The Effect of Marine n-3 Polyunsaturated Fatty Acids on Heart Rate Variability in Renal Transplant Recipients: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Measurements
2.3. Ethics
2.4. Statistical Analyses
3. Results
3.1. Time and Frequency Domain HRV
3.2. Subgroup Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Israni, A.; Snyder, J.; Skeans, M.; Peng, Y.; Maclean, J.; Weinhandl, E.; Kasiske, B. Predicting Coronary Heart Disease after Kidney Transplantation: Patient Outcomes in Renal Transplantation (PORT) Study. Am. J. Transpl. 2010, 10, 338–353. [Google Scholar] [CrossRef]
- Herzog, C.; Mangrum, J.; Passman, R. Sudden cardiac death and dialysis patients. Semin. Dial. 2008, 21, 300–307. [Google Scholar] [CrossRef]
- Christensen, J. Omega-3 polyunsaturated fatty acids and heart rate variability. Front. Physiol. 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, J.M.; Schmidt, E.B.; Riahi, S.; Lundbye-Christensen, S.; Christensen, J.H. Marine n-3 PUFA, heart rate variability and ventricular arrhythmias in patients on chronic dialysis: A cross-sectional study. Br. J. Nutr. 2018, 120, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J. N-3 fatty acids and the risk of sudden cardiac death. Emphasis on heart rate variability. Dan. Med. Bull. 2003, 50, 347–367. [Google Scholar] [PubMed]
- Benichou, T.; Pereira, B.; Mermillod, M.; Tauveron, I.; Pfabigan, D. Heart Rate Variability in Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. PLoS ONE 2018, 13, e0195166. [Google Scholar] [CrossRef]
- Chandra, P.; Sands, R.; Gillespie, B.; Levin, N.; Kotanko, P.; Kiser, M.; Finkelstein, F.; Hinderliter, A.; Pop-Busui, R.; Rajagopalan, S.; et al. Predictors of heart rate variability and its prognostic significance in chronic kidney disease. Nephrol. Dial. Transpl. 2011, 27, 700–709. [Google Scholar] [CrossRef]
- Christensen, J.; Aarøe, J.; Knudsen, N.; Dideriksen, K.; Kornerup, H.; Dyerberg, J.; Schmidt, E. Heart rate variability and n-3 fatty acids in patients with chronic renal failure—A pilot study. Clin. Nephrol. 1998, 49, 102–106. [Google Scholar]
- Madsen, T.; Christensen, J.H.; Svensson, M.; Witt, P.M.; Toft, E.; Schmidt, E.B. Marine n-3 Polyunsaturated Fatty Acids in Patients With End-stage Renal Failure and in Subjects Without Kidney Disease: A Comparative Study. J. Ren. Nutr. 2011, 21, 169–175. [Google Scholar] [CrossRef]
- Yildiz, A.; Sever, M.; Demirel, S.; Akkaya, V.; Türk, S.; Ecder, T.; Ark, E. Improvement of uremic autonomic dysfunction after renal transplantation: A heart rate variability study. Nephron 1998, 80, 57–60. [Google Scholar] [CrossRef]
- Cashion, A.; Hathaway, D.; Milstead, E.; Reed, L.; Gaber, A. Changes in patterns of 24-HR heart rate variability after kidney and kidney-pancreas transplant. Transplantation 1999, 68, 1846–1850. [Google Scholar] [CrossRef] [PubMed]
- Eide, I.; Jenssen, T.; Hartmann, A.; Diep, L.; Dahle, D.; Reisæter, A.; Bjerve, K.; Christensen, J.; Schmid, E.; Svensson, M. The Association between Marine n-3 Polyunsaturated Fatty Acid Levels and Survival after Renal Transplantation. Clin. J. Am. Soc. Nephrol. 2015, 10, 1246–1256. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zheng, J.; Wang, F.; Li, D. Fish, long chain omega-3 polyunsaturated fatty acids consumption, and risk of all-cause mortality: A systematic review and dose-respons meta-analysis from 23 independent prospective cohort studies. Asia Pac. J. Clin. Nutr. 2017, 26, 939–956. [Google Scholar] [PubMed]
