Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Acquisition
2.2. Sample Preparation
2.3. Sample Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Australian Bureau of Statistics. Australian Health Survey: Biomedical Results for Nutrients, 2011–2012; ABS: Canberra, Australia, 2014. [Google Scholar]
- Nowson, C.A.; Mason, R.S. Vitamin D and health in adults in Australia and New Zealand. Med. J. Aust. 2013, 199, 394. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.; Truswell, A.S. Essentials of Human Nutrition, 4th ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Liu, J. Vitamin D content of food and its contribution to vitamin D status: A brief overview and Australian focus. Photochem. Photobiol. Sci. 2012, 11, 1802–1807. [Google Scholar] [CrossRef] [PubMed]
- Urbain, P.; Valverde, J.; Jakobsen, J. Impact on vitamin D2, vitamin D4 and agaritine in Agaricus bisporus mushrooms after artificial and natural solar UV light exposure. Plant Foods Hum. Nutr. 2016, 71, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Keegan, R.J.H.; Lu, Z.; Bogusz, J.M.; Williams, J.E.; Holick, M.F. Photobiology of vitamin D in mushrooms and its bioavailability in humans. Dermato-Endocrinol. 2013, 5, 165–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boland, R.; Skliar, M.; Curino, A.; Milanesi, L. Vitamin D compounds in plants. Plant Sci. 2003, 164, 357–369. [Google Scholar] [CrossRef]
- Dunlop, E.; Cunningham, J.; Sherriff, J.L.; Lucas, R.M.; Greenfield, H.; Arcot, J.; Strobel, N.; Black, L.J. Vitamin D(3) and 25-hydroxyvitamin D(3) content of retail white fish and eggs in Australia. Nutrients 2017, 9, 647. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Greenfield, H.; Strobel, N.; Fraser, D.R. The influence of latitude on the concentration of vitamin D3 and 25-hydroxy-vitamin D3 in Australian red meat. Food Chem. 2013, 140, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Greenfield, H.; Fraser, D.R. An exploratory study of the content of vitamin D compounds in selected samples of Australian eggs. Nutr. Diet 2014, 71, 46–50. [Google Scholar] [CrossRef]
- Cashman, K.; Seamans, K.; Lucey, A.; Stöcklin, E.; Weber, P.; Kiely, M.; Hill, T. Relative effectiveness of oral 25-hydroxyvitamin D3 and vitamin D3 in raising wintertime serum 25-hydroxyvitamin D in older adults. Am. J. Clin. Nutr. 2012, 95, 1350–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovesen, L.; Brot, C.; Jakobsen, J. Food contents and biological activity of 25-hydroxyvitamin D: A vitamin D metabolite to be reckoned with? Ann. Nutr. Metab. 2003, 47, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, U.; Hirche, F.; Stangl, G.I.; Hinz, K.; Westphal, S.; Dierkes, J. Bioavailability of vitamin D(2) and D(3) in healthy volunteers, a randomized placebo-controlled trial. J. Clin. Endocrinol. Metab. 2013, 98, 4339–4345. [Google Scholar] [CrossRef] [PubMed]
- Itkonen, S.T.; Skaffari, E.; Saaristo, P.; Saarnio, E.M.; Erkkola, M.; Jakobsen, J.; Cashman, K.D.; Lamberg-Allardt, C. Effects of vitamin D2-fortified bread v. supplementation with vitamin D2 or D3 on serum 25-hydroxyvitamin D metabolites: An 8-week randomised-controlled trial in young adult Finnish women. Br. J. Nutr. 2016, 115, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A. Nutritional rickets around the world. J. Steroid Biochem. Mol. Biol. 2013, 136, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Uday, S.; Hogler, W. Nutritional rickets and osteomalacia in the twenty-first century: Revised concepts, public health, and prevention strategies. Curr. Osteoporos. Rep. 2017, 15, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Wintermeyer, E.; Ihle, C.; Ehnert, S.; Stockle, U.; Ochs, G.; de Zwart, P.; Flesch, I.; Bahrs, C.; Nussler, A.K. Crucial role of vitamin D in the musculoskeletal system. Nutrients 2016, 8, 319. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M.; Norval, M.; Neale, R.E.; Young, A.R.; de Gruijl, F.R.; Takizawa, Y.; van der Leun, J.C. The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochem. Photobiol. Sci. 2015, 14, 53–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bais, A.F.; Lucas, R.M.; Bornman, J.F.; Williamson, C.E.; Sulzberger, B.; Austin, A.T.; Wilson, S.R.; Andrady, A.L.; Bernhard, G.; McKenzie, R.L.; et al. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2017. Photochem. Photobiol. Sci. 2018, 17, 127–179. [Google Scholar] [CrossRef] [PubMed]
