Association of Breakfast Quality and Energy Density with Cardiometabolic Risk Factors in Overweight/Obese Children: Role of Physical Activity
Abstract
:1. Introduction
2. Material and Methods
2.1.Study Design and Participants
2.2. Anthropometry, Cardiometabolic Risk Assessment and Socio-Demographic Data
2.3. Breakfast Intake, Quality and Energy Density Assessment
2.4. Physical Activity Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahadi, Z.; Qorbani, M.; Kelishadi, R.; Ardalan, G.; Motlagh, M.E.; Asayesh, H.; Zeynali, M.; Chinian, M.; Larijani, B.; Shafiee, G.; et al. Association between breakfast intake with anthropometric measurements, blood pressure and food consumption behaviors among Iranian children and adolescents: The CASPIAN-IV study. Public Health 2015, 129, 740–747. [Google Scholar] [CrossRef] [PubMed]
- Barrett, N.; Riordan, F.; Michels, N.; Andersen, L.F.; vant Veer, P.; Moreno, L.A.; Widhalm, K.; Manios, Y.; Gottrand, F.; Santaliestra-Pasías, A.M.; et al. Breakfast Skipping and overweight/obesity among European adolescents, a cross-sectional analysis of the HELENA dataset: A DEDIPAC study. HRB Open Res. 2018, 1, 1–12. [Google Scholar] [CrossRef]
- Szajewska, H.; Ruszczyński, M. Systematic review demonstrating that breakfast consumption influences body weight outcomes in children and adolescents in Europe. Crit. Rev. Food Sci. Nutr. 2010, 50, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Blondin, S.A.; Anzman-Frasca, S.; Djang, H.C.; Economos, C.D. Breakfast consumption and adiposity among children and adolescents: An updated review of the literature. Pediatr. Obes. 2016, 11, 333–348. [Google Scholar] [CrossRef] [PubMed]
- Kral, T.V.E.; Whiteford, L.M.; Heo, M.; Faith, M.S. Effects of eating breakfast compared with skipping breakfast on ratings of appetite and intake at subsequent meals in 8- To 10-y-old children. Am. J. Clin. Nutr. 2011, 93, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Coulthard, J.D.; Palla, L.; Pot, G.K. Breakfast consumption and nutrient intakes in 4–18-year-olds: UK National Diet and Nutrition Survey Rolling Programme (2008–2012). Br. J. Nutr. 2017, 118, 280–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ALBashtawy, M. Breakfast eating habits among schoolchildren. J. Pediatr. Nurs. 2017, 36, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Nurul-Fadhilah, A.; Teo, P.S.; Huybrechts, I.; Foo, L.H. Infrequent breakfast consumption is associated with higher body adiposity and abdominal obesity in malaysian school-aged adolescents. PLoS ONE 2013, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Alexander, K.E.; Ventura, E.E.; Spruijt-Metz, D.; Weigensberg, M.J.; Goran, M.I.; Davis, J.N. Association of breakfast skipping with visceral fat and insulin indices in overweight Latino youth. Obesity 2010, 17, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, G.; Kelishadi, R.; Qorbani, M.; Motlagh, M.E.; Taheri, M.; Ardalan, G.; Mahnaz, T.; Poursafa, P.; Heshmat, R.; Larijani, B. Association of breakfast intake with cardiometabolic risk factors. J. Pediatr. 2013, 89, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Schembre, S.M.; Wen, C.K.; Davis, J.N.; Shen, E.; Nguyen-Rodriguez, S.T.; Belcher, B.R.; Hsu, Y.-W.; Weigensbrg, M.J.; Goran, M.I.; Spruijt-Metz, D. Eating breakfast more frequently is cross-sectionally associated with greater physical activity and lower levels of adiposity in overweight Latina and African American girls. Am. J. Clin. Nutr. 2013, 98, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aranceta, J.; Serra-Majem, L.; Ribas, L.; Pérez-Rodrigo, C. Breakfast consumption in Spanish children and young people. Public. Health Nutr. 2001, 4, 1439–1444. