A Comparison of Vitamin E Status and Associated Pregnancy Outcomes in Maternal–Infant Dyads between a Nigerian and a United States Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment
2.2. Ethical Approvals
2.3. Sample and Data Collection
2.4. Nutrient Intake Data
2.5. Biochemical Analysis
2.6. Growth Analysis
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Maternal and Infant Population Plasma Levels
3.3. Tocopherol Correlations with Maternal and Infant Characteristics
3.4. Maternal–Cord Transfer of Vitamin E Tocopherols
3.5. Associations with Maternal Clinical Outcomes
3.6. Associations with Infant Clinical Outcomes
4. Discussion
4.1. Baseline Characteristics
4.2. Maternal and Infant Plasma Levels
4.3. Tocopherol Correlations with Maternal and Infant Characteristics
4.4. Maternal–Cord Transfer of Vitamin E Tocopherols
4.5. Associations with Maternal Clinical Outcomes
4.6. Associations with Infant Clinical Outcome
4.7. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Chappell, L.C.; Seed, P.T.; Briley, A.L.; Kelly, F.J.; Lee, R.; Hunt, B.J.; Parmar, K.; Bewley, S.J.; Shennan, A.H.; Steer, P.J.; et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: A randomised trial. Lancet 1999, 354, 810–816. [Google Scholar] [CrossRef]
- Scholl, T.O.; Leskiw, M.; Chen, X.; Sims, M.; Stein, T.P. Oxidative stress, diet, and the etiology of preeclampsia. Am. J. Clin. Nutr. 2005, 81, 1390–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholl, T.O.; Stein, T.P. Oxidant damage to DNA and pregnancy outcome. J. Matern. Fetal. Med. 2001, 10, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.F.; Hansen, N.I.; Brion, L.P.; Ehrenkranz, R.A.; Kennedy, K.A.; Walsh, M.C.; Shankaran, S.; Acarregui, M.J.; Johnson, K.J.; Hale, E.C.; et al. Serum tocopherol levels in very preterm infants after a single dose of vitamin E at birth. Pediatrics 2013, 132, e1626–e1633. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Christen, S.; Shigenaga, M.K.; Ames, B.N. Gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 2001, 74, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Wolf, G. How an increased intake of alpha-tocopherol can suppress the bioavailability of gamma-tocopherol. Nutr. Rev. 2006, 64, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.W.; Paterson, E.; Atkinson, J.K.; Ramakrishnan, R.; Cross, C.E.; Traber, M.G. Studies in humans using deuterium-labeled alpha- and gamma-tocopherols demonstrate faster plasma gamma-tocopherol disappearance and greater gamma-metabolite production. Free Radic. Biol. Med. 2005, 38, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Saito, Y.; Jones, L.S.; Shigeri, Y. Chemical reactivities and physical effects in comparison between tocopherols and tocotrienols: Physiological significance and prospects as antioxidants. J. Biosci. Bioeng. 2007, 104, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Nishio, K.; Horie, M.; Akazawa, Y.; Shichiri, M.; Iwahashi, H.; Hagihara, Y.; Yoshida, Y.; Niki, E. Attenuation of lipopolysaccharide (LPS)-induced cytotoxicity by tocopherols and tocotrienols. Redox Biol. 2013, 1, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.; Liebner, F.; Netscher, T.; Mereiter, K.; Rosenau, T. Vitamin E chemistry. Nitration of non-alpha-tocopherols: Products and mechanistic considerations. J. Org. Chem. 2007, 72, 6504–6512. [Google Scholar] [CrossRef] [PubMed]
- Fakhrzadeh, L.; Laskin, J.D.; Laskin, D.L. Ozone-induced production of nitric oxide and TNF-alpha and tissue injury are dependent on NF-kappaB p50. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 287, L279–L285. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.L.; Wagner, J.G.; Kala, A.; Mills, K.; Wells, H.B.; Alexis, N.E.; Lay, J.C.; Jiang, Q.; Zhang, H.; Zhou, H.; et al. Vitamin E, γ-tocopherol, reduces airway neutrophil recruitment after inhaled endotoxin challenge in rats and in healthy volunteers. Free Radic Biol. Med. 2013, 60, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berdnikovs, S.; Abdala-Valencia, H.; McCary, C.; Somand, M.; Cole, R.; Garcia, A.; Bryce, P.; Cook-Mills, J.M. Isoforms of vitamin E have opposing immunoregulatory functions during inflammation by regulating leukocyte recruitment. J. Immunol. 2009, 182, 4395–4405. [Google Scholar] [CrossRef] [PubMed]
- Food Composition Tables. Available online: http://www.fao.org/3/a-y4705e.pdf (accessed on 21 May 2018).