- Marchioli, R.; Barzi, F.; Bomba, E.; Chieffo, C.; Di Gregorio, D.; Di Mascio, R.; Franzosi, M.G.; Geraci, E.; Levantesi, G.; Maggioni, A.P.; et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: Time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’ Infarto Miocardico (GISSI)-Prevenzione. Circulation 2002, 105, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- La Roverere, M.; Christensen, J. The autonomic nervous system and cardiovascular disease: Role of n-3 PUFAs. Vascul. Pharm. 2015, 71, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Christensen, M.; Dyrberg, J.; Schmidt, E. Heart rate variability and fatty acid content of blood cell membranes: A dose-response study with n-3 fatty acids. Am. J. Clin. Nutr. 1999, 70, 331–337. [Google Scholar] [CrossRef]
- Sjoberg, N.; Milte, C.; Buckley, J.; Howe, P.; Coates, A.; Saint, D. Dose-dependent increases in heart rate variability and arterial compliance in overweight and obese adults with DHA-rich fish oil supplementation. Br. J. Nutr. 2010, 103, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; O’Keefe, J.H.; Lavie, C.J.; Harris, W.S. Omega-3 fatty acids: Cardiovascular benefits, sources and sustainability. Nat. Rev. Cardiol. 2009, 6, 753. [Google Scholar] [CrossRef]
- Neto, A.W.G.; Sotomayor, C.G.; Pranger, I.G.; Berg, E.V.D.; Gans, R.O.B.; Soedamah-Muthu, S.S.; Navis, G.J.; Bakker, S.J.L. Intake of Marine-Derived Omega-3 Polyunsaturated Fatty Acids and Mortality in Renal Transplant Recipients. Nutrients 2017, 9, 363. [Google Scholar] [CrossRef]
- Lim, A.K.H.; Manley, K.J.; Roberts, M.A.; Fraenkel, M.B. Fish oil for kidney transplant recipients. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Eide, I.; Reinholt, F.; Jenssen, T.; Hartmann, A.; Schmidt, E.; Åsberg, A.; Bergan, S.; Brabrand, K.; Svensson, M. Effect of marine n-3 fatty acid supplementation in renal transplantation: A randomized controlled trial. Am. J. Transpl. 2019, 19, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Row, K.H. Development of Gas Chromatography Analysis of Fatty Acids in Marine Organisms. J. Chromatogr. Sci. 2013, 51, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.T.; Witte, D.R.; Fleischer, J.; Andersen, H.; Lauritzen, T.; Jørgensen, M.E.; Jensen, T.S.; Pop-Busui, R.; Charles, M. Risk Factors for the Presence and Progression of Cardiovascular Autonomic Neuropathy in Type 2 Diabetes: ADDITION-Denmark. Diabetes Care 2018, 41, 2586–2594. [Google Scholar] [CrossRef] [PubMed]
- Spallone, V.; Bellavere, F.; Scionti, L.; Maule, S.; Quadri, R.; Bax, G.; Melga, P.; Viviani, G.L.; Esposito, K.; Morganti, R.; et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 69–78. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c332. [Google Scholar] [CrossRef]
- Faria, R.; Gomes, M.; Epstein, D.; White, I.R. A Guide to Handling Missing Data in Cost-Effectiveness Analysis Conducted Within Randomised Controlled Trials. PharmacoEconomics 2014, 32, 1157–1170. [Google Scholar] [CrossRef]
