A Narrative Review on the Potential of Red Beetroot as an Adjuvant Strategy to Counter Fatigue in Children with Cancer
Abstract
:1. Introduction
1.1. Cancer-Related Fatigue and Its Impact on Pediatric Cancer Patients
1.2. Critical Role of Physical Activity among Children with Cancer
1.3. Benefits and Risks of Dietary Nitrate
2. Methods
3. Current Research on Beetroot and Cancer
4. The Use of Beetroot Juice in Cancer Patients
5. Effects of Beetroot on Exercise Tolerance in Athletes and Disease Populations
5.1. Exercise Tolerance in Athletes
5.2. Exercise Tolerance in Populations with Various Disease Conditions
5.3. Mechanisms of Exercise Tolerance Effect
6. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. SEER Cancer Statistics Review, 1975–2016. Available online: https://seer.cancer.gov/csr/1975_2016/ (accessed on 17 September 2019).
- Boonstra, A.; van Dulmen-den Broeder, E.; Rovers, M.M.; Blijlevens, N.; Knoop, H.; Loonen, J. Severe fatigue in childhood cancer survivors. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef]
- Oeffinger, K.C.; Mertens, A.C.; Sklar, C.A.; Kawashima, T.; Hudson, M.M.; Meadows, A.T.; Friedman, D.L.; Marina, N.; Hobbie, W.; Kadan-Lottick, N.S.; et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 2006, 355, 1572–1582. [Google Scholar] [CrossRef] [PubMed]
- Hockenberry-Eaton, M.; Hinds, P.S. Fatigue in children and adolescents with cancer: Evolution of a program of study. Semin. Oncol. Nurs. 2000, 16, 261–272. [Google Scholar] [CrossRef]
- Mulrooney, D.A.; Ness, K.K.; Neglia, J.P.; Whitton, J.A.; Green, D.M.; Zeltzer, L.K.; Robison, L.L.; Mertens, A.C. Fatigue and Sleep Disturbance in Adult Survivors of Childhood Cancer: A Report from the Childhood Cancer Survivor Study (CCSS). Sleep 2008, 31, 271–281. [Google Scholar] [CrossRef]
- Mock, V.; Atkinson, A.; Barsevick, A.; Cella, D.; Cimprich, B.; Cleeland, C.; Donnelly, J.; Eisenberger, M.; Escalante, C.; Hinds, P. NCCN Practice guidelines for cancer-related fatigue. Oncology 2000, 14, 151–161. [Google Scholar]
- Orsey, A.D.; Wakefield, D.B.; Cloutier, M.M. Physical activity (PA) and sleep among children and adolescents with cancer. Pediatr. Blood Cancer 2013, 60, 1908–1913. [Google Scholar] [CrossRef]
- Crabtree, V.M.; Rach, A.M.; Schellinger, K.B.; Russell, K.M.; Hammarback, T.; Mandrell, B.N. Changes in sleep and fatigue in newly treated pediatric oncology patients. Support. Care Cancer 2015, 23, 393–401. [Google Scholar] [CrossRef]
- Nunes, M.D.R.; Jacob, E.; Adlard, K.; Secola, R.; Nascimento, L.C. Fatigue and Sleep Experiences at Home in Children and Adolescents With Cancer. Oncol. Nurs. Forum 2015, 42, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Zupanec, S.; Jones, H.; Stremler, R. Sleep Habits and Fatigue of Children Receiving Maintenance Chemotherapy for ALL and Their Parents. J. Pediatr. Oncol. Nurs. 2010, 27, 217–228. [Google Scholar] [CrossRef]
- Hooke, M.C.; Garwick, A.W.; Gross, C.R. Fatigue and physical performance in children and adolescents receiving chemotherapy. Oncol. Nurs. Forum 2011, 38, 649–657. [Google Scholar] [CrossRef]
- Yeh, C.; Chiang, Y.; Chien, L.; Lin, L.; Yang, C.; Chuang, H. Symptom clustering in older Taiwanese children with cancer. Oncol. Nurs. Forum 2008, 35, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Clanton, N.R.; Klosky, J.L.; Li, C.; Jain, N.; Srivastava, D.K.; Mulrooney, D.; Zeltzer, L.; Stovall, M.; Robison, L.L.; Krull, K.R. Fatigue, vitality, sleep, and neurocognitive functioning in adult survivors of childhood cancer. Cancer 2011, 117, 2559–2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kestler, S.A.; LoBiondo-Wood, G. Review of Symptom Experiences in Children and Adolescents With Cancer. Cancer Nurs. 2012, 35, E31–E49. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Júnior, L.C.; Bomfim, E.O.; Nascimento, L.C.; Nunes, M.D.R.; Pereira-da-Silva, G.; Lima, R.A.G. Non-pharmacological interventions to manage fatigue and psychological stress in children and adolescents with cancer: An integrative review. Eur. J. Cancer Care 2016, 25, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.D.R.; Bomfim, E.; Olson, K.; Lopes-Junior, L.C.; Silva-Rodrigues, F.M.; Garcia de Lima, R.A.; Nascimento, L.C. Interventions minimizing fatigue in children/adolescents with cancer: An integrative review. J. Child Health Care 2018, 22, 186–204. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Bogg, T.F.; Shaw, P.J.; Cohn, R.J.; Wakefield, C.E.; Hardy, L.L.; Broderick, C.; Naumann, F. Physical activity and screen-time of childhood haematopoietic stem cell transplant survivors. Acta Paediatr. 2015, 104, e455–e459. [Google Scholar] [CrossRef]
