Selected Psychological Aspects of Meat Consumption—A Short Review
Abstract
:1. Introduction
2. Method
3. Protein
4. Amino Acids
5. Phytoestrogens
6. Prenatal Development—Digit Ratio
7. Postponed Impact of Meat Consumption—A Hypothesis
8. Food Neophobia
9. Psychology of Meat Consumption
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leroy, F.; Praet, I. Meat traditions. The co-evolution of humans and meat. Appetite 2015, 90, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Stanford, C.B.; Bunn, H.T. Meat-Eating and Human Evolution; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Williams, A.; Dunbar, R. Big brains, meat, tuberculosis, and the nicotinamide switches: Co-evolutionary relationships with modern repercussions? Int. J. Tryptophan Res. 2013, 6, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Graça, J.; Calheiros, M.M.; Oliveira, A. Attached to meat? (Un)Willingness and intentions to adopt a more plant-based diet. Appetite 2015, 95, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Roman, Italy, 2013; p. 15. [Google Scholar]
- Modlinska, K.; Pisula, W. Exploratory analysis of the links among food consumption profiles, prenatal androgens, and selected measures of quality of life. Front. Public Health 2016, 4, 240. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.M.D.C.C.; Vicente, A.F.D.R.B. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rintamäki, R.; Partonen, T. Dietary Amino Acids and Mood. In Handbook of Behavior, Food and Nutrition; Worobey, J., Tepper, B.J., Kanarek, R., Eds.; Springer: New York, NY, USA, 2011; pp. 565–576. [Google Scholar]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Khambadkone, S.G.; Cordner, Z.A.; Dickerson, F.; Severance, E.G.; Prandovszky, E.; Pletnikov, M.; Yolken, R.H. Nitrated meat products are associated with mania in humans and altered behavior and brain gene expression in rats. Mol. Psychiatr. 2018, 1. Available online: https://www.nature.com/articles/s41380-018-0105-6?_ga=2.182433383.1356982819.1533859200-205996752.1533859200 (accessed on 20 July 2018). [CrossRef] [PubMed]
- Piazza, J.; Ruby, M.B.; Loughnan, S.; Luong, M.; Kulik, J.; Watkins, H.M.; Seigerman, M. Rationalizing meat consumption. The 4Ns. Appetite 2015, 91, 114–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruby, M.B.; Heine, S.J. Meat, morals, and masculinity. Appetite 2011, 56, 447–450. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, C.T.; Temple, N.; Woodside, J.V. Vegetarian diets, low-meat diets and health: A review. Public Health Nutr. 2012, 15, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Falvo, M.J. Protein–which is best? J. Sports Sci. Med. 2004, 3, 118. [Google Scholar] [PubMed]
- Murphy, S.P.; Allen, L.H. Nutritional importance of animal source foods. J. Nutr. 2003, 133, 3932–3935. [Google Scholar] [CrossRef] [PubMed]
- Cowley, J.J.; Griesel, R.D. Low protein diet and emotionality in the albino rat. J. Genet. Psychol. 1964, 104, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, L.; Lilley, C.; Langley-Evans, S.C. Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. Br. J. Nutr. 2004, 92, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamenhof, S.; Van Marthens, E.; Margolis, F.L. DNA (cell number) and protein in neonatal brain: Alteration by maternal dietary protein restriction. Science 1969, 160, 322–323. [Google Scholar] [CrossRef]
- Dodman, N.H.; Reisner, I.; Shuster, L.; Rand, W.; Luescher, U.A.; Robinson, I.; Houpt, K.A. Effect of dietary protein content on behavior in dogs. J. Am. Vet. Med. Assoc. 1996, 208, 376–379. [Google Scholar] [PubMed]
- Harper, M.; Reid, A.H. Use of a restricted protein diet in the treatment of behaviour disorder in a severely mentally retarded adult female phenylketonuric patient. J. Intellect. Disabil. Res. 1987, 31, 209–212. [Google Scholar] [CrossRef]
- Michaelsen, K.F.; Hoppe, C.; Roos, N.; Kaestel, P.; Stougaard, M.; Lauritzen, L.; Mølgaard, C.; Girma, T.; Friis, H. Choice of foods and ingredients for moderately malnourished children 6 months to 5 years of age. Food Nutr. Bull. 2009, 30 (Suppl. 3), 343–404. [Google Scholar] [CrossRef]
