatty acids and sleep: Mini-review and hypothesis. Med. Hypotheses 1998, 50, 139–145. [Google Scholar] [CrossRef]
- Saito, S.; Tsuda, H.; Michimata, T. Prostaglandin D2 and reproduction. Am. J. Reprod. Immunol. 2002, 47, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Bazan, N.G. Lipid signaling: Sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat. 2005, 77, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Onoe, H. Molecular and neuroanatomical mechanisms of sleep-wakefulness regulation by prostaglandins D2 and E2. Nihon Yakurigaku Zasshi 1998, 112, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M. The Role of Dietary n-6 and n-3 Fatty Acids in the Developing Brain. Dev. Neurosci. 2000, 22, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Chalon, S. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Cravatt, B.F.; Prospero-Garcia, O.; Siuzdak, G.; Gilula, N.B.; Henriksen, S.J.; Boger, D.L.; Lerner, R.A. Chemical characterization of a family of brain lipids that induce sleep. Science 1995, 268, 1506–1509. [Google Scholar] [CrossRef] [PubMed]
- Lambert, D.M.; Marzo, V.D. The Palmitoylethanolamide and Oleamide Enigmas: Are These Two Fatty Acid Amides Cannabimimetic? Curr. Med. Chem. 1999, 6, 757–773. [Google Scholar] [PubMed]
- Lees, G.; Dougalis, A. Differential effects of the sleep-inducing lipid oleamide and cannabinoids on the induction of long-term potentiation in the CA1 neurons of the rat hippocampus in vitro. Brain Res. 2004, 997, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, S.; Rabinovitz-Shenkar, S.; Carasso, R.L. Effects of essential fatty acids in iron deficient and sleep-disturbed attention deficit hyperactivity disorder (ADHD) children. Eur. J. Clin. Nutr. 2011, 65, 1167–1169. [Google Scholar] [CrossRef] [PubMed]
- Huss, M.; Volp, A.; Stauss-Grabo, M. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems—An observational cohort study. Lipids Health Dis. 2010, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Irmisch, G.; Schläfke, D.; Gierow, W.; Herpertz, S.; Richter, J. Fatty acids and sleep in depressed inpatients. Prostaglandins Leukot. Essent. Fat. Acids 2007, 76, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ladesich, J.B.; Pottala, J.V.; Romaker, A.; Harris, W.S. Membrane level of omega-3 docosahexaenoic acid is associated with severity of obstructive sleep apnea. J. Clin. Sleep Med. 2011, 7, 391–396. [Google Scholar] [PubMed]
- Montgomery, P.; Burton, J.R.; Sewell, R.P.; Spreckelsen, T.F.; Richardson, A.J. Fatty acids and sleep in UK children: Subjective and pilot objective sleep results from the DOLAB study—A randomized controlled trial. J. Sleep Res. 2014, 23, 364–388. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, C. Independent associations between fatty acids and sleep quality among obese patients with obstructive sleep apnoea syndrome. J. Sleep Res. 2013, 22, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, C. Gluteal adipose tissue fatty acids and sleep quality parameters in obese adults with OSAS. Sleep Breath. 2013, 17, 1315–1317. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, X.; Pak, V.; Wang, Y.; Yan, C.; Pinto-Martin, J.; Dinges, D. Early Blood Lead Levels and Sleep Disturbance in Preadolescence. Sleep 2015, 38, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Buysse, D.J.; Gentzler, A.L.; Kiss, E.; Mayer, L.; Kapornai, K.; Vetró, A.; Kovacs, M. Insomnia and hypersomnia associated with depressive phenomenology and comorbidity in childhood depression. Sleep 2007, 30, 83–90. [Google Scholar] [CrossRef] [PubMed]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/Height-For-Age, Weight-For-Age, Weight-For-Length, Weight-For-Height and Body Mass Index-For-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. Available online: http://www.who.int/childgrowth/standards/chart_catalogue/en/ (accessed on 24 January 2018).