- Chamorro-Vina, C.; Ruiz, J.R.; Santana-Sosa, E.; Gonzalez Vicent, M.; Madero, L.; Perez, M.; Fleck, S.J.; Perez, A.; Ramirez, M.; Lucia, A. Exercise during hematopoietic stem cell transplant hospitalization in children. Med. Sci. Sports Exerc. 2010, 42, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.W.; Mu, P.F.; Jou, S.T.; Wong, T.T.; Chen, Y.C. Systematic Review and Meta-Analysis of Nonpharmacological Interventions for Fatigue in Children and Adolescents With Cancer. Worldviews Evid. Based Nurs. 2013, 10, 208–217. [Google Scholar] [CrossRef]
- Keats, M.R.; Culos-Reed, S.N. A Community-based Physical Activity Program for Adolescents With Cancer (Project TREK): Program Feasibility and Preliminary Findings. J. Pediatr. Hematol. Oncol. 2008, 30, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Takken, T.; van der Torre, P.; Zwerink, M.; Hulzebos, E.H.; Bierings, M.; Helders, P.J.; van der Net, J. Development, feasibility and efficacy of a community-based exercise training program in pediatric cancer survivors. Psychooncology 2009, 18, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.; Ness, K.K. Exercise interventions in children with cancer: A review. Int. J. Pediatr. 2011, 2011, 461512. [Google Scholar] [CrossRef] [PubMed]
- Esbenshade, A.J.; Ness, K.K. Dietary and Exercise Interventions for Pediatric Oncology Patients: The Way Forward. JNCI Monogr. 2019, 2019, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.F.; Saltzman, E.; Must, A.; Parsons, S.K. Do Childhood Cancer Survivors Meet the Diet and Physical Activity Guidelines? A Review of Guidelines and Literature. Int. J. Child Health Nutr. 2012, 1, 44–58. [Google Scholar] [CrossRef]
- Aznar, S.; Webster, A.L.; San Juan, A.F.; Chamorro-Vina, C.; Mate-Munoz, J.L.; Moral, S.; Perez, M.; Garcia-Castro, J.; Ramirez, M.; Madero, L.; et al. Physical activity during treatment in children with leukemia: A pilot study. Appl. Physiol. Nutr. Metab. 2006, 31, 407–413. [Google Scholar] [CrossRef]
- Antwi, G.O.; Jayawardene, W.; Lhrmann, D.K.; Mueller, E.L. Physical activity and fitness among pediatric cancer survivors: A meta-analysis of observational studies. Support. Care Cancer 2019, 27, 3183–3194. [Google Scholar] [CrossRef]
- Kapadia, G.J.; Rao, G.S. Anticancer Effects of Red Beet Pigments. In Red Beet Biotechnology: Food and Pharmaceutical Applications; Neelwarne, B., Ed.; Springer US: Boston, MA, USA, 2012; pp. 125–154. [Google Scholar] [CrossRef]
- Nikolic, I.; Smiljenic, D.; Kukic, B.; Bogdanovic, B.; Petrovic, T.; Ivkovic-Kapicl, T.; Kozarski, D.; Djan, I. Application of alternative medicine in gastrointestinal cancer patients. Vojnosanit. Pregl. 2012, 69, 947–950. [Google Scholar] [CrossRef]
- Arkko, P.J.; Arkko, B.L.; Kari-Koshinen, O.; Taskinen, P.J. A survey of unproven cancer remedies and their users in an outpatient clinic for cancer therapy in Finland. Soc. Sci. Med. 1980, 14A, 511–514. [Google Scholar]
- Clement, Y.N.; Mahase, V.; Jagroop, A.; Kissoon, K.; Maharaj, A.; Mathura, P.; Quan, C.M.; Ramadhin, D.; Mohammed, C. Herbal remedies and functional foods used by cancer patients attending specialty oncology clinics in Trinidad. BMC Complement. Altern. Med. 2016, 16, 399. [Google Scholar] [CrossRef] [Green Version]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Filippone, S.M.; Williams, D.S.; Das, A.; Kukreja, R.C. Beet root juice protects against doxorubicin toxicity in cardiomyocytes while enhancing apoptosis in breast cancer cells. Mol. Cell. Biochem. 2016, 421, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Lechner, J.F.; Stoner, G.D. Red Beetroot and Betalains as Cancer Chemopreventative Agents. Molecules 2019, 24, 1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Dimenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. 2009, 107, 1144–1155. [Google Scholar] [CrossRef] [Green Version]
