Aqueous Partition of Methanolic Extract of Dicranopteris linearis Leaves Protects against Liver Damage Induced by Paracetamol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation of Methanol Extract D. Linearis (MEDL)
2.2. Preparation of Aqueous Partitions of MEDL (AQDL)
2.3. Determination of the Antioxidant Activity of AQDL
2.3.1. Total Phenolic Content
2.3.2. 2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Assay
2.3.3. Superoxide Anion Radical Scavenging Assay
2.3.4. Oxygen Radical Absorbance Capacity (ORAC) Test
2.4. Determination of the Anti-Inflammatory Activity of AQDL
2.4.1. Lipoxygenase Assay
2.4.2. Xanthine Oxidase Assay
2.5. Experimental Animals
2.6. Hepatoprotective Assay
2.6.1. Biochemical Analysis of Collected Blood Samples
2.6.2. Determination of the Activity of Antioxidant Enzymes (Superoxide Dismutase (SOD) and Catalase (CAT)) and Level of Malondialdehyde (MDA) in Liver Homogenates
2.6.3. Histological Analysis of the Treated Liver
2.7. Analyses of Phytochemical Constituents of AQDL
2.7.1. Phytochemical Screening of AQDL
2.7.2. High-Performance Liquid Chromatography (HPLC) Analysis of AQDL
2.8. Statistical Analysis
3. Results
3.1. Extraction Yield of AQDL
3.2. TPC Value, Free Radical Scavenging-, and Antioxidant-Activity of AQDL
3.3. Effect of AQDL against the LOX- and XO-Mediated Inflammatory Activity
3.4. In Vivo Hepatoprotective Activity of AQDL
3.4.1. Effect of AQDL on the Body Weight (BW), Liver Weight (LW), and the LW/BW Ratio of PCM-Intoxicated Rats
3.4.2. Effect of AQDL on the Serum Level of ALT, AST, ALP, and TB of PCM-Intoxicated Rats
3.4.3. Effect of AQDL on the Activity of Endogenous Enzymatic Antioxidant System, Namely, SOD and CAT, of PCM-Intoxicated Rats
3.5. Histopathological Findings on the Effect of AQDL against the PCM-Intoxicated Liver Tissue Section
3.6. Phytochemical Analyses of AQDL
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, C.Y.; Schiano, T.D. Review article: Drug hepatotoxicity. Aliment. Pharmacol. Ther. 2007, 25, 1135–1151. [Google Scholar] [CrossRef]
- Khoury, T.; Rmeileh, A.A.; Yosha, L.; Benson, A.A.; Daher, S.; Mizrahi, M. Drug induced liver injury: Review with a focus on genetic factors, tissue diagnosis, and treatment options. J. Clin. Transl. Hepatol. 2015, 3, 99–108. [Google Scholar]
- Yoon, E.; Babar, A.; Choudhary, M.; Kutner, M.; Pyrsopoulos, N. Acetaminophen-induced hepatotoxicity: A comprehensive update. J. Clin. Transl. Hepatol. 2016, 4, 131–142. [Google Scholar]
- Heard, K.; Green, J.L.; Bailey, J.E.; Bogdan, G.M.; Dart, R.C. A randomized trial to determine the change in alanine aminotransferase during 10 days of paracetamol (acetaminophen) administration in subjects who consume moderate amounts of alcohol. Aliment. Pharmacol. Ther. 2007, 26, 283–290. [Google Scholar] [CrossRef]
- Hayward, K.L.; Powell, E.E.; Irvine, K.M.; Martin, J.H. Can paracetamol (acetaminophen) be administered to patients with liver impairment? Br. J. Clin. Pharmacol. 2015, 81, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.M. Acetaminophen-related acute liver failure in the United States. Hepatol. Res. 2008, 38, S3–S8. [Google Scholar] [CrossRef]
- Lee, W.M. Acetaminophen (APAP) hepatotoxicity—Isn’t it time for APAP to go away? J. Hepatol. 2017, 67, 1324–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeschke, H.; Ramachandran, A. Oxidant stress and lipid peroxidation in acetaminophen hepatotoxicity. React. Oxyg. Species 2018, 5, 145–158. [Google Scholar] [CrossRef]