- Hess, A.F.; Weinstock, M. Antirachitic properties imparted to inert fluids and to green vegetables by ultra-violet irradiation. J. Biol. Chem. 1924, 62, 301–313. [Google Scholar]
- Bechtel, H.E.; Huffman, C.F.; Ducan, C.W.; Hoppert, C.A. Vitamin D studies in cattle: IV. Corn silage as a source of vitamin D for dairy cattle. J. Dairy Sci. 1936, 19, 359–372. [Google Scholar] [CrossRef]
- Wasserman, R.H.; Corradino, R.A.; Krook, L.; Hughes, M.R.; Haussler, M.R. Studies on the 1α, 25-dihydroxycholecalciferol-like activity in a calcinogenic plant, Cestrum diurnum, in the chick. J. Nutr. 1976, 106, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Aburjai, T.; Bernasconi, S.; Manzocchi, L.; Pelizzoni, F. Isolation of 7-dehydrocholesterol from cell cultures of Solanum malacoxylon. Phytochemistry 1996, 43, 773–776. [Google Scholar] [CrossRef]
- Aburjai, T.; Al-Khalil, S.; Abuirjeie, M. Vitamin D3 and its metabolites in tomato, potato, egg plant and zucchini leaves. Phytochemistry 1998, 49, 2497–2499. [Google Scholar] [CrossRef]
- Jäpelt, R.B.; Silvestro, D.; Smedsgaard, J.; Jensen, P.E.; Jakobsen, J. Quantification of vitamin D3 and its hydroxylated metabolites in waxy leaf nightshade (Solanum glaucophyllum desf.), tomato (Solanum lycopersicum L.) and bell pepper (Capsicum annuum L.). Food Chem. 2013, 138, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Prema, T.P.; Raghuramulu, N. Vitamin D3 and its metabolites in the tomato plant. Phytochemistry 1996, 42, 617–620. [Google Scholar] [CrossRef]
- Prema, T.P.; Raghuramulu, N. Free vitamin D3 metabolites in Cestrum diurnum leaves. Phytochemistry 1994, 37, 677–681. [Google Scholar] [CrossRef]
- Horst, R.L.; Reinhardt, T.A.; Russell, J.R.; Napoli, J.L. The isolation and identification of vitamin D2 and vitamin D3 from Medicago sativa (alfalfa plant). Arch. Biochem. Biophys. 1984, 231, 67–71. [Google Scholar] [CrossRef]
- von Hurst, P.R.; Moorhouse, R.J.; Raubenheimer, D. Preferred natural food of breeding kakapo is a high value source of calcium and vitamin D. J. Steroid Biochem. Mol. Biol. 2016, 164, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, A.; Toshio, O.; Makoto, T.; Tadashi, K. Possible origin of extremely high contents of vitamin D3 in some kinds of fish liver. Comp. Biochem. Physiol. A 1991, 100, 483–487. [Google Scholar]
- Sunita Rao, D.; Raghuramulu, N. Food chain as origin of vitamin D in fish. Comp. Biochem. Physiol. A 1996, 114, 15–19. [Google Scholar] [CrossRef]
- de Roeck-Holtzhauer, Y.; Quere, I.; Claire, C. Vitamin analysis of five planktonic microalgae and one macroalga. J. App. Phycol. 1991, 3, 259–264. [Google Scholar] [CrossRef]
- Clarke, M. Australian Native Food Industry Stocktake; Rural Industries Research Development Corporation in Association with ANFIL: Canberra, Australia, 2012. [Google Scholar]
- Black, L.J.; Lucas, R.M.; Sherriff, J.L.; Björn, L.O.; Bornman, J.F. In pursuit of vitamin D in plants. Nutrients 2017, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P.; Roulfe, P.; Pavan, A. Health Benefits of Australian Native Foods–An Evaluation of Health-Enhancing Compounds; Rural Industries Research and Development Corporation: Canberra, Australia, 2009. [Google Scholar]
- US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Legacy. 2018. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-national-nutrient-database-for-standard-reference/ (accessed on 1 June 2018).