- Heys, M.; Jiang, C.; Schooling, C.M.; Zhang, W.; Cheng, K.K.; Lam, T.H.; Leung, G.M. Is childhood meat eating associated with better later adulthood cognition in a developing population? Eur. J. Epidemiol. 2010, 25, 507–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purcell, R.H.; Sun, B.; Pass, L.L.; Power, M.L.; Moran, T.H.; Tamashiro, K.L. Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup ingestive behavior. Physiol. Behav. 2011, 104, 474–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langley-Evans, S.C.; Bellinger, L.; McMullen, S. Animal models of programming: Early life influences on appetite and feeding behaviour. Mater. Child Nutr. 2005, 1, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D. Can nutrient supplements modify brain function? Am. J. Clin. Nutr. 2000, 71, 1669S–1673S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Mangels, A.R. Position of the American Dietetic Association: Vegetarian diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar] [PubMed]
- Schaafsma, G. The protein digestibility–corrected amino acid score. J. Nutr. 2000, 130, 1865–1867. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, G.; McDonough, F.E. Evaluation of the protein digestibility-corrected amino acid score method for assessing protein quality of foods. J. Assoc. Off. Anal. Chem. 1990, 73, 347–356. [Google Scholar] [PubMed]
- Kanno, J.; Kato, H.; Iwata, T.; Inoue, T. Phytoestrogen-low diet for endocrine disruptor studies. J. Agric. Food Chem. 2002, 50, 3883–3885. [Google Scholar] [CrossRef] [PubMed]
- Whitten, P.L.; Naftolin, F. Effects of a phytoestrogen diet on estrogen-dependent reproductive processes in immature female rats. Steroids 1992, 57, 56–61. [Google Scholar] [CrossRef]
- Brzezinski, A.; Adlercreutz, H.; Shaoul, R.; Rosier, A.; Shmueli, A.; Tanos, V.; Schenker, J.G. Short-term effects of phytoestrogen-rich diet on postmenopausal women. Menopause 1997, 4, 89–94. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol. 2014, 741, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Hajirahimkhan, A.; Dietz, B.M.; Bolton, J.L. Botanical modulation of menopausal symptoms: Mechanisms of action? Planta Med. 2013, 79, 538. [Google Scholar] [CrossRef] [PubMed]
- Lephart, E.D.; West, T.W.; Weber, K.S.; Rhees, R.W.; Setchell, K.D.; Adlercreutz, H.; Lund, T.D. Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol. Teratol. 2002, 24, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Habito, R.C.; Montalto, J.; Leslie, E.; Ball, M.J. Effects of replacing meat with soyabean in the diet on sex hormone concentrations in healthy adult males. Br. J. Nutr. 2000, 84, 557–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irvine, C.H.G.; Fitzpatrick, M.G.; Alexander, S.L. Phytoestrogens in soy-based infant foods: Concentrations, daily intake, and possible biological effects. Proc. Soc. Exp. Biol. Med. 1998, 217, 247–253. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014, 12, 3760. [Google Scholar] [CrossRef] [Green Version]
- Setchell, K.D.; Zimmer-Nechemias, L.; Cai, J.; Heubi, J.E. Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 1997, 350, 23–27. [Google Scholar] [CrossRef]
- Adgent, M.A.; Umbach, D.M.; Zemel, B.S.; Kelly, A.; Schall, J.I.; Ford, E.G.; Chandler, D.W. A longitudinal study of estrogen-responsive tissues and hormone concentrations in infants fed soy formula. J. Clin. Endocr. Metab. 2018, 103, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Sinai, T.; Ben-Avraham, S.; Guelmann-Mizrahi, I.; Goldberg, M.R.; Naugolni, L.; Askapa, G.; Rachmiel, M. Consumption of soy-based infant formula is not associated with early onset of puberty. Eur. J. Nutr. 2018, 1–7. Available online: https://link.springer.com/article/10.1007/s00394-018-1668-3 (accessed on 20 August 2018). [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations Statistics Division. Food Balance. 2015. Available online: http://www.fao.org/faostat/en/#data (accessed on 20 August 2018).