- Hathaway, D.; Wicks, M.; Cashion, A.; Cowan, P.; Milstead, E.; Gaber, A. Posttransplant Improvement in Heart Rate Variability Correlates with Improved Quality of Life. West. J. Nurs. Res. 2000, 22, 749–768. [Google Scholar] [CrossRef]
- Bellavere, F.; Balzani, I.; De Masi, G.; Carraro, M.; Carenza, P.; Cobelli, C.; Thomaseth, K. Power spectral analysis of heart-rate variations improves assessment of diabetic cardiac autonomic neuropathy. Diabetes 1992, 41, 633–640. [Google Scholar] [CrossRef]
- Pagani, M.; Malfatto, G.; Pierini, S.; Casati, R.; Masu, A.M.; Poli, M.; Guzetti, S.; Lombardi, F.; Cerutti, S.; Malliani, A. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J. Auton. Nerv. Syst. 1988, 23, 143–153. [Google Scholar] [CrossRef]
- Thomas, B.L.; Claassen, N.; Becker, P.; Viljoen, M. Validity of Commonly Used Heart Rate Variability Markers of Autonomic Nervous System Function. Neuropsychobiology 2019, 78, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Wei, W.; Li, X.-Y. Short-term effects of fish-oil supplementation on heart rate variability in humans: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2013, 97, 926–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svensson, M.; Schmidt, E.; Jørgensen, K.; Christensen, J. The Effect of n-3 Fatty Acids on Heart Rate Variability in Patients Treated With Chronic Hemodialysis. J. Ren. Nutr. 2007, 17, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, J.M.; Riahi, S.; Johansen, M.B.; Schmidt, E.B.; Christensen, J.H. Effects of Marine n-3 Polyunsaturated Fatty Acids on Heart Rate Variability and Heart Rate in Patients on Chronic Dialysis: A Randomized Controlled Trial. Nutrients 2018, 10, 1313. [Google Scholar] [CrossRef] [Green Version]
- Skåre, J.U.; Brantsæter, A.L.; Frøyland, L.; Hemre, G.-I.; Knutsen, H.K.; Lillegaard, I.T.L.; Torstensen, B. Benefit-Risk Assessment of Fish and Fish Products in the Norwegian Diet—An Update; VKM: Oslo, Norway, 2014; p. 293. [Google Scholar]
- Engeset, D.; Braaten, T.; Teucher, B.; Kühn, T.; Bueno-de-Mesquita, H.; Leenders, M.; Agudo, A.; Bergmann, M.M.; Valanou, E.; Naska, A.; et al. Fish consumption and mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Eur. J. Epidemiol. 2014, 30, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Hu, F.B.; Manson, J.E. Marine Omega-3 Supplementation and Cardiovascular Disease: An Updated Meta-Analysis of 13 Randomized Controlled Trials Involving 127 477 Participants. J. Am. Heart Assoc. 2019, 8, e013543. [Google Scholar] [CrossRef]
- Bønaa, K.H.; Bjerve, K.S.; Straume, B.; Gram, I.T.; Thelle, D. Effect of Eicosapentaenoic and Docosahexaenoic Acids on Blood Pressure in Hypertension—A Population-Based Intervention Trial from the Tromsø Study. N. Engl. J. Med. 1990, 322, 795–801. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Rimm, E.B. Fish Intake, Contaminants, and Human Health. Evaluating the Risks and the Benefits. JAMA 2006, 296, 1885–1899. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S. The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 2008, 87, 1997S–2002S. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Prineas, R.; Stein, P.; Siscovick, D. Dietary fish and n-3 fatty acid intake and cardiac electrocardiographic parameters in humans. J. Am. Coll. Cardiol. 