- Scholl, T.O.; Chen, X.; Sims, M.; Stein, T.P. Vitamin E: Maternal concentrations are associated with fetal growth. Am. J. Clin. Nutr. 2006, 84, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Shamim, A.A.; Schulze, K.; Merrill, R.D.; Kabir, A.; Christian, P.; Shaikh, S.; Wu, L.; Ali, H.; Labrique, A.B.; Mehra, S.; et al. First-trimester plasma tocopherols are associated with risk of miscarriage in rural Bangladesh. Am. J. Clin. Nutr. 2015, 101, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.M.; Kramer, M.S.; Platt, R.W.; Basso, O.; Evans, R.W.; Kahn, S.R. The association between maternal antioxidant levels in midpregnancy and preeclampsia. Am. J. Obstet. Gynecol. 2015, 213, 695. [Google Scholar] [CrossRef] [PubMed]
- Rosales Nieto, C.A.; Meza-Herrera, C.A.; Moron Cedillo Fde, J.; Flores Najera Mde, J.; Gámez Vázquez, H.G.; Ventura Pérez Fde, J.; Liu, S. Vitamin E supplementation of undernourished ewes pre- and post-lambing reduces weight loss of ewes and increases weight of lambs. Trop. Anim. Health Prod. 2016, 48, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Sempos, C.T.; Johnson, N.E.; Smith, E.L.; Gilligan, C. Effects of intraindividual and interindividual variation in repeated dietary records. Am. J. Epidemiol. 1985, 121, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Basiotis, P.P.; Welsh, S.O.; Cronin, F.J.; Kelsay, J.L.; Mertz, W. Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. J. Nutr. 1987, 117, 1638–1641. [Google Scholar] [CrossRef] [PubMed]
- Suitor, C.J.; Gardner, J.; Willett, W.C. A comparison of food frequency and diet recall methods in studies of nutrient intake of low-income pregnant women. J. Am. Diet. Assoc. 1989, 89, 1786–1794. [Google Scholar] [PubMed]
- El-Sohemy, A.; Baylin, A.; Kabagambe, E.; Ascherio, A.; Spiegelman, D.; Campos, H. Individual carotenoid concentrations in adipose tissue and plasma as biomarkers of dietary intake. Am. J. Clin. Nutr. 2002, 76, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Ismail, L.C.; Victora, C.G.; Ohuma, E.O.; Bertino, E.; Altman, D.G.; Lambert, A.; Papageorghiou, A.T.; Carvalho, M.; Jaffer, Y.A.; et al. International standards for newborn—Weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014, 384, 857–868. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 24. Nutrient Data Laboratory Home Page; 2011. Available online: http://www.ars.usda.gov/ba/bhnrc/ndl (accessed on 4 June 2018).