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.; Erickson, E.; McKee, P.; Schrankler, K.; Raatz, S.K.; Lytle, L.A.; Pellegrini, A.D. Breakfast frequency and quality may affect glycemia and appetite in adults and children. J. Nutr. 2011, 141, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Monteagudo, C.; Palacín-Arce, A.; del Mar Bibiloni, M.; Pons, A.; Tur, J.A.; Olea-Serrano, F.; Mariscal-Arcas, M. Proposal for a breakfast quality index (BQI) for children and adolescents. Public Health Nutr. 2013, 16, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, M.H.; Haghighatdoost, F.; Surkan, P.J.; Azadbakht, L. Associations between dietary energy density and obesity: A systematic review and meta-analysis of observational studies. Nutrition 2016, 32, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Hebestreit, A.; Börnhorst, C.; Pala, V.; Barba, G.; Eiben, G.; Veidebaum, T.; Hadjigergiou, C.; Molnar, D.; Claessens, M.; Fernandez-Alvira, J.M.; Pigeot, I. Dietary energy density in young children across Europe. Int. J. Obes. 2014, 38, S124–S134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, J.R.; Huybrechts, I.; Cuenca-García, M.; Artero, E.G.; Labayen, I.; Meirhaeghe, A.; Vicente-Rodriguez, G.; Polito, A.; Manios, Y.; González-Gross, M.; et al. Cardiorespiratory fitness and ideal cardiovascular health in European adolescents. Heart 2015, 101, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.L.; Pollock, N.K.; Waller, J.L.; Allison, J.D.; Dennis, B.A.; Bassali, R.; Meléndez, A.; Boyle, C.A.; Gower, B.A. Exercise dose and diabetes risk in overweight and obese children: A randomized, controlled trial. JAMA 2012, 308, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Cuenca-García, M.; Ortega, F.B.; Ruiz, J.R.; González-Gross, M.; Labayen, I.; Jago, R.; Martinez-Gomez, D.; Dallongeville, J.; Bel-Serrat, S.; Marcos, A.; et al. Combined influence of healthy diet and active lifestyle on cardiovascular disease risk factors in adolescents. Scand. J. Med. Sci. Sport 2014, 24, 553–562. [Google Scholar]
- Magnusson, M.; Hulthén, L.; Kjellgren, K.I. Obesity, dietary pattern and physical activity among children in a suburb with a high proportion of immigrants. J. Hum. Nutr. Diet. 2005, 18, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Kaprio, J.; Rissanen, A.; Rissanen, A.; Virkkunen, M.; Rose, R.J. Breakfast skipping and health-compromising behaviors in adolescents and adults. Eur. J. Clin. Nutr. 2003, 57, 842–853. [Google Scholar] [Green Version]
- Wyon, D.P.; Abrahamsson, L.; Järtelius, M.; Fletcher, R.J. An experimental study of the effects of energy intake at breakfast on the test performance of 10-year-old children in school. Int. J. Food Sci. Nutr. 1997, 48, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Vissers, P.A.; Jones, A.P.; Corder, K.; Jennings, A.; van Sluijs, E.M.; Welch, A.; Cassidy, A.; Griffin, S. Breakfast consumption and daily physical activity in 9–10-year-old British children. Public Health Nutr. 2013, 16, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Medrano, M.; Maiz, E.; Maldonado-Martin, S.; Arenaza, L.; Rodriguez-Vigil, B.; Ortega, F.B.; Ruiz, J.R.; Larrarte, E.; Diez-Lopez, I.; Sarasua-Miranda, A.; et al. The effect of a multidisciplinary