- Manning, J.T.; Fink, B.; Trivers, R. Digit ratio (2D:4D) and gender inequalities across nations. Evol. Psychol. 2014, 12, 757–768. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, M.H. The use of digit ratios as markers for perinatal androgen action. Reprod. Biol. Endocrinol. 2006, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.; Shultz, S. Finger length ratios (2D:4D) in anthropoids implicate reduced prenatal androgens in social bonding. Am. J. Phys. Anthropol. 2010, 141, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, A.; Nakazawa, Y. On relationships between digit ratio (2D:4D) and two fundamental cognitive drives, empathizing and systemizing, in Japanese sample. Pers. Individ. Differ. 2010, 49, 928–931. [Google Scholar] [CrossRef]
- Galis, F.; Ten Broek, C.M.; Van Dongen, S.; Wijnaendts, L.C. Sexual dimorphism in the prenatal digit ratio (2D:4D). Arch. Sex. Behav. 2010, 39, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Malas, M.A.; Dogan, S.; Evcil, E.H.; Desdicioglu, K. Fetal development of the hand, digits and digit ratio (2D:4D). Early Hum. Dev. 2006, 82, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.T.; Scutt, D.; Wilson, J.; Lewis-Jones, D.I. The ratio of 2nd to 4th digit length: A predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Hum. Reprod. 1998, 13, 3000–3004. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.T. Resolving the role of prenatal sex steroids in the development of digit ratio. Proc. Natl. Acad. Sci. USA 2011, 108, 16143–16144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, X.J.; Jacobs, L.F. Digit ratio predicts sense of direction in women. PLoS ONE 2012, 7, e32816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manning, J.T.; Fink, B. Digit ratio (2D:4D), dominance, reproductive success, asymmetry, and sociosexuality in the BBC Internet Study. Am. J. Hum. Biol. 2008, 20, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.T.; Fink, B. Digit ratio (2D:4D) and aggregate personality scores across nations: Data from the BBC internet study. Pers. Individ. Differ. 2011, 51, 387–391. [Google Scholar] [CrossRef]
- Van der Meij, L.; Almela, M.; Buunk, A.P.; Dubbs, S.; Salvador, A. 2D:4D in men is related to aggressive dominance but not to sociable dominance. Aggress. Behav. 2012, 38, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Hönekopp, J.; Voracek, M.; Manning, J.T. 2nd to 4th digit ratio (2D:4D) and number of sex partners: Evidence for effects of prenatal testosterone in men. Psychoneuroendocrinology 2006, 31, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.T.; Fink, B. Is low digit ratio linked with late menarche? Evidence from the BBC internet study. Am. J. Hum. Biol. 2011, 23, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Roney, J.R.; Maestripieri, D. Relative digit lengths predict men’s behavior and attractiveness during social interactions with women. Hum. Nat. 2004, 15, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Cohn, M.J. Developmental basis of sexually dimorphic digit ratios. Proc. Natl. Acad. Sci. USA 2011, 108, 16289–16294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tricker, A.R.; Preussmann, R. Carcinogenic N-nitrosamines in the diet: Occurrence, formation, mechanisms and carcinogenic potential. Mutat. Res. 1991, 259, 277–289. [Google Scholar] [CrossRef]
- Cross, A.J.; Sinha, R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ. Mol. Mutagen. 2004, 44, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Pisula, W.; Pisula, E. Autism prevalence and meat consumption—A hypothesis that needs to be tested. Med. Hypotheses 2014, 83, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Nierenberg, D.; Mastny, L. Happier Meals: Rethinking the Global Meat Industry; Worldwatch Institute: Washington, DC, USA, 2005. [Google Scholar]
- Baron-Cohen, S. The Essential Difference: Men, Women and the Extreme Male Brain; Penguin: London, UK, 2003. [Google Scholar]
- Baron-Cohen, S.; Lombardo, M.V.; Auyeung, B.; Ashwin, E.; Chakrabarti, B.; Knickmeyer, R. Why are autism spectrum conditions more prevalent in males? PLoS Biol. 2011, 9, e1001081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data (accessed on 19 July 2018).