- Dietrich, M.; Traber, M.G.; Jacques, P.F.; Cross, C.E.; Hu, Y.; Block, G. Does γ-tocopherol play a role in the primary prevention of heart disease and cancer? A review. Am. J. Coll. Nutr. 2006, 25, 292–299. [Google Scholar] [CrossRef]
- Anderson Berry, A.; Hanson, C. The Role of Vitamin E in Pregnancy. In Vitamin E in Human Health; Springer: Berlin, Germany, 2018. [Google Scholar]
- Yeum, K.J.; Ferland, G.; Patry, J.; Russell, R.M. Relationship of plasma carotenoids, retinol and tocopherols in mothers and newborn infants. J. Am. Coll. Nutr. 1998, 17, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Kiely, M.; Cogan, P.F.; Kearney, P.J.; Morrissey, P.A. Concentrations of tocopherols and carotenoids in maternal and cord blood plasma. Eur. J. Clin. Nutr. 1999, 53, 711–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debier, C.; Larondelle, Y. Vitamins A and E: Metabolism, roles and transfer to offspring. Br. J. Nutr. 2005, 93, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Hanson, C.; Lyden, E.; Furtado, J.; Van Ormer, M.; Schumacher, M.; Kamil, A.; McGinn, E.; Rilett, K.; Elliott, E.; Cave, C.; et al. Vitamin E status and associations in maternal-infant Dyads in the Midwestern United States. Clin. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Capper, J.L.; Wilkinson, R.G.; Mackenzie, A.M.; Sinclair, L.A. The effect of fish oil supplementation of pregnant and lactating ewes on milk production and lamb performance. Animal 2007, 1, 889–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lira, L.Q.; Ribeiro, P.P.; Grilo, E.C.; Lima, M.S.; Dimenstein, R. Alpha-tocopherol level in serum and colostrum of breastfeeding women and association with maternal variables. Revista Brasileira de Ginecologia e Obstetrícia 2012, 34, 362–368. [Google Scholar] [PubMed]
- Bastani, P.; Hamdi, K.; Abasalizadeh, F.; Navali, N. Effects of vitamin E supplementation on some pregnancy health indices: A randomized clinical trial. Int. J. Gen. Med. 2011, 4, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Berr, C.; Coudray, C.; Bonithon-Kopp, C.; Roussel, A.M.; Mainard, F.; Alperovitch, A. Demographic and cardiovascular risk factors in relation to antioxidant status: The EVA Study. Int. J. Vitam. Nutr. Res. 1998, 68, 26–35. [Google Scholar] [PubMed]
- Huang, H.Y.; Appel, L.J. Supplementation of Diets with α-Tocopherol Reduces Serum Concentrations of γ- and δ-Tocopherol in Humans. J. Nutr. 2003, 133, 3137–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
United States Maternal Population | Nigerian Maternal Population | p-Value | |||
Continuous variables: | N | Mean (SD) | N | Mean (SD) | NS |
Mean age (years) | 189 | 28.7 (5.6) | 98 | 31.10 (4.70) | NS |
Mean pre-pregnancy BMI (kg/m2) | 112 | 27.1 (6.6) | 99 | 31.10 (4.18) | NS |
Categorical variables: | N (%) | N (%) | |||
Mode of delivery | NS | ||||
Vaginal delivery | 114 (65) | 67 (67.68) | |||
Caesarian section | 63 (35) | 32 (32.32) | |||
Chorioamnionitis Diagnosis | N/A | ||||
Yes | 10 (6) | 0 (N/A) | |||
No | 169 (94) | 81 (82) | |||
Smoking status | p < 0.001 | ||||
Current smokers | 28 (15) | 1 (1.01) | |||
Former/never smokers | 148 (85) | 97 (97.98) | |||
United States Infant Population | Nigerian Infant Population | ||||
Continuous variables: | N | Mean (SD) | N | Mean (SD) | |
Gestational age at delivery (weeks of gestation) | 189 | 38.04 (3.1) | 99 | 38.40 (2.35) | NS |