- Singh, D.; Cho, W.C.; Upadhyay, G. Drug-induced liver toxicity and prevention by herbal antioxidants: An overview. Front. Physiol. 2016, 6, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raschi, E.; De Ponti, F. Drug- and herb-induced liver injury: Progress, current challenges and emerging signals of post-marketing risk. World J. Hepatol. 2015, 7, 1761–1771. [Google Scholar] [CrossRef]
- Azab, A.E.; Albasha, M.O. Hepatoprotective effect of some medicinal plants and herbs against hepatic disorders induced by hepatotoxic agents. J. Biotechnol. Bioeng. 2018, 2, 8–23. [Google Scholar]
- Asadi-Samani, M.; Kafash-Farkhad, N.; Azimi, N.; Fasihi, A.; Alinia-Ahandani, E.; Rafieian-Kopaei, M. Medicinal plants with hepatoprotective activity in Iranian folk medicine. Asian Pac. J. Trop. Biomed. 2015, 5, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Zhou, J.; Jie, C.; Xing, D.; Zhang, Y. Anticancer activity and mechanism of Scutellaria barbata extract on human lung cancer cell line. Life Sci. 2004, 7, 2233–2244. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakaria, Z.A.; Abdul Ghani, Z.D.F.; Nor, R.N.S.R.M.; Hanan Kumar, G.; Sulaiman, M.R.; Fatimah, C.A. Antinociceptive and asnti-inflammatory activities of Dicranopteris linearis leaves chloroform extract in experimental animals. Yakugaku Zasshi 2006, 126, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, Z.A.; Mohamed, A.M.; Mohd Jamil, N.S.; Rofiee, M.S.; Fatimah, C.A.; Mat Jais, A.M.; Sulaiman, M.R.; Somchit, M.N. In vitro anticancer activity of various extracts of the Malaysian, available but neglected, plants (Muntingia calabura and Dicranopteris linearis) against MCF-7 and HT-29 cancer cell lines. E–PharmaNexus 2008, 1, 10–17. [Google Scholar]
- Zakaria, Z.A.; Mohamed, A.M.; Mohd Jamil, N.S.; Rofiee, M.S.; Somchit, M.N.; Zuraini, A.; Arifah, A.K.; Sulaiman, M.R. In vitro cytotoxic and antioxidant properties of the aqueous, chloroform and methanol extracts of Dicranopteris linearis leaves. Afr. J. Biotechnol. 2011, 10, 273–282. [Google Scholar]
- Zakaria, Z.A.; Sodri, N.H.; Hassan, H.; Anuar, K.; Fatimah, C.A. Effects of various receptor antagonists on the peripheral antinociceptive activity of aqueous extracts of Dicranopteris linearis, Melastoma malabathricum and Bauhinia purpurea leaves in mice. TANG 2012, 2, e38. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, Z.A.; Abdul Ghani, Z.D.F.; Raden Mohd Nor, R.N.S.; Hanan Kumar, G.; Sulaiman, M.R.; Mat Jais, A.M.; Somchit, M.N.; Arifah, A.K.; Ripin, J. Antinociceptive, anti-inflammatory and antipyretic properties of Dicranopteris linearis leaves aqueous extract in experimental animals. J. Nat. Med. 2008, 62, 179–187. [Google Scholar] [CrossRef]
- Md Tohid, S.F.; Zakaria, Z.A.; Baharuddin, A.A.; Roosli, R.A.J. Dicranopteris linearis extract Inhibits the proliferation of human breast cancer cell lines (MDA-MB-231) via induction of S-phase arrest and apoptosis. Pharm. Biol. 2018, 56, 422–432. [Google Scholar]
- Shamsahal Din, S.; Mamat, S.S.; Ismail, N.A.; Wan Zainulddin, W.N.; Zabidi, Z.; Yahya, F.; Kamisan, F.H.; Mohtarrudin, N.; Othman, F.; Suhaili, Z.; et al. Effect of chloroform extract of Dicranopteris linearis leaves against paracetamol- and CCl4-induced liver toxicity in rats. TANG 2012, 2, e34. [Google Scholar] [CrossRef]
- Mamat, S.S.; Kamisan, F.H.; Wan Zainulddin, W.N.; Ismail, N.A.; Yahya, F.; Shamsahal Din, S.; Zabidi, Z.; Mohtarrudin, N.; Arifah, A.K.; Zakaria, Z.A. Effect of methanol extract of Dicranopteris linearis leaves against paracetamol- and CCl4-induced liver toxicity in rats. J. Med. Plants Res. 2013, 7, 1305–1309. [Google Scholar]