- Wang, L.Y.; Summerhill, K.; Rodriguez-Canas, C.; Mather, I.; Patel, P.; Eiden, M.; Young, S.; Forouhi, N.G. Development and validation of a robust automated analysis of plasma phospholipid fatty acids for metabolic phenotyping of large epidemiological studies. Genome Med. 2013, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- Siler, S.Q.; Neese, R.A.; Hellerstein, M.K. De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am. J. Clin. Nutr. 1999, 70, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ma, J.; Campos, H.; Hu, F.B. Plasma and erythrocyte biomarkers of dairy fat intake and risk of ischemic heart disease. Am. J. Clin. Nutr. 2007, 86, 929–937. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Mikic, A.; Pietrolungo, C.E. Effects of Diet on Sleep Quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Alén, M.; Cheng, S.M.; Mikkola, T.M.; Tenhunen, J.; Lyytikäinen, A.; Wiklund, P.; Cong, F.; Saarinen, A.; Tarkka, I.; et al. Associations of disordered sleep with body fat distribution, physical activity and diet among overweight middle-aged men. J. Sleep Res. 2015, 24, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.L.; Dahl, L.; Olson, G.; Thornton, D.; Graff, I.E.; Frøyland, L.; Thayer, J.F.; Pallesen, S. Fish consumption, sleep, daily functioning, and heart rate variability. J. Clin. Sleep Med. 2014, 10, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.S.; Joffe, H.; Guthrie, K.A.; Ensrud, K.E.; Freeman, M.; Carpenter, J.S.; Learman, L.A.; Newton, K.M.; Reed, S.D.; Manson, J.E.; et al. Efficacy of omega-3 for vasomotor symptoms treatment: A randomized controlled trial. Menopause 2014, 21, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Christian, L.M.; Blair, L.M.; Porter, K.; Lower, M.; Cole, R.M.; Belury, M.A. Polyunsaturated Fatty Acid (PUFA) Status in Pregnant Women: Associations with Sleep Quality, Inflammation, and Length of Gestation. PLoS ONE 2016, 11, e0148752. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.P. Omega-3 fatty acids in psychiatry: A review. Ann. Clin. Psychiatry 2000, 12, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, S.; Rabinovitz, S.; Carasso, R.L.; Mostofsky, D.I. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 2002, 23, 843–853. [Google Scholar] [CrossRef]
- De la Presa Owens, S.; Innis, S.M. Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets. J. Nutr. 1999, 129, 2088–2093. [Google Scholar] [CrossRef] [PubMed]