intervention program on hepatic adiposity in overweight-obese children: Protocol of the EFIGRO study. Contemp. Clin. Trials 2015, 45, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Cadenas-Sánchez, C.; Mora-González, J.; Migueles, J.H.; Martín-Matillas, M.; Gómez-Vida, J.; Escolano-Margarit, M.V.; Maldonado, J.; Enriquez, G.M.; Pastor-Villaescusa, B.; de Teresa, G.; et al. An exercise-based randomized controlled trial on brain, cognition, physical health and mental health in overweight/obese children (ActiveBrains project): Rationale, design and methods. Contemp. Clin. Trials 2016, 47, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overwight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Labayen, I.; Ruiz, J.R.; Vicente-Rodríguez, G.; Turck, D.; Rodríguez, G.; Meirhaeghe, A.; Molnar, D.; Sjöström, M.; Castillo, M.J.; Gottrand, F.; et al. Early life programming of abdominal adiposity in adolescents: The HELENA. Diabetes Care 2009, 32, 2120–2122. [Google Scholar] [CrossRef] [PubMed]
- Falkner, B.; Daniels, S.R.; Flynn, J.T.; Gidding, S.; Green, L.A.; Ingelfinger, J.R.; Lauer, M.R.; Morgenstern, B.Z.; Portman, R.J.; Prineas, R.J.; et al. The Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.; Hosker, J.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, W.; Moreno, L.A.; Mårild, S.; Molnár, D.; Siani, A.; De Henauw, S.; Böhmannn, J.; Günther, K.; Hadjigeorgiou, C.; et al. Metabolic syndrome in young children: Definitions and results of the IDEFICS study. Int. J. Obes. 2014, 38, S4–S14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Vizcaíno, V.; Sánchez-López, M.; Salcedo-Aguilar, F.; Notario-Pacheco, B.; Solera-Martínez, M.; Moya-Martínez, P.; Franquelo-Morales, P.; López-Martínez, S.; Rodriguez-Artalejo, F.; et al. Protocol of a randomized cluster trial to assess the effectiveness of the MOVI-2 program on overweight prevention in schoolchildren. Rev. Esp. Cardiol. 2012, 65, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- López, M.D.R.; Martín-Lagos, R.A. Guía Para Estudios Dietéticos: Álbum Fotográfico de Alimentos; Granada University: Granada, Spain, 2011; pp. 1–128. [Google Scholar]
- Cabrera, S.G.; Fernández, N.H.; Rodríguez Hernández, C.; Nissensohn, M.; Román-Viñas, B.; Serra-Majem, L. KIDMED test; prevalence of low adherence to the Mediterranean Diet in children and young; a systematic review. Nutr. Hosp. 2015, 32, 2390–2399. [Google Scholar]
- Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U.L.F. Age group comparability of raw accelerometer output from wrist-and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Nyström, C.D.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sport Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Recommended Levels of Physical Activity for Children Aged 5–17 Years. Available online: http://www.who.int/dietphysicalactivity/factsheet_young_people/en/ (accessed on 26 July 2018).
- Rampersaud, G.C.; Pereira, M.A.; Girard, B.L.; Adams, J.; Metzl, J.D. Breakfast Habits, Nutritional Status, Body Weight, and Academic Performance in Children and Adolescents. Am. Diet. Assoc. 2005, 105, 743–760. [Google Scholar] [CrossRef] [PubMed]