- Kamisan, F.H.; Yahya, F.; Mamat, S.S.; Kamarolzaman, M.F.F.; Suhaili, Z.; Mohtarrudin, N.; Ching, S.M.; Teh, L.K.; Salleh, M.Z.; Abdullah, M.N.H.; et al. Effect of methanol extract of Dicranopteris linearis against carbon tetrachloride-induced acute liver injury in rats. BMC Complement Altern. Med. 2014, 14, 123–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, N.A.; Shamsahal Din, S.; Mamat, S.S.; Zabidi, Z.; Wan Zainulddin, W.N.; Kamisan, F.H.; Yahya, F.; Mohtarrudin, N.; Mohd Desa, M.N.; Zakaria, Z.A. Hepatotoxicity of the aqueous extract of Dicranopteris linearis leaves in rats. Pak. J. Pharm. Sci. 2014, 27, 831–835. [Google Scholar] [PubMed]
- Zakaria, Z.A.; Kamisan, F.H.; Omar, M.H.; Mahmood, N.D.; Othman, F.; Hamid, S.S.A.; Somchit, M.N. Methanol extract of Dicranopteris linearis L. leaves impedes acetaminophen-induced liver intoxication partly by enhancing the endogenous antioxidant system. BMC Complement Altern. Med. 2017, 17, 271–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodzi, R.; Cheah, Y.L.; Ooi, K.K.; Othman, F.; Mohtaruddin, N.; Tohid, S.F.; Suhaili, Z.; Zakaria, Z.A. Chemopreventive potential of methanol extract of Dicranopteris linearis leaf on DMBA/croton oil-induced mouse skin carcinogenesis. Afr. J. Pharm. Pharmacol. 2013, 7, 2484–2498. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, Z.A.; Mohd Sani, M.H.; Kadir, A.A.; Kek, T.L.; Salleh, M.Z. Antinociceptive effect of semi-purified petroleum ether partition of Muntingia calabura leaves. Braz. J. Pharmacogn. 2016, 26, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L., Jr.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Nithianantham, K.; Shyamala, M.; Chen, Y.; Latha, L.Y.; Jothy, S.L.; Sasidharan, S. Hepatoprotective potential of Clitoria ternatea leaf extract against paracetamol induced damage in mice. Molecules 2011, 16, 10134–10145. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Ooi, V.E.; Chang, S.T. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 1997, 60, 763–771. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodil, M.; Flanagan, J.A.; Prior, R.L. High throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Anis, I.; Khan, S.B.; Ahmed, E.; Ahmed, Z.; Nawaz, S.A. Enzymes inhibiting lignans from Vitex negundo. Chem. Pharm. Bull. 2004, 52, 1269–1272. [Google Scholar]
- Orhan, E.I.; Sener, B.; Musharraf, S.G. Antioxidant and hepatoprotective activity appraisal of four selected Fumaria species and their total phenol and flavonoid quantities. Exp. Toxicol. Pathol. 2012, 64, 205–209. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- El-Beshbishy, H.A.; Mohamadin, A.M.; Nagy, A.A.; Abdel-Naim, A.B. Amelioration of tamoxifen-induced liver injury in rats by grape seed extract, black seed extract and curcumin. Indian J. Exp. Biol. 2010, 48, 280–288. [Google Scholar]
- Ikhiri, K.; Boureima, D.; Dicko, D.; Koulodo, D. Chemical screening of medicinal plants used in the traditional pharmacopoeia of Niger. Int. J. Pharmacogn. 1992, 30, 251–262. [Google Scholar] [CrossRef]
- Zakaria, Z.A.; Abdul Rahim, M.H.; Roosli, R.A.J.; Mohd Sani, M.H.; Omar, M.H.; Mohd. Tohid, S.F.; Othman, F.; Ching, S.M.; Abdul Kadir, A. Antinociceptive activity of methanolic extract of Clinacanthus nutans leaves: Possible mechanisms of action involved. Pain Res. Manag. 2018, 2018, 9536406. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.M.; Valentão, P.; Pereira, J.A.; Andrade, P.B. Phenolics: From chemistry to biology. Molecules 2009, 14, 2202–2211. [Google Scholar] [CrossRef]