- Lavialle, M.; Champeilpotokar, G.; Alessandri, J.M.; Balasse, L.; Guesnet, P.; Papillon, C.; Pévet, P.; Vancassel, S.; Vivien-Roels, B.; Denis, I.; et al. An (n-3) polyunsaturated fatty acid-deficient diet disturbs daily locomotor activity, melatonin rhythm, and striatal dopamine in Syrian hamsters. J. Nutr. 2008, 138, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, D.; Zhang, E. Effect of fish oil supplementation on fatty acid composition and neurotransmitters of growing rats. Wei Sheng Yan Jiu 2000, 29, 47–49. [Google Scholar] [PubMed]
- Chopra, S.; Rathore, A.; Younas, H.; Pham, L.V.; Gu, C.; Beselman, A.; Kim, I.Y.; Wolfe, R.R.; Perin, J.; Polotsky, V.Y.; et al. Obstructive Sleep Apnea Dynamically Increases Nocturnal Plasma Free Fatty Acids, Glucose, and Cortisol During Sleep. J. Clin. Endocrinol. Metab. 2017, 102, 3172–3181. [Google Scholar] [CrossRef] [PubMed]
- Broussard, J.L.; Chapotot, F.; Abraham, V.; Day, A.; Delebecque, F.; Whitmore, H.R.; Tasali, E. Sleep restriction increases free fatty acids in healthy men. Diabetologia 2015, 58, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Rhoades, S.D.; Kim, E.J.; Nayak, S.; Grant, G.R.; Meerlo, P.; Weljie, A.M. Sleep restriction induced energy, methylation and lipogenesis metabolic switches in rat liver. Int. J. Biochem. Cell Biol. 2017, 93, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Weljie, A.M.; Meerlo, P.; Goel, N.; Sengupta, A.; Kayser, M.S.; Abel, T.; Birnbaum, M.J.; Dinges, D.F.; Sehgal, A. Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt. Proc. Natl. Acad. Sci. USA 2015, 112, 2569–2574. [Google Scholar] [CrossRef] [PubMed]
- Carskadon, M.A.; Vieira, C.; Acebo, C. Association between puberty and delayed phase preference. Sleep 1993, 16, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Crowley, S.J.; Acebo, C.; Carskadon, M.A. Human Puberty: Salivary Melatonin Profiles in Constant Conditions. Dev. Psychobiol. 2012, 54, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Pieters, S.; Van Der Vorst, H.; Wiers, R.W.; Engels, R.C. Puberty-dependent sleep regulation and alcohol use in early adolescents. Alcohol Clin. Exp. Res. 2010, 34, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Crowley, S.J.; Acebo, C.; Carskadon, M.A. Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Med. 2007, 8, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Gradisar, M.; Gardner, G.; Dohnt, H. Recent worldwide sleep patterns and problems during adolescence: A review and meta-analysis of age, region, and sleep. Sleep Med. 2011, 12, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef] [PubMed]
Characteristics | With Sleep Disturbance (n = 715) | Without Sleep Disturbance (n = 1622) | p-Value |
---|---|---|---|