- Freitas Júnior, I.F.; Christofaro, D.G.; Codogno, J.S.; Monteiro, P.A.; Silveira, L.S.; Fernandes, R.A. The association between skipping breakfast and biochemical variables in sedentary obese children and adolescents. J. Pediatr. 2012, 161, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Maloberti, A.; Maggioni, S.; Occhi, L.; Triglione, N.; Panzeri, F.; Nava, S.; Signorini, S.; Falbo, R.; Casati, M.; Grassi, G.; et al. Sex-related relationships between uric acid and target organ damage in hypertension. J. Clin. Hypertens. 2018, 20, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Bassols, J.; Martínez-Calcerrada, J.M.; Prats-Puig, A.; Carreras-Badosa, G.; Díaz-Roldán, F.; Osiniri, I.; Riera-Perez, E.; de Zegher, F.; Ibáñez, L.; Lopez-Bermejo, A. Uric acid, carotid intima-media thickness and body composition in prepubertal children. Pediatr. Obes. 2016, 11, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Huang, L.; Song, M.; Song, Y. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: A meta-analysis of prospective studies. Atherosclerosis 2013, 231, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Garrel, D.R.; Verdy, M.; PetitClerc, C.; Martin, C.; Brule, D.; Hamet, P. Milk and soy protein ingestion: Acute effect on serum uric acid concentration. Am. J. Clin. Nutr. 1991, 53, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Zykova, S.N.; Storhaug, H.M.; Toft, I.; Chadban, S.J.; Jenssen, T.G.; White, S.L. Cross-sectional analysis of nutrition and serum uric acid in two Caucasian cohorts: The AusDiab study and the Tromsø study. Nutr. J. 2015, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, K.; Schwingshackl, L.; Gottschald, M.; Knüppel, S.; Stelmach-Mardas, M.; Aleksandrova, K.; Boeing, H. Breakfast quality and cardiometabolic risk profiles in an upper middle-aged German population. Eur. J. Clin. Nutr. 2017, 71, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. The Mediterranean Diet and Mortality—Olive oil and beyond. N. Eng. J. Med. 2003, 348, 2595–2596. [Google Scholar] [CrossRef] [PubMed]
- Psaltopoulou, T.; Naska, A.; Orfanos, P.; Trichopoulos, D.; Mountokalakis, T.; Trichopoulou, A. Olive oil, the Mediterranean diet, and arterial blood pressure: The Greek European prospective investigation into cancer and nutrition. Am. J. Clin. Nutr. 2004, 80, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Macgregor, G.A. Salt and sugar: Their effects on blood pressure. Pflugers Arch-Eur. J. Physiol. 2015, 467, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Anderson, C.A.M. Added Sugars and Cardiovascular Disease Risk in Children. Circulation 2017, 135, e1017–e1034. [Google Scholar]
- Wang, J.; Light, K.; Henderson, M.; O’loughlin, J.; Mathieu, M.E.; Paradis, G.; Gray-Donald, K. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity. J. Nutr. 2014, 144, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Donin, A.S.; Nightingale, C.M.; Owen, C.G.; Rudnicka, A.R.; Jebb, S.A.; Ambrosini, G.L.; Stephen, A.M.; Cook, D.G.; Whincup, P.H. Europe PMC funders group Europe PMC Funders author manuscripts. Dietary energy intake is associated with type 2 diabetes risk markers in children. Diabetes Care 2014, 37, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, J.A.; Drewnowski, A.; Christakis, D.A. Dietary energy density is associated with obesity and the metabolic syndrome in US adults. Diabetes Care 2007, 30, 974–979. [Google Scholar] [CrossRef] [PubMed]
N | All | N | Girls | N | Boys | N | EFIGRO | N | ActiveBrains | |
---|---|---|---|---|---|---|---|---|---|---|
Biological characteristics | ||||||||||
Age (years) | 203 | 10.3 (1.1) § | 96 | 10.3 (1) | 107 | 10.4 (1.2) | 112 | 10.6 (1.1) | 91 | 10 (1.1) |
BMI (kg/m2) | 203 | 26.1 (3.5) | 96 | 25.9 (3.6) | 107 | 26.3 (3.5) | 112 | 25.5 (3.1) | 91 | 26.9 (3.8) |