- Lai, H.Y.; Lim, Y.Y. Evaluation of antioxidant activities of the methanolic extracts of selected ferns in Malaysia. Int. J. Environ. Sci. Dev. 2011, 2, 442–447. [Google Scholar] [CrossRef]
- Gaspar-Marques, C.; Simões, M.F.; Valdeira, M.L.; Rodríguez, B. Terpenoids and phenolics from Plectranthus strigosus, bioactivity screening. Nat. Prod. Res. 2008, 22, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Sandjo, L.P.; Kuete, V. Chapter 4: Triterpenes and Steroids from the Medicinal Plants of Africa. In Medicinal Plant Research in Africa: Pharmacology and Chemistry, 1st ed.; Kuete, V., Ed.; Elsevier: London, UK, 2013; pp. 135–202. [Google Scholar] [CrossRef]
- Russo, A.; Longo, R.; Vanella, A. Antioxidant activity of propolis: Role of caffeic acid phenethyl ester and galangin. Fitoterapia 2002, 73, S21–S29. [Google Scholar] [CrossRef]
- Gülçin, İ.; Mshvildadze, V.; Gepdiremen, A.; Elias, R. Antioxidant activity of saponins isolated from Ivy: α-Hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F. Planta Medica 2004, 70, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Amini, E.; Nabiuni, M.; Baharara, J.; Parivar, K.; Asili, J. Metastatic inhibitory and radical scavenging efficacies of saponins extracted from the Brittle Star (Ophiocoma erinaceus). Asian Pac. J. Cancer Prev. 2015, 16, 4751–4758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Y.; Yang, Y.N.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. Eight new triterpenoid saponins with antioxidant activity from the roots of Glycyrrhiza uralensis Fisch. Fitoterapia 2019, 133, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Cichoż-Lach, H.; Michalak, A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014, 20, 8082–8091. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, M.S.; Cardoso, R.D.; Pinho-Ribeiro, F.A.; Crespigio, J.; Cunha, T.M.; Alves-Filho, J.C.; Silva, R.V.; Pinge-Filho, P.; Ferreira, S.H.; Cunha, F.Q.; et al. 5-lipoxygenase deficiency reduces acetaminophen-induced hepatotoxicity and lethality. BioMed Res. Int. 2013, 2013, 627046. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.R.; Gao, S.; Li, J.F.; Li, S.S.; Zhang, D.D.; Liu, S.; Bai, L.; Zheng, S.J.; Duan, Z.P.; et al. Inhibition of 5-lipoxygenase pathway attenuates acute liver failure by inhibiting macrophage activation. J. Immunol. Res. 2014, 2014, 697560. [Google Scholar] [CrossRef]
- Pu, S.; Ren, L.; Liu, Q.; Kuang, J.; Shen, J.; Cheng, S.; Zhang, Y.; Jiang, W.; Zhang, Z.; Jiang, C.; et al. Loss of 5-lipoxygenase activity protects mice against paracetamol-induced liver toxicity. Br. J. Pharmacol. 2015, 173, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Ichimori, K.; Fukahori, M.; Nakazawa, H.; Okamoto, K.; Nishino, T. Inhibition of xanthine oxidase and xanthine dehydrogenase by nitric oxide. J. Biol. Chem. 1999, 274, 7763–7768. [Google Scholar] [CrossRef] [Green Version]
- Jaeschke, H. Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: The protective effect of allopurinol. J. Pharmacol. Exp. Ther. 1990, 255, 935–941. [Google Scholar] [PubMed]
- Williams, C.D.; McGill, M.R.; Lebofsky, M.; Bajt, M.L.; Jaeschke, H. Protection against acetaminophen-induced liver injury by allopurinol is dependent on aldehyde oxidase-mediated liver preconditioning. Toxicol. Appl. Pharmacol. 2014, 274, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, K.; Ramachandran, A.; Jaeschke, H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol. 2016, 10, 148–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guay, J.; Bateman, K.; Gordon, R.; Mancini, J.; Riendeau, D. Carrageenan-induced paw edema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1. J. Biol. Chem. 2004, 279, 24866–24872. [Google Scholar] [CrossRef] [Green Version]