Infant birth anthropometrics: | NS | ||||
Birth weight (g) | 189 | 3109.8 (783.4) | 99 | 3086.21 (479.13) | |
Birth length (cm) | 189 | 48.43 (4.7) | 99 | 49.25 (3.79) | |
Birth head circumference (cm) | 189 | 33.50 (2.8) | 97 | 34.37 (2.36) | |
Categorical variables: | N (%) | N (%) | |||
Premature | 34 (18) | 15 (15.2) | NS | ||
Gender | NS | ||||
Male (%) | 96 (51) | 50 (50.51) | |||
Female (%) | 93 (49) | 49 (49.49) |
Median Vitamin E Tocopherol Levels (mcg/L) (Range) | |||
---|---|---|---|
United States Cohort | Nigerian Cohort | p-Value | |
Maternal α-tocopherol | 12,375.85 (175.23–34,687.75) | 8333.08 (1576.59–16,248.40) | <0.001 |
Maternal γ-tocopherol | 1340.73 (224.59–4385.95) | 357.51 (66.36–1775.31) | <0.001 |
Maternal δ-tocopherol | 261.71 (24.70–1324.71) | 368.94 (43.06–1886.47) | <0.001 |
Maternal α:γ-tocopherol ratio | 8.54 (0.20–44.39) | 26.19 (4.37–65.35) | <0.001 |
Cord α-tocopherol | 1861.17 (80.56–6958.85) | 1923.26 (728.07–12,885.87) | 0.383 |
Cord γ-tocopherol | 203.13 (42.53–1953.23) | 113.87 (0.00–823.00) | <0.0001 |
Cord δ-tocopherol | 74.51 (16.32–716.52) | 88.86 (0.00–958.64) | 0.379 |
Cord α:γ-tocopherol ratio | 8.91 (0.49–44.93) | 18.77 (1.48–91.62) | <0.001 |
Median Tocopherol Levels (mcg/L) (Range) | Median Tocopherol Levels (mcg/L) (Range) | |||||
---|---|---|---|---|---|---|
US Vaginal Delivery | US Caesarean Section | p-Value | Nigerian Vaginal Delivery | Nigerian Caesarean Section | p-Value | |
Maternal α-tocopherol | 12,332.01 (175.23–34,687.75) | 12,487.40 (2269.46–20,190.35) | 0.870 | 8555.84 (1576.59–13,382.37) | 7766.52 (1801.04–16,248.40) | 0.092 |
Maternal γ-tocopherol | 1269.06 (224.59–3604.48) | 1413.52 (151.01–4385.95) | 0.028 | 314.57 (66.36–1574.22) | 445.36 (141.18–1775.31) | 0.003 |
Maternal δ-tocopherol | 260.81 (24.70–1324.71) | 260.56 (34.80–780.33) | 0.430 | 361.82 (43.06–1071.62) | 387.57 (93.16–1886.47) | 0.356 |
Maternal α:γ-tocopherol ratio | 9.23 (0.20–44.39) | 7.81 (2.20–34.62) | 0.013 | 27.38 (5.26–65.35) | 15.03 (4.37–61.27) | <0.001 |
Cord α-tocopherol | 1804.32 (80.56–6958.85) | 1976.08 (899.73–3991.82) | 0.270 | 1848.86 (867.92–12,885.87) | 2185.74 (728.07–7387.90) | 0.272 |
Cord γ-tocopherol | 199.07 (42.53–1953.23) | 215.12 (71.63–575.06) | 0.350 | 82.54 (0.00–823.00) | 225.78 (37.00–553.75) | <0.001 |
Cord δ-tocopherol | 77.98 (0.00–573.64) | 60.31 (0.00–298.27) | 0.170 | 73.62 (0.00–517.19) | 114.76 (24.45–958.64) | 0.0002 |
Cord α:γ-tocopherol ratio | 8.91 (0.49–44.93) | 8.97 (3.97–25.33) | 0.941 | 27.26 (1.48–91.62) | 10.60 (2.42–64.63) | <0.001 |
Median Tocopherol Levels (mcg/L) (Range) | |||
---|---|---|---|
Chorioamnionitis Diagnosis | p-Value | ||
Yes | No | ||
Maternal α-tocopherol | 9629.57 (4185.93–16,389.15) | 12,498.16 (175.23–34,687.75) | 0.058 |
Maternal γ-tocopherol | 1054.20 (311.58–2248.52) | 1347.84 (224.59–4385.95) | 0.051 |
Maternal δ-tocopherol | 185.93 (27.87–403.94) | 262.76 (24.70–1324.71) | 0.186 |
Cord α-tocopherol | 1972.37 (1219.44–2911.61) | 1861.17 (80.56–6958.85) | 0.773 |
Cord γ-tocopherol | 178.57 (63.75–231.58) | 203.78 (42.53–1953.23) | 0.108 |
Cord δ-tocopherol | 93.51 (45.71–157.39) | 74.34 (16.32–716.52) | 0.582 |