- Mennella, J.A.; Jagnow, C.P.; Beauchamp, G.K. Prenatal and postnatal flavor learning by human infants. Pediatrics 2001, 107, e88. [Google Scholar] [CrossRef] [PubMed]
- Smotherman, W.P. In utero chemosensory experience alters taste preferences and corticosterone responsiveness. Behav. Neural Biol. 1982, 3, 61–68. [Google Scholar] [CrossRef]
- Mennella, J.A.; Beauchamp, G.K. Experience with a flavor in mother’s milk modifies the infant’s acceptance of flavored cereal. Dev. Psychobiol. 1999, 35, 197–203. [Google Scholar] [CrossRef]
- Modlinska, K.; Pisula, W. Social influences on food neophobia in nonhuman animals. In Food Neophobia; Reilly, S., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 3–24. [Google Scholar]
- Modlinska, K.; Stryjek, R.; Pisula, W. Food neophobia in wild and laboratory rats (multi-strain comparison). Behav. Process. 2015, 113, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozin, P. Evolution and adaptation in the understanding of behavior, culture, and mind. Am. Behav. Sci. 2000, 43, 970–986. [Google Scholar] [CrossRef]
- Lockwood, J. The Infested Mind: Why Humans Fear, Loathe, and Love Insects; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Barnett, S.A. Experiments on “neophobia” in wild and laboratory rats. Br. J. Psychol. 1958, 49, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Alley, T.R.; Potter, K.A. Food neophobia and sensation seeking. In Handbook of Behavior, Food and Nutrition; Preedy, V.R., Watson, R.R., Martin, C.R., Eds.; Springer Science & Business Media: New York, NY, USA, 2011; pp. 707–724. [Google Scholar]
- Pliner, P.; Hobden, K. Development of a scale to measure the trait of food neophobia in humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef]
- Addessi, E.; Galloway, A.T.; Birch, L.; Visalberghy, E. Taste perception and food choices in capuchin monkeys and human children. Primatologie 2004, 6, 101–128. [Google Scholar] [PubMed]
- Bryan, J.R. Food neophobia and olfaction in domestic chicks. Bird Behav. 1987, 2, 78–81. [Google Scholar]
- Kronenberger, J.P.; Médioni, J. Food neophobia in wild and laboratory mice (Mus musculus domesticus). Behav. Process. 1985, 11, 53–59. [Google Scholar] [CrossRef]
- Launchbaugh, K.L.; Provenza, F.D.; Werkmeister, M.J. Overcoming food neophobia in domestic ruminants through addition of a familiar flavor and repeated exposure to novel foods. Appl. Anim. Behav. Sci. 1997, 54, 327–334. [Google Scholar] [CrossRef]
- Fischler, C. Food habits, social change and the nature/culture dilemma. Soc. Sci. Inf. 1980, 19, 937–953. [Google Scholar] [CrossRef]
- Rozin, P. The selection of foods by rats, humans, and other animals. Adv. Study Behav. 1976, 6, 21–76. [Google Scholar]
- Al-Shawaf, L.; Lewis, D.M.; Alley, T.R.; Buss, D.M. Mating strategy, disgust, and food neophobia. Appetite 2015, 85, 30–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruby, M.B.; Rozin, P.; Chan, C. Determinants of willingness to eat insects in the USA and India. J. Insects Food Feed. 2015, 1, 215–225. [Google Scholar] [CrossRef]
- Verbeke, W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Martins, Y.; Pelchat, M.L.; Pliner, P. “Try it; it’s good and it’s good for you”: Effects of taste and nutrition information on willingness to try novel foods. Appetite 1997, 28, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Pliner, P.; Pelchat, M.L. Neophobia in humans and the special status of foods of animal origin. Appetite 1991, 16, 205–218. [Google Scholar] [CrossRef]
- Harris, G. Food neophobia: Behavioral and biological influences. In Food Neophobia; Reilly, S., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 193–217. [Google Scholar]
- Cooke, L.; Carnell, S.; Wardle, J. Food neophobia and mealtime food consumption in 4–5 year old children. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Helland, S.H.; Bere, E.; Bjørnarå, H.B.; Øverby, N.C. Food neophobia and its association with intake of fish and other selected foods in a Norwegian sample of toddlers: A cross-sectional study. Appetite 2017, 114, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Maiz, E.; Balluerka, N. Nutritional status and Mediterranean diet quality among Spanish children and adolescents with food neophobia. Food Qual. Prefer. 2016, 52, 133–142. [Google Scholar] [CrossRef]
- Dovey, T.M.; Staples, P.A.; Gibson, E.L.; Halford, J.C. Food neophobia and ‘picky/fussy’ eating in children: A review. Appetite 2008, 50, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Nicklaus, S.; Monnery-Patris, S. Food neophobia in children and its relationships with parental. In Food Neophobia; Reilly, S., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 255–277. [Google Scholar]