- Reilly, T.P.; Brady, J.N.; Marchick, M.R.; Bourdi, M.; George, J.W.; Radonovich, M.F.; Pise-Masison, C.A.; Pohl, L.R. A protective role for cyclooxygenase-2 in drug-induced liver injury in mice. Chem. Res. Toxicol. 2001, 14, 1620–1628. [Google Scholar] [CrossRef]
- Suciu, M.; Gruia, A.T.; Nica, D.V.; Azghadi, S.M.; Mic, A.A.; Mic, F.A. Acetaminophen-induced liver injury: Implications for temporal homeostasis of lipid metabolism and eicosanoid signaling pathway. Chem. Biol. Interact. 2015, 242, 335–344. [Google Scholar] [CrossRef]
- Tittarelli, R.; Pellegrini, M.; Scarpellini, M.G.; Marinelli, E.; Bruti, V.; Di Luca, N.M.; Busardo, F.P.; Zaami, S. Hepatotoxicity of paracetamol and related fatalities. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 95–101. [Google Scholar]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. Can. Med. Assoc. J. 2005, 172, 367–369. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Gupta, M.; Goya, G.; Kaur, K. Serum enzymes in hepatobiliary carcinoma. J. Evol. Med. Dent. Sci. 2014, 3, 2236–2244. [Google Scholar] [CrossRef]
- Sharma, U.; Pal, D.; Prasad, R. Alkaline phosphatase: An overview. Indian J. Clin. Biochem. 2014, 29, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and gluta thione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Stefova, M.; Stafilov, T.; Kulevanova, S. HPLC analysis of flavonoid. In Encyclopedia of Chromatography, 1st ed.; Cazes, J., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2003; pp. 1–7. [Google Scholar]
- Tsimogiannis, D.; Samiotaki, M.; Panayotou, G.; Oreopoulou, V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS. Molecules 2007, 12, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Raja, D.P.; Manickam, V.S.; de Britto, A.J.; Gopalakrishnan, S.; Ushioda, T.; Satoh, M.; Tanimura, A.; Fuchino, H.; Tanaka, N. Chemical and chemotaxonomical studies on Dicranopteris species. Chem. Pharm. Bull. 1995, 43, 1800–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chen, J.J.; Gao, K. Chemical constituents and biological activities of Dicranopteris linearis. Chem. Nat. Compd. 2014, 49, 1129–1131. [Google Scholar] [CrossRef]
- Ponnusamy, Y.; Chear, N.J.; Ramanathan, S.; Lai, C.S. Polyphenols rich fraction of Dicranopteris linearis promotes fibroblast cell migration and proliferation in vitro. J. Ethnopharmacol. 2015, 168, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Shehab, N.G.; Abu-Gharbieh, E.; Bayoumi, F.A. Impact of phenolic composition on hepatoprotective and antioxidant effects of four desert medicinal plants. BMC Complement Altern. Med. 2015, 15, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, L.; Xin, H.; Zheng, G.; Su, Y.; Ling, C. Hepatoprotective activity of the total saponins from Actinidia valvata Dunn root against carbon tetrachloride-induced liver damage in mice. Evid. Based Complement Altern. Med. 2012, 2012, 216061. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.G.; Ma, Q.G.; Tian, J.; Ren, J.; Wang, A.G.; Ji, T.F.; Yang, J.B.; Su, Y.L. Hepatoprotective triterpenes the gum resin of Boswellia carterii. Fitoterapia 2016, 109, 266–273. [Google Scholar] [CrossRef]
Group | Oral Pre-Treatment for 7 Days | 3 Hours after Last Treatment on 7th Day |
---|---|---|
Normal control | 10% DMSO | 10% DMSO |
Intoxicated group | 10% DMSO | 3 mg/kg PCM |
Positive control | 200 mg/kg silymarin | 3 mg/kg PCM |
Treatment | 50 mg/kg AQDL | 3 mg/kg PCM |
250 mg/kg AQDL | 3 mg/kg PCM | |
500 mg/kg AQDL | 3 mg/kg PCM |