Obese (N, %) | 203 | 135 (65.5) | 96 | 59 (61.5) | 107 | 76 (71.0) | 112 | 66 (58.9) | 91 | 69 (78.8) |
High maternal educational level (N, %) | 203 | 54 (26.2) | 96 | 25 (26) | 107 | 29 (27.1) | 112 | 28 (25) | 91 | 26 (28.6) |
High puberty stage (N, %)ϕ | 197 | 45 (23.1) | 88 | 35 (38.9) | 98 | 10 (9.7) | 102 | 32 (29.4) | 84 | 13 (15.1) |
Waist circumference (cm) | 203 | 84.1 (10.5) | 96 | 81.8 (10.4) | 107 | 86.3 (10.2) | 112 | 79 (7.6) | 91 | 90.4 (10.3) |
FMI (kg/m2) | 184 | 10.7 (2.5) | 86 | 10.7 (2.6) | 98 | 10.6 (2.5) | 110 | 10.1 (2.3) | 74 | 11.5 (2.7) |
Abdominal fat (kg) | 183 | 1.7 (0.6) | 86 | 1.7 (0.6) | 96 | 1.6 (0.6) | 110 | 1.5 (0.6) | 73 | 1.8 (0.6) |
Systolic blood pressure (mmHg) | 197 | 105.2 (15) | 94 | 103.9 (15) | 103 | 106.4 (14.8) | 112 | 96.2 (10.1) | 85 | 117 (11.6) |
Diastolic blood pressure (mmHg) | 197 | 65.4 (9.8) | 94 | 64.6 (9.5) | 103 | 66.1 (10) | 112 | 61.6 (8.3) | 85 | 70.3 (9.5) |
Uric acid (mg/dL) | 188 | 4.7 (0.9) | 87 | 4.9 (0.9) | 101 | 4.6 (0.8) | 108 | 4.7 (0.8) | 80 | 4.7 (0.9) |
Cholesterol (mg/dL) | 197 | 170.3 (30.6) | 93 | 170.4 (32.1) | 104 | 170.2 (29.3) | 110 | 171.7 (28.4) | 87 | 168.6 (33.2) |
HDL-c (mg/dL) | 197 | 51.1 (11.6) | 93 | 49 (11.1) | 104 | 53 (11.8) | 110 | 51 (11.2) | 87 | 51.3 (12.1) |
LDL-c (mg/dL) | 189 | 102.8 (24.9) | 88 | 104.2 (24.8) | 101 | 101.5 (25) | 110 | 104 (23.8) | 79 | 101 (26.4) |
Triglycerides (mg/dL) | 197 | 89.9 (50) | 93 | 96.6 (53.3) | 104 | 84 (46,3) | 110 | 83.7 (39.5) | 87 | 97.8 (60.1) |
Glucose (mg/dL) | 197 | 85.9 (6.2) | 93 | 84.8 (6.5) | 104 | 86.9 (5.8) | 109 | 85.4 (5.5) | 88 | 86.5 (7.1) |
Insulin (µU/L) | 194 | 12.9 (8.5) | 93 | 14.4 (10.7) | 101 | 11.5 (5.6) | 110 | 12.2 (5) | 84 | 13.9 (11.6) |
HOMA | 192 | 2.8 (2.1) | 92 | 2.9 (1.7) | 100 | 2.6 (1.3) | 109 | 2.6 (1.1) | 83 | 3.2 (2.1) |
GGT (U/L) | 184 | 16.9 (5.9) | 85 | 16.9 (6.8) | 99 | 16.9(5.1) | 108 | 16.3 (4.8) | 76 | 17.7 (7.3) |
MetS (N, %) | 181 | 12 (6.1) | 86 | 7 (7.8) | 95 | 5 (4.9) | 105 | 4 (3.7) | 76 | 8 (9.3) |
MetS z score | 181 | 2.4 (3.7) | 86 | 2.2 (3.9) | 95 | 2.5 (3.7) | 105 | 0.5 (2.9) | 76 | 4.9 (3.3) |
Physical activity ¥ | ||||||||||
Total physical activity (ENMO min/day) | 191 | 63 (15.4) | 92 | 59.7 (13.7) | 99 | 66.1 (16.5) | 104 | 64.1 (16.4) | 87 | 61.8 (14.3) |
MVPA (min/day) | 191 | 54.4 (20.9) | 92 | 48.4 (18.3) | 99 | 59.9 (21.7) | 104 | 56.8 (21.7) | 87 | 51.5 (19.6) |
Skipping breakfast (N, %) | ||||||||||
24 h-recall criteria | 203 | 11 (5.3) | 96 | 7 (7.2) | 107 | 4 (3.7) | 112 | 4 (3.5) | 91 | 7 (7.5) |
KIDMED item criteria | 172 | 26 (12.6) | 80 | 17 (21.3) | 91 | 9 (11) | 96 | 14 (14.6) | 75 | 12 (16) |
Breakfast quality | ||||||||||
BQI score (0–10) | 191 | 4.2 (1.3) | 90 | 4.1 (1.3) | 100 | 4.2 (1.2) | 109 | 3.8 (1) | 82 | 4.6 (1.5) |
Breakfast energy density | ||||||||||
From solids (BEDs) | 179 | 3.3 (1.1) | 86 | 3.3 (1.2) | 92 | 3.3 (1.1) | 109 | 3.3 (1.3) | 70 | 3.4 (0.9) |
From beverages (BEDb) | 191 | 0.5 (0.3) | 88 | 0.5 (0.2) | 102 | 0.5 (0.1) | 109 | 0.5 (0.2) | 82 | 0.5 (0.1) |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
β | p | β | p | β | p | |
FMI z-score | 0.057 | 0.455 | - | - | - | - |
Abdominal fat z-score | 0.024 | 0.752 | −0.028 | 0.478 | -0.047 | 0.235 |
SBP (mmHg) | 0.047 | 0.384 | 0.042 | 0.426 | 0.034 | 0.533 |
DBP (mmHg) | 0.034 | 0.625 | 0.029 | 0.674 | 0.041 | 0.553 |
Uric acid (mg/dL) | −0.128 | 0.091 | −0.172 | 0.028 | -0.151 | 0.060 |