- Mabeau, S.; Fleurence, J. Seaweed in food-products - biochemical and nutritional aspects. Trends Food Sci. Technol. 1993, 4, 103–107. [Google Scholar] [CrossRef]
- Sanderson, J.C.; Di Benedetto, R. Tasmanian Seaweeds for the Edible Market; Marine Laboratory: Taroona, Tasmania, Australia, 1988. [Google Scholar]
- Sanderson, J. A preliminary survey of the distribution of the introduced macroalga, Undaria pinnatifida (Harvey) Suringer on the east coast of Tasmania, Australia. Bot. Mar. 1990, 33, 153–158. [Google Scholar] [CrossRef]
- Adamec, J.; Jannasch, A.; Huang, J.; Hohman, E.; Fleet, J.C.; Peacock, M.; Ferruzzi, M.G.; Martin, B.; Weaver, C.M. Development and optimization of an LC-MS/MS-based method for simultaneous quantification of vitamin D2, vitamin D3, 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. J. Sep. Sci. 2011, 34, 11–20. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Cholecalciferol (vitamin D3) in selected foods. In Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Atlanta, GA, USA, 2016. [Google Scholar]
- Jäpelt, R.B.; Jakobsen, J. Vitamin D in plants: A review of occurrence, analysis, and biosynthesis. Front. Plant Sci. 2013, 4, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäpelt, R.B.; Didion, T.; Smedsgaard, J.; Jakobsen, J. Seasonal variation of provitamin D2 and vitamin D2 in perennial ryegrass (Lolium perenne L.). J. Agric. Food Chem. 2011, 59, 10907–10912. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.; Carvalho, D.; Guido, L.; Barros, A. Detection and quantification of provitamin D2 and vitamin D2 in hop (Humulus lupulus L.) by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. J. Agric. Food Chem. 2007, 55, 7995–8002. [Google Scholar] [CrossRef] [PubMed]
- Baur, A.C.; Brandsch, C.; König, B.; Hirche, F.; Stangl, G.I. Plant oils as potential sources of vitamin D. Front. Nutr. 2016, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- Curino, A.; Milanesi, L.; Benassati, S.; Skliar, M.; Boland, R. Effect of culture conditions on the synthesis of vitamin D(3) metabolites in Solanum glaucophyllum grown in vitro. Phytochemistry 2001, 58, 81. [Google Scholar] [CrossRef]
- Darby, H.H.; Clarke, H.T. The plant origin of a vitamin D. Science 1937, 85, 318–319. [Google Scholar] [CrossRef] [PubMed]
- Jäpelt, R.B.; Silvestro, D.; Smedsgaard, J.; Jensen, P.E.; Jakobsen, J. LC–MS/MS with atmospheric pressure chemical ionisation to study the effect of UV treatment on the formation of vitamin D3 and sterols in plants. Food Chem. 2011, 129, 217–225. [Google Scholar] [CrossRef]
- Schreiber, A. Advantages of using triple quadrupole over single quadrupole mass spectrometry to quantify and identify the presence of pesticides in water and soil samples. Sciex Concord Ontarion 2010, 1, 1–6. [Google Scholar]
Common Name (Botanical Name) | Plant part | Vitamin D2 (µg/100 g) | Vitamin D3 (µg/100 g) | 25(OH)D3 (µg/100 g) |
---|---|---|---|---|
Plants | ||||
Tomato | Leaf | Not tested | 78 (DW) a | 2 (DW) a |
(Lycopersicon esculentum) | Leaf | Not tested | 110 (FW) b | 1.5 (FW) b |
Leaf | Not tested | 0.17 (DW) c | n/d c | |
Waxy leaf nightshade | Leaf | Not tested | 0.32 (DW) c | 0.08 (DW) c |
(Solanum glaucophyllum) | Cell culture derived from leaf material | Not tested | 220.00 (FW) d | 100.00 (FW) d |