Sample | Total Phenolic Content (TPC) 1 | DPPH Radical Scavenging (%) | Superoxide Scavenging (%) | Total ORAC Value (µM TE/ 100 g) |
---|---|---|---|---|
Standard | Gallic acid (GAE) | Ascorbic acid (AA) | Superoxide dismutase (SOD) (6 × 10−3 U/mL) | Trolox standard curve |
AQDL | 193.5 ± 14.8 | 84.3 ± 2.6 | 79.0 ± 2.5 | 18997 ± 1096 |
Sample | Lipoxygenase (%) | Xanthine Oxidase (%) |
---|---|---|
Sample concentration | 100 mg/mL | 100 mg/mL |
AQDL | 16.5 ± 1.3 | NA |
Treatment | Dose (mg/kg) | Mean of Body Weight, BW (g) | Liver Weight, LW (g) | LW/BW (%) |
---|---|---|---|---|
Control | - | 208.7 ± 5.6 | 5.9 ± 0.3 | 2.8 ± 0.1 |
DMSO + PCM | 219.5 ± 4.7 | 9.7 ± 0.9 a | 4.4 ± 0.4 a | |
Silymarin + PCM | 200 | 200.0 ± 4.7 | 6.9 ± 0.2 b | 3.5 ± 0.1 b |
50 | 166.2 ± 7.8 | 6.6 ± 0.4 b | 3.9 ± 0.1 | |
AQDL + PCM | 250 | 187.7 ± 2.2 | 8.0 ± 0.3 b | 4.2 ± 0.2 |
500 | 189.8 ± 4.7 | 6.3 ± 0.3 b | 3.3 ± 0.1 b |
Treatment | Dose (mg/kg) | ALT (U/L) | AST (U/L) | ALP (U/L) | TB (umol/L) |
---|---|---|---|---|---|
Control | - | 15.83 ± 2.9 | 95.13 ± 5.9 | 115.7 ± 7.0 | 0.5 ± 0.2 |
DMSO + PCM | 1714 ± 142.2 a | 2266 ± 340.4 a | 330.0 ± 42.4 a | 4.1 ± 0.8 a | |
Silymarin + PCM | 200 | 474.5 ± 82.2 b | 690.9 ± 146.6 b | 195.5 ± 11.1 b | 2.3 ± 0.3 b |
50 | 80.40 ± 10.3 b | 134.9 ± 22.4 b | 321.3 ± 4.3 | 0.9 ± 0.3 b | |
AQDL+ PCM | 250 | 908.4 ± 172.9 b | 1705 ± 403.5 | 329.7 ± 44.0 | 1.2 ± 0.5 b |
500 | 298.1 ± 27.1 b | 527.6 ± 102.1 b | 286.8 ± 24.4 | 1.7 ± 0.3 b |
Treatment | Dose (mg/kg) | SOD (U/g tissue) | CAT (U/g tissue) | MDA (µM) |
---|---|---|---|---|
Control | - | 9.7 ± 0.4 | 114.8 ± 1.6 | 2.6 ± 0.6 |
DMSO + PCM | 4.0 ± 0.1 a | 92.9 ± 1.9 a | 5.0 ± 0.6 a | |
Silymarin + PCM | 200 | 12.0 ± 0.2 | 109.5 ± 4.7 b | 2.6 ± 0.3 b |
50 | 18.5 ± 0.2 b | 114.1 ± 0.8 b | 3.3 ± 0.6 | |
AQDL + PCM | 250 | 15.1 ± 0.4 b | 112.3 ± 1.2 b | 4.3 ± 0.6 |
500 | 17.8 ± 0.1 b | 112.2 ± 1.8 b | 4.6 ± 0.6 |
Treatment | Dose (mg/kg) | Steatosis | Necrosis | Inflammation | Hemorrhage |
---|---|---|---|---|---|
Control | - | - | - | - | - |
DMSO + PCM | + | +++ | ++ | + | |
Silymarin + PCM | 200 | - | + | - | - |
50 | - | + | - | - | |
AQDL + PCM | 250 | + | ++ | + | - |
500 | + | + | - | - |
Sample | Phytochemical Constituents | Conclusion | |||||
---|---|---|---|---|---|---|---|
ALK | SAP | FLA | TAN | TTP | STR | ||
AQDL | - | + | - | - | + | - | Saponins and triterpenes only detected. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakaria, Z.A.; Kamisan, F.H.; Mohd. Nasir, N.; Teh, L.K.; Salleh, M.Z. Aqueous Partition of Methanolic Extract of Dicranopteris linearis Leaves Protects against Liver Damage Induced by Paracetamol. Nutrients 2019, 11, 2945. https://doi.org/10.3390/nu11122945
Zakaria ZA, Kamisan FH, Mohd. Nasir N, Teh LK, Salleh MZ. Aqueous Partition of Methanolic Extract of Dicranopteris linearis Leaves Protects against Liver Damage Induced by Paracetamol. Nutrients. 2019; 11(12):2945. https://doi.org/10.3390/nu11122945
Chicago/Turabian StyleZakaria, Zainul Amiruddin, Farah Hidayah Kamisan, Nurliana Mohd. Nasir, Lay Kek Teh, and Mohd. Zaki Salleh. 2019. "Aqueous Partition of Methanolic Extract of Dicranopteris linearis Leaves Protects against Liver Damage Induced by Paracetamol" Nutrients 11, no. 12: 2945. https://doi.org/10.3390/nu11122945
APA StyleZakaria, Z. A., Kamisan, F. H., Mohd. Nasir, N., Teh, L. K., & Salleh, M. Z. (2019). Aqueous Partition of Methanolic Extract of Dicranopteris linearis Leaves Protects against Liver Damage Induced by Paracetamol. Nutrients, 11(12), 2945. https://doi.org/10.3390/nu11122945