Age, years | 11.68 ± 3.31 | 10.79 ± 3.35 | <0.001 a |
Sex, n (%) | 0.45 b | ||
Boys | 366 (52.16) | 858 (52.90) | |
Girls | 349 (48.81) | 764 (47.10) | |
Sleep disturbance, n (%) | |||
Insomnia | 223 (31.19) | - | |
Sleep disordered breathing | 321 (44.90) | - | |
Parasomnias | 381 (53.28) | - | |
BMI, kg/m2 | 19.32 ± 3.68 | 18.59 ± 3.73 | <0.001 a |
Waist circumferences, cm | 66.12 ± 11.12 | 64.23 ± 10.99 | <0.001 a |
SBP, mmol/L | 109.32 ± 11.10 | 107.82 ± 10.67 | 0.002 a |
DBP, mmol/L | 63.51 ± 7.61 | 62.74 ± 7.41 | 0.02 a |
Heart rate, beats/min | 86.96 ± 12.00 | 88.79 ± 12.34 | <0.001 a |
TG, mmol/L | 0.85 (0.63–1.13) | 0.81 (0.63–1.08) | 0.15 c |
TC, mmol/L | 3.89 (3.45–4.45) | 4.03 (3.55–4.50) | 0.002 c |
HDL-C, mmol/L | 1.42 (1.23–1.62) | 1.46 (1.29–1.67) | <0.001 c |
LDL-C, mmol/L | 2.02 (1.69–2.46) | 2.09 (1.71–2.51) | 0.07 c |
FBG, mmol/L | 5.27 (4.66–5.66) | 5.29 (4.73–5.70) | 0.12 c |
Physical exercise, min/day | 0.43 b | ||
<30 | 468 (64.06) | 1069 (65.91) | |
30–60 | 164 (22.94) | 372 (22.93) | |
≥60 | 93 (13.01) | 181 (11.16) | |
Smoking status, n (%) | 0.01 b | ||
Current | 47 (6.57) | 66 (4.07) | |
Ever/never | 668 (93.43) | 1556 (95.93) | |
Alcohol drinking, n (%) | <0.001 b | ||
Current | 183 (25.59) | 230 (14.18) | |
Ever/never | 532 (74.41) | 1392 (85.82) | |
Meat intake, servings/day | <0.001 b | ||
<1 | 246 (34.41) | 728 (42.28) | |
1–2 | 249 (34.83) | 566 (32.87) | |
≥2 | 220 (26.59) | 428 (24.85) | |
Fish consumption, servings/week | <0.001 b | ||
<1 | 321 (44.90) | 565 (34.83) | |
1–2 | 210 (29.37) | 470 (28.98) | |
≥2 | 184 (25.73) | 587 (36.19) | |
Dairy products, servings/day | 0.37 b | ||
<1 | 304 (42.52) | 704 (43.40) | |
1–2 | 303 (42.38) | 708 (43.65) | |
≥2 | 108 (15.10) | 210 (12.95) | |
Fruit intake, servings/day | 0.005 b | ||
<1 | 304 (42.52) | 604 (37.24) | |
1–2 | 322 (45.03) | 848 (52.28) | |
≥2 | 89 (12.45) | 170 (10.48) | |
Vegetables intake, servings/day | 0.61 b | ||
<1 | 312 (43.64) | 675 (41.62) | |
1–2 | 295 (42.26) | 703 (43.34) | |
≥2 | 108 (15.10) | 244 (15.04) |
Fatty Acid (%) | With Sleep Disturbance (n = 715) | Without Sleep Disturbance (n = 1622) | p-Value |
---|---|---|---|
SFA | 43.32 (40.75–49.07) | 43.05 (40.41–48.41) | 0.19 |
14:0 | 0.18 (0.15–0.24) | 0.19 (0.15–0.24) | 0.88 |
15:0 | 0.08 (0.06–0.11) | 0.09 (0.07–0.12) | 0.06 |
16:0 | 24.14 (22.36–29.00) | 24.24 (22.49–29.09) | 0.63 |
17:0 | 0.23 (0.20–0.27) | 0.23 (0.20–0.27) | 0.86 |
18:0 | 15.34 (14.30–16.22) | 15.18 (14.20–16.07) | 0.02 |
20:0 | 0.35 (0.27–0.46) | 0.34 (0.27–0.47) | 0.86 |
22:0 | 0.30 (0.20–0.42) | 0.28 (0.19–0.41) | 0.12 |