Potato | Leaf | Not tested | 15 (FW) b | n/d b |
(Solanum tuberosum) | ||||
Bell pepper | Leaf | Not tested | n/d c | n/d c |
(Capsicum annuum) | ||||
Day blooming jasmine | Leaf | Not tested | 10 (DW) e | 10 (DW) e |
(Cestrum diurnum) | ||||
Zucchini | Leaf | Not tested | 23 (FW) b | Not tested |
(Cucurbita pepo) | ||||
Alfalfa/Lucerne | Leaf | 4.8 DW) f | 0.06 (DW) f | Not tested |
(Medicago sativa) | ||||
Rimu (Dacrydium cupressinum) | Fruit | 70 (DW) g | 11.5 (DW) g | Not tested |
Algae | ||||
Microalgae | ||||
Phytoplankton | Whole algae | 1.9–4.3 (DW) h | 2.2–14.7 (DW) h | Not tested |
5.3 (DW) i | 80.4 (DW) i | Not tested | ||
72.4 (DW) i | 271.7 (DW) i | Not tested | ||
(Pavlova lutheri) | Whole algae | 3900 (DW) j | Not tested | Not tested |
(Tetraselmis suecica) | Whole algae | 1400 (DW) j | Not tested | Not tested |
Marine centric diatom (Skeletonema costatum) | Whole algae | 1100 (DW) j | Not tested | Not tested |
(Isochrysis galbana) | Whole algae | 500 (DW) j | Not tested | Not tested |
(Chaetoceros calcitrans) | Whole algae | n/d j | Not tested | Not tested |
Macroalgae | ||||
Japanese Wireweed (Sargassum muticum) | Not specified | 90 (DW) j | Not tested | Not tested |
Common name (Botanical name) | Food Type | Part Tested | Vitamin D2 (µg/100 g) | Vitamin D3 (µg/100g) | 25(OH)D D2 (µg/100 g) | 25(OH)D D3 (µg/100 g) |
---|---|---|---|---|---|---|
Wattleseed | Plant | Leaf | <0.05 | <0.05 | <0.05 | <0.05 |
(Acacia victoriae) | Raw seed | 0.03 * | <0.05 | <0.05 | <0.05 | |
Roasted, milled seed | <0.05 | <0.05 | <0.05 | <0.05 | ||
Tasmanian mountain pepper | Plant | Fresh leaf | <0.05 | <0.05 | <0.05 | <0.05 |
(Tasmannia lanceolata) | Dried leaf | 0.67 | <0.05 | <0.05 | <0.05 | |
Fresh berries | <0.05 | <0.05 | <0.05 | <0.05 | ||
Dried berries | 0.05 | <0.05 | <0.05 | <0.05 | ||
Lemon myrtle | Plant | Fresh leaf | 0.03* | <0.05 | <0.05 | <0.05 |
(Backhousia citriodora) | Dried Leaf | 0.24 | <0.05 | <0.05 | <0.05 | |
Wakame | Algae | Fresh upper leaf and central stem | <0.05 | <0.05 | <0.05 | <0.05 |
(Undaria pinnatifida) | Dried upper leaf and central stem | <0.05 | <0.05 | <0.05 | <0.05 | |
Kombu | Algae | Fresh leaf | <0.05 | 0.01* | <0.05 | <0.05 |
(Lessonia corrugata) | Dried leaf | <0.05 | <0.05 | <0.05 | <0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hughes, L.J.; Black, L.J.; Sherriff, J.L.; Dunlop, E.; Strobel, N.; Lucas, R.M.; Bornman, J.F. Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients 2018, 10, 876. https://doi.org/10.3390/nu10070876
Hughes LJ, Black LJ, Sherriff JL, Dunlop E, Strobel N, Lucas RM, Bornman JF. Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients. 2018; 10(7):876. https://doi.org/10.3390/nu10070876
Chicago/Turabian StyleHughes, Laura J., Lucinda J. Black, Jill L. Sherriff, Eleanor Dunlop, Norbert Strobel, Robyn M. Lucas, and Janet F. Bornman. 2018. "Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed" Nutrients 10, no. 7: 876. https://doi.org/10.3390/nu10070876
APA StyleHughes, L. J., Black, L. J., Sherriff, J. L., Dunlop, E., Strobel, N., Lucas, R. M., & Bornman, J. F. (2018). Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients, 10(7), 876. https://doi.org/10.3390/nu10070876