2006, 48, 478–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eide, I.; Dahle, D.; Svensson, M.; Hartmann, A.; Åsberg, A.; Bjerve, K.; Christensen, J.; Schmidt, E.; Lauritsen, M.; Lund, K.; et al. Plasma levels of marine n-3 fatty acids and cardiovascular risk markers in renal transplant recipients. Eur. J. Clin. Nutr. 2016, 70, 824–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Geelen, A.; Brouwer, I.; Geleijnse, J.; Zock, P.; Katan, M. Effect of fish oil on heart rate in humans: A meta-analysis of randomized controlled trials. Circulation 2005, 112, 1945–1952. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, K.; Yang, J.; Zhang, Z.; Chen, G.-C.; Qin, L.-Q.; Eggersdorfer, M.; Zhang, W. Effect of omega-3 long-chain polyunsaturated fatty acid supplementation on heart rate: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2018, 72, 805–817. [Google Scholar] [CrossRef]
- Friedman, A.N.; Yu, Z.; Tabbey, R.; Denski, C.; Tamez, H.; Wenger, J.; Thadhani, R.; Li, Y.; Watkins, B.A. Inverse relationship between long-chain n-3 fatty acids and risk of sudden cardiac death in patients starting hemodialysis. Kidney Int. 2013, 83, 1130–1135. [Google Scholar] [CrossRef] [Green Version]
- Hamazaki, K.; Terashima, Y.; Itomura, M.; Sawazaki, S.; Inagaki, H.; Kuroda, M.; Tomita, S.; Hirata, H.; Inadera, H.; Hamazaki, T. Docosahexaenoic Acid Is an Independent Predictor of All-Cause Mortality in Hemodialysis Patients. Am. J. Nephrol. 2011, 33, 105–110. [Google Scholar] [CrossRef]
- Maki, K.C.; Palacios, O.M.; Bell, M.; Toth, P.P. Use of supplemental long-chain omega-3 fatty acids and risk for cardiac death: An updated meta-analysis and review of research gaps. J. Clin. Lipidol. 2017, 11, 1152–1160. [Google Scholar] [CrossRef] [Green Version]
- Svensson, M.; Schmidt, E.B.; Jørgensen, K.A.; Christensen, J.H. N-3 Fatty Acids as Secondary Prevention against Cardiovascular Events in Patients Who Undergo Chronic Hemodialysis: A Randomized, Placebo-Controlled Intervention Trial. CJASN 2006, 1, 780–786. [Google Scholar] [CrossRef]
Marine n-3 | Control | |
---|---|---|
N | 66 | 66 |
Age, years | 52.8 (13.5) | 54 (14.2) |
Male, % | 71 | 77 |
Height, cm | 175.4 (10.7) | 175.5 (9.4) |
Weight, kg | 79.3 (14.9) | 81.1 (14.9) |
Systolic blood pressure, mmHg | 132.2 (13.8) | 135.6 (16.6) |
Diastolic blood pressure, mmHg | 81.4 (10.6) | 82.4 (9.1) |
Comorbidity, % | ||
Hypertension | 78.8 | 63.3 |
Diabetes mellitus | 13.6 | 19.7 |
Coronary disease | 12.1 | 12.1 |
Antiarrhythmic drug, % | ||
Beta-blocker | 48.4 | 34.8 |
Verapamil | 0.0 | 1.5 |
Amiodarone | 0.0 | 1.5 |
ESRD treatment, % | ||
Hemodialysis | 40.9 | 50.0 |
Peritoneal dialysis | 28.8 | 18.2 |
Preemptive transplantation | 29.3 | 31.8 |
Time in renal replacement therapy, months | 7 (0–19) | 9 (0–22) |
Living donor, % | 21.2 | 27.3 |
Marine n-3 PUFA, wt. % | ||
Baseline | 6.4 (2.2) | 6.3 (2.1) |
Marine n-3 (N = 66) | Control (N = 66) | |||
---|---|---|---|---|
Baseline | Follow Up | Baseline | Follow Up | |
TIME DOMAIN | ||||
Resting heart rate, bpm | 74.4 (12.6) | 71.3 (14.3) | 73.0 (10.6) | 72.2 (12.0) |
SDNN, ms2 | 31.6 (22.6) | 39.2 (30.1) | 34.0 (24.3) | 37.4 (25.3) |
Orthostatic ratio | 1.1 (1.0–1.1) | 1.1 (1.0–1.1) | 1.1 (1.0–1.2) | 1.1 (1.0–1.2) |
E:I ratio | 1.1 (1.1–1.3) | 1.1 (1.1–1.2) | 1.2 (1.1–1.3) | 1.2 (1.1–1.4) |