24:0 | 2.17 (1.43–3.41) | 1.97 (1.31–2.81) | <0.001 |
MUFA | 20.77 (18.85–22.88) | 20.85 (18.95–22.74) | 0.98 |
16:1n-7 | 0.24 (0.14–0.39) | 0.22 (0.13–0.38) | 0.43 |
18:1n-9 | 13.90 (12.87–15.75) | 14.20 (13.07–16.09) | 0.006 |
20:1n-9 | 0.29 (0.22–0.43) | 0.28 (0.21–0.42) | 0.21 |
22:1n-9 | 0.72 (0.52–1.02) | 0.74 (0.51–1.03) | 0.83 |
24:1n-9 | 4.67 (3.53–6.04) | 4.23 (3.31–5.80) | <0.001 |
PUFA | 36.37 (27.72–39.85) | 36.61 (28.91–40.08) | 0.20 |
n-3 PUFA | 7.43 (6.14–8.95) | 7.78 (6.49–9.38) | <0.001 |
18:3n-3 | 0.09 (0.06–0.12) | 0.08 (0.06–0.12) | 0.59 |
20:3n-3 | 0.11 (0.06–0.17) | 0.10 (0.06–0.16) | 0.25 |
20:5n-3 | 1.37 (1.03–1.79) | 1.40 (1.03–1.79) | 0.69 |
22:5n-3 | 1.58 (1.24–2.25) | 1.68 (1.33–2.43) | <0.001 |
22:6n-3 | 4.05 (3.14–5.07) | 4.29 (3.33–5.22) | <0.001 |
n-6 PUFA | 28.73 (20.58–32.09) | 29.04 (20.33–32.10) | 0.55 |
18:2n-6 | 10.88 (9.27–12.17) | 10.85 (9.40–12.18) | 0.71 |
18:3n-6 | 0.05 (0.03–0.07) | 0.05 (0.03–0.07) | 0.91 |
20:2n-6 | 0.26 (0.20–0.31) | 0.25 (0.19–0.31) | 0.57 |
20:3n-6 | 0.96 (0.70–1.16) | 0.97 (0.71–1.17) | 0.58 |
20:4n-6 | 13.41 (7.90–15.51) | 13.44 (7.83–15.67) | 0.49 |
22:2n-6 | 0.06 (0.04–0.11) | 0.06 (0.04–0.10) | 0.61 |
22:4n-6 | 2.54 (1.43–3.16) | 2.58 (1.47–3.13) | 0.84 |
n-6/n-3 | 3.72 (2.70–4.53) | 3.67 (2.53–4.55) | 0.52 |
D9D-16 (16:1n-7/16:0) | 0.0090 (0.0057–0.0144) | 0.0089 (0.0057–0.0135) | 0.29 |
D9D-18 (18:1n-9/18:0) | 0.93 (0.84–1.05) | 0.95 (0.86–1.08) | 0.22 |
D6D (18:3n-6/18:2n-6) | 0.0038 (0.0021–0.0066) | 0.0043 (0.0024–0.0066) | 0.07 |
D5D (20:4n-6/20:3n-6) | 12.22 (10.12–14.67) | 12.46 (10.20–14.86) | 0.46 |
Fatty Acid | Crude Model | Model 1 a | Model 2 b |
---|---|---|---|
SFA | 1.17 (0.91, 1.51) | 1.09 (0.82, 1.44) | 1.08 (0.77, 1.30) |
14:0 | 1.06 (0.81, 1.37) | 1.05 (0.80, 1.41) | 1.08 (0.77, 1.52) |
15:0 | 0.69 (0.52, 0.91) * | 0.78 (0.57, 1.07) | 0.83 (0.57, 1.21) |
16:0 | 0.91 (0.71, 1.17) | 0.90 (0.68, 1.20) | 0.93 (0.67, 1.32) |
17:0 | 0.98 (0.76, 1.25) | 1.07 (0.81, 1.42) | 1.17 (0.84, 1.63) |
18:0 | 1.24 (0.97, 1.59) | 1.30 (0.98, 1.72) | 1.34 (0.96, 1.86) |
20:0 | 0.95 (0.73, 1.23) | 0.97 (0.72, 1.31) | 0.95 (0.67, 1.33) |
22:0 | 1.19 (0.91, 1.57) | 1.33 (0.98, 1.82) | 1.35 (0.94, 1.94) |
24:0 | 1.67 (1.30, 2.16) * | 1.43 (0.98, 2.09) | 1.27 (0.90, 1.81) |
MUFA | 1.03 (0.81, 1.32) | 1.01 (0.76, 1.33) | 1.04 (0.76, 1.43) |
16:1n-7 | 1.15 (0.90, 1.47) | 1.18 (0.89, 1.57) | 1.05 (0.76, 1.45) |
18:1n-9 | 0.79 (0.62, 1.02) | 0.84 (0.63, 1.11) | 0.97 (0.70, 1.35) |
20:1n-9 | 1.22 (0.95, 1.57) | 1.08 (0.81, 1.47) | 1.19 (0.82, 1.75) |
22:1n-9 | 1.05 (0.81, 1.35) | 0.88 (0.65, 1.18) | 0.96 (0.69, 1.33) |