Cholesterol (mg/dL) | −0.038 | 0.625 | −0.036 | 0.659 | -0.017 | 0.845 |
HDL-c (mg/dL) | −0.022 | 0.779 | 0.017 | 0.831 | 0.009 | 0.913 |
LDL-c (mg/dL) | −0.039 | 0.629 | −0.046 | 0.582 | -0.017 | 0.849 |
Triglycerides (mg/dL) | −0.008 | 0.913 | −0.030 | 0.699 | -0.020 | 0.804 |
HOMA | −0.016 | 0.845 | 0.022 | 0.779 | 0.020 | 0.809 |
GGT (U/L) | −0.136 | 0.096 | −0.144 | 0.082 | -0.161 | 0.061 |
MetS z-score | −0.018 | 0.779 | −0.022 | 0.725 | -0.011 | 0.869 |
BEDs | BEDb | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 1 | Model 2 | Model 3 | |||||||
β | p | β | p | β | p | β | p | β | p | β | p | |
FMI z-score | −0.052 | 0.494 | - | - | - | - | 0.043 | 0.561 | - | - | - | - |
Abdominal fat z-score | −0.024 | 0.752 | 0.020 | 0.619 | 0.018 | 0.653 | 0.031 | 0.680 | −0.007 | 0.848 | −0.007 | 0.855 |
SBP (mmHg) | 0.074 | 0.166 | 0.107 | 0.045 | 0.082 | 0.130 | 0.090 | 0.091 | 0.071 | 0.165 | 0.076 | 0.154 |
DBP (mmHg) | −0.031 | 0.654 | 0.018 | 0.794 | −0.010 | 0.889 | 0.024 | 0.732 | −0.007 | 0.922 | −0.006 | 0.928 |
Uric acid (mg/dL) | −0.026 | 0.735 | 0.060 | 0.451 | 0.058 | 0.473 | 0.017 | 0.825 | 0.007 | 0.925 | 0.003 | 0.970 |
Total cholesterol (mg/dL) | 0.144 | 0.061 | 0.165 | 0.042 | 0.181 | 0.029 | 0.032 | 0.681 | 0.021 | 0.798 | 0.018 | 0.824 |
HDL-c (mg/dL) | 0.198 | 0.008 | 0.186 | 0.016 | 0.172 | 0.032 | 0.059 | 0.433 | 0.061 | 0.433 | 0.071 | 0.371 |
LDL-c (mg/dL) | 0.094 | 0.231 | 0.109 | 0.189 | 0.127 | 0.136 | 0.040 | 0.610 | 0.035 | 0.674 | 0.029 | 0.731 |
Triglycerides (mg/dL) | 0.001 | 0.985 | 0.030 | 0.698 | 0.039 | 0.625 | −0.008 | 0.916 | −0.027 | 0.731 | −0.032 | 0.683 |
HOMA | 0.050 | 0.549 | 0.076 | 0.354 | 0.107 | 0.205 | 0.203 | 0.016 | 0.190 | 0.019 | 0.190 | 0.022 |
GGT (U/L) | 0.112 | 0.160 | 0.116 | 0.156 | 0.126 | 0.131 | −0.008 | 0.919 | −0.033 | 0.689 | −0.030 | 0.714 |
MetS z-score | −0.035 | 0.586 | 0.012 | 0.846 | 0.003 | 0.958 | 0.051 | 0.425 | 0.023 | 0.710 | 0.020 | 0.744 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenaza, L.; Muñoz-Hernández, V.; Medrano, M.; Oses, M.; Amasene, M.; Merchán-Ramírez, E.; Cadenas-Sanchez, C.; Ortega, F.B.; Ruiz, J.R.; Labayen, I. Association of Breakfast Quality and Energy Density with Cardiometabolic Risk Factors in Overweight/Obese Children: Role of Physical Activity. Nutrients 2018, 10, 1066. https://doi.org/10.3390/nu10081066
Arenaza L, Muñoz-Hernández V, Medrano M, Oses M, Amasene M, Merchán-Ramírez E, Cadenas-Sanchez C, Ortega FB, Ruiz JR, Labayen I. Association of Breakfast Quality and Energy Density with Cardiometabolic Risk Factors in Overweight/Obese Children: Role of Physical Activity. Nutrients. 2018; 10(8):1066. https://doi.org/10.3390/nu10081066
Chicago/Turabian StyleArenaza, Lide, Victoria Muñoz-Hernández, María Medrano, Maddi Oses, Maria Amasene, Elisa Merchán-Ramírez, Cristina Cadenas-Sanchez, Francisco B. Ortega, Jonatan R. Ruiz, and Idoia Labayen. 2018. "Association of Breakfast Quality and Energy Density with Cardiometabolic Risk Factors in Overweight/Obese Children: Role of Physical Activity" Nutrients 10, no. 8: 1066. https://doi.org/10.3390/nu10081066
APA StyleArenaza, L., Muñoz-Hernández, V., Medrano, M., Oses, M., Amasene, M., Merchán-Ramírez, E., Cadenas-Sanchez, C., Ortega, F. B., Ruiz, J. R., & Labayen, I. (2018). Association of Breakfast Quality and Energy Density with Cardiometabolic Risk Factors in Overweight/Obese Children: Role of Physical Activity. Nutrients, 10(8), 1066. https://doi.org/10.3390/nu10081066