Valsalva ratio | 1.4 (1.3–1.7) | 1.4 (1.2–1.6) | 1.4 (1.3–1.6) | 1.52 (1.3–1.8) |
FREQUENCY DOMAIN | ||||
Orthostatic, ms2 | ||||
LF | 14.6 (4.3–35.6) | 20.9 (8.7–62.0) | 28.1 * (10.0–99.0) | 27.5 (8.0–86.0) |
HF | 3.0 (0.9–9.0) | 6 (0.9–21.6) | 7.1 * (1.9–25.1) | 6.7 (3.6–18.7) |
E:I, ms2 | ||||
LF | 406.5 (165.5–1259.2) | 437.0 (132.2–1302.4) | 845.5 (133.3–1915.0) | 962.8 (233.6–2018.3) |
HF | 82.0 (13.5–392.6) | 70.3 (22.4–403.4) | 125.2 (24.9–428.0) | 153.1 (36.7–410.0) |
Valsalva, ms2 | ||||
LF | 196 (74.4–1063.1) | 302.8 (119.9–1063.1) | 367.2 (59.0–1192.0) | 289.4 (107.4–1743.0) |
HF | 27.9 (8.5–114.9) | 50.3 (20.7–150.3) | 50.5 (15.1–158.3) | 62.8 (11.5–262.0) |
N | Intervention Effect Estimate | 95% Confidence Interval | p Value | |
---|---|---|---|---|
TIME DOMAIN | ||||
Resting heart rate (bpm) | ||||
ITT | 132 | −2.7 | (−7.5;2.1) | 0.28 |
PP | 102 | −3.4 | (−8.7;1.2) | 0.22 |
SDNN (ms) | ||||
ITT | 132 | 1.9 | (−7.3;11.1) | 0.69 |
PP | 102 | −1.8 | (−12.0;8.4) | 0.73 |
Orthostatic (ratio) | ||||
ITT | 132 | 0.1 | (−0.02;0.2) | 0.1 |
PP | 102 | 0.2 | (0.01;0.4) | 0.04 |
E:I (ratio) | ||||
ITT | 132 | −0.01 | (0.06;0.05) | 0.86 |
PP | 102 | −0.01 | (−0.07;0.06) | 0.85 |
Valsalva (ratio) | ||||
ITT | 132 | −0.1 | (−0.2;−0.01) | 0.04 |
PP | 102 | −0.05 | (−0.2;0.07) | 0.41 |
FREQUENCY DOMAIN | ||||
Orthostatic test (ms2) | ||||
HF | ||||
ITT | 132 | 2.9 | (1.1;8.0) | 0.04 |
PP | 102 | 3.7 | (1.2;11.2) | 0.02 |
LF | ||||
ITT | 132 | 2.7 | (1.1;6.5) | 0.04 |
PP | 102 | 3.3 | (1.1;9.6) | 0.03 |
E:I test (ms2) | ||||
HF | ||||
ITT | 132 | 0.7 | (0.2;2.1) | 0.53 |
PP | 102 | 0.5 | (0.2;2.0) | 0.38 |
LF | ||||
ITT | 132 | 0.5 | (0.2;1.2) | 0.12 |
PP | 102 | 0.4 | (0.2;1.2) | 0.13 |
Valsalva test (ms2) | ||||
HF | ||||
ITT | 132 | 1.1 | (0.5;2.5) | 0.85 |
PP | 102 | 0.9 | (0.4;2.2) | 0.82 |
LF | ||||
ITT | 132 | 1.2 | (0.5;2.6) | 0.7 |
PP | 102 | 1.1 | (0.4;2.6) | 0.87 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lilleberg, H.S.; Cichosz, S.L.; Svensson, M.; Christensen, J.H.; Fleischer, J.; Eide, I.; Jenssen, T. The Effect of Marine n-3 Polyunsaturated Fatty Acids on Heart Rate Variability in Renal Transplant Recipients: A Randomized Controlled Trial. Nutrients 2019, 11, 2847. https://doi.org/10.3390/nu11122847
Lilleberg HS, Cichosz SL, Svensson M, Christensen JH, Fleischer J, Eide I, Jenssen T. The Effect of Marine n-3 Polyunsaturated Fatty Acids on Heart Rate Variability in Renal Transplant Recipients: A Randomized Controlled Trial. Nutrients. 2019; 11(12):2847. https://doi.org/10.3390/nu11122847
Chicago/Turabian StyleLilleberg, Hanne Sether, Simon Lebech Cichosz, My Svensson, Jeppe Hagstrup Christensen, Jesper Fleischer, Ivar Eide, and Trond Jenssen. 2019. "The Effect of Marine n-3 Polyunsaturated Fatty Acids on Heart Rate Variability in Renal Transplant Recipients: A Randomized Controlled Trial" Nutrients 11, no. 12: 2847. https://doi.org/10.3390/nu11122847
APA StyleLilleberg, H. S., Cichosz, S. L., Svensson, M., Christensen, J. H., Fleischer, J., Eide, I., & Jenssen, T. (2019). The Effect of Marine n-3 Polyunsaturated Fatty Acids on Heart Rate Variability in Renal Transplant Recipients: A Randomized Controlled Trial. Nutrients, 11(12), 2847. https://doi.org/10.3390/nu11122847