24:1n-9 | 1.48 (1.14, 1.92) * | 1.31 (0.95, 1.81) | 1.28 (0.89, 1.83) |
PUFA | 0.88 (0.69, 1.13) | 0.90 (0.68, 1.19) | 0.91 (0.65, 1.25) |
n-3 PUFA | 0.61 (0.48, 0.79) * | 0.61 (0.45, 0.82) * | 0.57 (0.40, 0.82) * |
18:3n-3 | 1.02 (0.79, 1.30) | 0.98 (0.74, 1.30) | 1.09 (0.78, 1.54) |
20:3n-3 | 1.23 (0.95, 1.57) | 1.24 (0.93, 1.64) | 1.11 (0.80, 1.53) |
20:5n-3 | 1.00 (0.78, 1.29) | 0.98 (0.74, 1.30) | 1.04 (0.73, 1.47) |
22:5n-3 | 0.64 (0.49, 0.82) * | 0.69 (0.51, 0.94) * | 0.67 (0.47, 0.97) * |
22:6n-3 | 0.77 (0.60, 0.98) * | 0.71 (0.53, 0.95) * | 0.69 (0.49, 0.96) * |
n-6 PUFA | 0.99 (0.77, 1.28) | 1.03 (0.77, 1.37) | 1.05 (0.76, 1.46) |
18:2n-6 | 0.93 (0.73, 1.20) | 0.93 (0.71, 1.23) | 0.93 (0.67, 1.29) |
18:3n-6 | 0.83 (0.66, 1.04) | 0.92 (0.71, 1.19) | 1.02 (0.75, 1.37) |
20:2n-6 | 1.08 (0.84, 1.39) | 0.96 (0.72, 1.29) | 0.98 (0.69, 1.40) |
20:3n-6 | 0.93 (0.72, 1.19) | 0.85 (0.63, 1.13) | 0.84 (0.60, 1.17) |
20:4n-6 | 0.92 (0.71, 1.19) | 1.06 (0.79, 1.42) | 1.01 (0.72, 1.42) |
22:2n-6 | 1.10 (0.86, 1.41) | 1.16 (0.88, 1.53) | 1.28 (0.94, 1.76) |
22:4n-6 | 1.00 (0.78, 1.28) | 1.04 (0.78, 1.38) | 1.04 (0.75, 1.45) |
Ratios | |||
n-6/n-3 | 1.11 (0.86, 1.44) | 1.07 (0.79, 1.44) | 1.13 (0.79, 1.62) |
D9D-16 (16:1n-7/16:0) | 1.19 (0.93, 1.53) | 1.13 (0.85, 1.31) | 0.99 (0.72, 1.37) |
D9D-18 (18:1n-9/18:0) | 0.78 (0.61, 1.01) | 0.89 (0.67, 1.18) | 0.95 (0.69, 1.32) |
D6D (18:3n-6/18:2n-6) | 0.89 (0.69, 1.15) | 0.98 (0.74, 1.30) | 1.13 (0.81, 1.57) |
D5D (20:4n-6/20:3n-6) | 0.88 (0.69, 1.14) | 0.95 (0.71, 1.27) | 0.99 (0.70, 1.40) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Yan, Y.; Zheng, J.-S.; Mi, J.; Li, D. Association between Erythrocyte Membrane Phospholipid Fatty Acids and Sleep Disturbance in Chinese Children and Adolescents. Nutrients 2018, 10, 344. https://doi.org/10.3390/nu10030344
Tang J, Yan Y, Zheng J-S, Mi J, Li D. Association between Erythrocyte Membrane Phospholipid Fatty Acids and Sleep Disturbance in Chinese Children and Adolescents. Nutrients. 2018; 10(3):344. https://doi.org/10.3390/nu10030344
Chicago/Turabian StyleTang, Jun, Yinkun Yan, Ju-Sheng Zheng, Jie Mi, and Duo Li. 2018. "Association between Erythrocyte Membrane Phospholipid Fatty Acids and Sleep Disturbance in Chinese Children and Adolescents" Nutrients 10, no. 3: 344. https://doi.org/10.3390/nu10030344
APA StyleTang, J., Yan, Y., Zheng, J. -S., Mi, J., & Li, D. (2018). Association between Erythrocyte Membrane Phospholipid Fatty Acids and Sleep Disturbance in Chinese Children and Adolescents. Nutrients, 10(3), 344. https://doi.org/10.3390/nu10030344