Median Tocopherol Levels (mcg/L) (Range) as Compared to Infants by Z-Score ≤−2 vs. >−2 * | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight-for-Length Z-Score | p-Value | Weight-for-Age Z-Score | p-Value | Length-for-Age Z-Score | p-Value | Head-Circumference-for-Age Z-Score | p-Value | |||||
≤−2 | >−2 | ≤−2 | >−2 | ≤−2 | >−2 | ≤−2 | >−2 | |||||
US cord α-tocopherol | 2224.02 (1273.45–4615.08) | 1793.69 (80.56–4514.84) | 0.244 | 2223.21 (899.73–6958.85) | 1793.69 (80.56–4514.84) | 0.009 | 2362.06 (1380.02–6958.85) | 1746.48 (80.56–4514.84) | 0.006 | 1833.72 (1219.44–6958.85) | 1888.18 (80.56–4615.08) | 0.50 |
US cord γ-tocopherol | 251.29 (83.20–524.85) | 198.13 (42.53–652.87) | 0.133 | 328.19 (77.92–1953.23) | 195.91 (42.53–652.87) | <0.001 | 261.66 (73.94–1953.23) | 197.08 (42.53–652.87) | 0.064 | 220.71 (73.94–1953.23) | 199.45 (42.53–652.87) | 0.18 |
US cord δ-tocopherol | 80.89 (29.86–454.64) | 74.34 (16.32–709.50) | 0.169 | 74.61 (31.23–716.52) | 73.16 (16.32–709.50) | 0.264 | 55.19 (31.23–716.52) | 75.54 (16.32–709.50) | 0.338 | 79.11 (30.91–716.52) | 72.26 (16.32–709.50) | 0.35 |
Nigeria cord α-tocopherol | 1737.66 (907.16–12,885.87) | 1945.30 (728.07–9359.80) | 0.265 | 2212.43 (1104.84–5871.71) | 1901.35 (728.07–12,885.87) | 0.835 | 1785.19 (867.92–2393.97) | 1945.30 (728.07–12,885.87) | 0.124 | 2149.88 (728.07–6905.18) | 1864.00 (867.92–9359.80) | 0.322 |
Nigeria cord γ-tocopherol | 243.77 (13.67–823.00) | 96.95 (0.00–699.43) | 0.177 | 59.71 (13.67–553.75) | 122.88 (0.00–823.00) | 0.098 | 71.54 (0.00–271.29) | 133.51 (26.02–823.00) | 0.003 | 178.19 (57.09–553.75) | 109.19 (0.00–823.00) | 0.296 |
Nigeria cord δ-tocopherol | 80.92 (15.61–958.64) | 88.84 (0.00–517.19) | 0.923 | 56.80 (15.61–958.64) | 89.85 (0.00–517.19) | 0.342 | 75.56 (0.00–144.20) | 88.88 (13.98–958.64) | 0.100 | 138.12 (70.12–958.64) | 84.77 (0.00–517.19) | 0.034 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cave, C.; Hanson, C.; Schumacher, M.; Lyden, E.; Furtado, J.; Obaro, S.; Delair, S.; Kocmich, N.; Rezac, A.; Izevbigie, N.; et al. A Comparison of Vitamin E Status and Associated Pregnancy Outcomes in Maternal–Infant Dyads between a Nigerian and a United States Population. Nutrients 2018, 10, 1300. https://doi.org/10.3390/nu10091300
Cave C, Hanson C, Schumacher M, Lyden E, Furtado J, Obaro S, Delair S, Kocmich N, Rezac A, Izevbigie N, et al. A Comparison of Vitamin E Status and Associated Pregnancy Outcomes in Maternal–Infant Dyads between a Nigerian and a United States Population. Nutrients. 2018; 10(9):1300. https://doi.org/10.3390/nu10091300
Chicago/Turabian StyleCave, Caleb, Corrine Hanson, Marina Schumacher, Elizabeth Lyden, Jeremy Furtado, Stephen Obaro, Shirley Delair, Nicholas Kocmich, Amy Rezac, NI Izevbigie, and et al. 2018. "A Comparison of Vitamin E Status and Associated Pregnancy Outcomes in Maternal–Infant Dyads between a Nigerian and a United States Population" Nutrients 10, no. 9: 1300. https://doi.org/10.3390/nu10091300
APA StyleCave, C., Hanson, C., Schumacher, M., Lyden, E., Furtado, J., Obaro, S., Delair, S., Kocmich, N., Rezac, A., Izevbigie, N., Van Ormer, M., Kamil, A., McGinn, E., Rilett, K., Elliott, E., Johnson, R., Weishaar, K., Olateju, E., Akaba, G., ... Anderson-Berry, A. (2018). A Comparison of Vitamin E Status and Associated Pregnancy Outcomes in Maternal–Infant Dyads between a Nigerian and a United States Population. Nutrients, 10(9), 1300. https://doi.org/10.3390/nu10091300