- De Boer, A.; Ter Horst, G.J.; Lorist, M.M. Physiological and psychosocial age-related changes are associated with reduced food intake in older persons. Ageing Res. Rev. 2013, 12, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Siergst, M. Consumer attitudes to food innovation and technology. In Understanding Consumers of Food Products; Frewer, L., van Trijp, H., Eds.; Woodhead Publishing: Cambridge, UK, 2006. [Google Scholar]
- De Barcellos, M.D.; Kügler, J.O.; Grunert, K.G.; Van Wezemael, L.; Pérez-Cueto, F.J.; Ueland, Ø.; Verbeke, W. European consumers’ acceptance of beef processing technologies: A focus group study. Innov. Food Sci. Emerg. Technol. 2010, 11, 721–732. [Google Scholar] [CrossRef]
- Pollard, J.; Kirk, S.L.; Cade, J.E. Factors affecting food choice in relation to fruit and vegetable intake: A review. Nutr. Res. Rev. 2002, 15, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Verneau, F.; La Barbera, F.; Kolle, S.; Amato, M.; Del Giudice, T.; Grunert, K. The effect of communication and implicit associations on consuming insects: An experiment in Denmark and Italy. Appetite 2016, 106, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Herzog, H.; Grayson, S.; McCord, D. Brief Measures of the Animal Attitude Scale. Anthrozoos 2015, 28, 145–152. [Google Scholar] [CrossRef]
- Herzog, H.; Rowan, A.N.; Kossow, D. Social attitudes and animals. In The State of the Animals; Salem, D.J., Rowan, A.N., Eds.; Humane Society Press: Gaithersburg, MD, USA, 2001; pp. 55–69. [Google Scholar]
- Bandura, A. Moral disengagement in the perpetration of inhumanities. Pers. Soc. Psychol. Rev. 1999, 3, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Joy, M. Why We Love Dogs, Eat Pigs, and Wear Cows: An Introduction to Carnism; Conari Press: San Francisco, CA, USA, 2011. [Google Scholar]
- Rothgerber, H. Real men don’t eat (vegetable) quiche: Masculinity and the justification of meat consumption. Psychol. Men Masc. 2013, 14, 363. [Google Scholar] [CrossRef]
- Cairns, K.; Johnston, J. On (not) knowing where your food comes from: Meat, mothering and ethical eating. Agric. Hum. Values 2018, 35, 569–580. [Google Scholar] [CrossRef]
- Saba, A.; Di Natale, R. A study on the mediating role of intention in the impact of habit and attitude on meat consumption. Food Qual. Prefer. 1998, 10, 69–77. [Google Scholar] [CrossRef]
- Neal, D.T.; Wood, W.; Quinn, J.M. Habits—A repeat performance. Curr. Dir. Psychol. Sci. 2006, 15, 198–202. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Pfeiler, T.M.; Patterson, M.D.; Milburn, M.A. The Carnism Inventory: Measuring the ideology of eating animals. Appetite 2017, 113, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Dhont, K.; Hodson, G. Why do right-wing adherents engage in more animal exploitation and meat consumption? Pers. Individ. Differ. 2014, 64, 12–17. [Google Scholar] [CrossRef] [Green Version]
- De Boer, J.; Schösler, H.; Aiking, H. “Meatless days” or “less but better”? Exploring strategies to adapt Western meat consumption to health and sustainability challenges. Appetite 2014, 76, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Appleby, P.N.; Davey, G.K.; Key, T.J. Hypertension and blood pressure among meat eaters, fish eaters, vegetarians and vegans in EPIC–Oxford. Public Health Nutr. 2002, 5, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Ciechanowski, P.S.; Katon, W.J.; Russo, J.E.; Walker, E.A. The patient–provider relationship: Attachment theory and adherence to treatment in diabetes. Am. J. Psychiatry. 2001, 158, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, E.; Donkin, L.; Stroh, J.C. Illness and treatment perceptions are associated with adherence to medications, diet, and exercise in diabetic patients. Diabetes Care 2011, 34, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.R.; Bauer, S.; Hamer, R.M.; Kordy, H.; Ward, D.; Bulik, C.M. Use of text messaging for monitoring sugar-sweetened beverages, physical activity, and screen time in children: A pilot study. J. Nutr. Educ. Behav. 2008, 40, 385–391. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modlinska, K.; Pisula, W. Selected Psychological Aspects of Meat Consumption—A Short Review. Nutrients 2018, 10, 1301. https://doi.org/10.3390/nu10091301
Modlinska K, Pisula W. Selected Psychological Aspects of Meat Consumption—A Short Review. Nutrients. 2018; 10(9):1301. https://doi.org/10.3390/nu10091301
Chicago/Turabian StyleModlinska, Klaudia, and Wojciech Pisula. 2018. "Selected Psychological Aspects of Meat Consumption—A Short Review" Nutrients 10, no. 9: 1301. https://doi.org/10.3390/nu10091301
APA StyleModlinska, K., & Pisula, W. (2018). Selected Psychological Aspects of Meat Consumption—A Short Review. Nutrients, 10(9), 1301. https://doi.org/10.3390/nu10091301