- Mills, C.E.; Khatri, J.; Maskell, P.; Odongerel, C.; Webb, A.J. It is rocket science–Why dietary nitrate is hard to ‘beet’! Part II: Further mechanisms and therapeutic potential of the nitrate-nitrite-NO pathway. Br. J. Clin. Pharmacol. 2017, 83, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Khatri, J.; Mills, C.E.; Maskell, P.; Odongerel, C.; Webb, A.J. It is rocket science–Why dietary nitrate is hard to ‘beet’! Part I: Twists and turns in the realization of the nitrate–nitrite–NO pathway. Br. J. Clin. Pharmacol. 2017, 83, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 94, 448. [Google Scholar]
- Jones, A.M.; Thompson, C.; Wylie, L.J.; Vanhatalo, A. Dietary Nitrate and Physical Performance. Annu. Rev. Nutr. 2018, 38, 303–328. [Google Scholar] [CrossRef]
- Fewtrell, L. Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion. Environ. Health Perspect. 2004, 112, 1371–1374. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, G.; Pradhan, D. Evaluation of in-vitro anti-proliferative activity and in-vivo immunomodulatory activity of Beta vulgaris. Asian J. Pharm. Clin. Res. 2013, 6, 127–130. [Google Scholar]
- Klewicka, E.; Nowak, A.; Zdunczyk, Z.; Cukrowska, B.; Blasiak, J. Protective effect of lactofermented beetroot juice against aberrant crypt foci formation and genotoxicity of fecal water in rats. Exp. Toxicol. Pathol. 2012, 64, 599–604. [Google Scholar] [CrossRef]
- Appiah, S.; Verghese, M.; Boateng, J.; Shackelford, L.A.; Kanda, B.; Patterson, J.; Walker, L.T. Determination of processing effects on phytochemical content, antioxidants activity and chemopreventive potential of beets (Beta Vulgaris) using a colon cancer fisher 344 male rat model. Int. J. Cancer Res. 2012, 8, 105–118. [Google Scholar] [CrossRef]
- McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Kapadia, G.J.; Azuine, M.A.; Rao, G.S.; Arai, T.; Iida, A.; Tokuda, H. Cytotoxic effect of the red beetroot (Beta vulgaris L.) extract compared to doxorubicin (adriamycin) in the human prostate (PC-3) and breast (MCF-7) cancer cell lines. Anti Cancer Agents Med. Chem. 2011, 11, 280–284. [Google Scholar] [CrossRef]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007, 191, 59–66. [Google Scholar] [CrossRef]
- Lidder, S.; Webb, A.J. Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate-nitrite-nitric oxide pathway. Br. J. Clin. Pharmacol. 2013, 75, 677–696. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Lansley, K.E.; Winyard, P.G.; Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; Blackwell, J.R.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sports Exerc. 2011, 43, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Wylie, L.J.; Fulford, J.; Kelly, J.; Black, M.I.; McDonagh, S.T.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur. J. Appl. Physiol. 2015, 115, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Cermak, N.M.; Gibala, M.J.; van Loon, L.J.C. Nitrate Supplementation’s Improvement of 10-km Time-Trial Performance in Trained Cyclists. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 64. [Google Scholar] [CrossRef] [PubMed]
- Haider, G.; Folland, J.P. Nitrate Supplementation Enhances the Contractile Properties of Human Skeletal Muscle. Med. Sci. Sports Exerc. 2014, 46, 2234–2243. [Google Scholar] [CrossRef] [PubMed]
- Coggan, A.R.; Leibowitz, J.L.; Spearie, C.A.; Kadkhodayan, A.; Thomas, D.P.; Ramamurthy, S.; Mahmood, K.; Park, S.; Waller, S.; Farmer, M.; et al. Acute Dietary Nitrate Intake Improves Muscle Contractile Function in Patients With Heart Failure. Circulation: Heart Fail. 2015, 8, 914–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montenegro, C.F.; Kwong, D.A.; Minow, Z.A.; Davis, B.A.; Lozada, C.F.; Casazza, G.A. Betalain-rich concentrate supplementation improves exercise performance and recovery in competitive triathletes. Appl. Physiol. Nutr. Metab. 2017, 42, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Mumford, P.W.; Kephart, W.C.; Romero, M.A.; Haun, C.T.; Mobley, C.B.; Osburn, S.C.; Healy, J.C.; Moore, A.N.; Pascoe, D.D.; Ruffin, W.C.; et al. Effect of 1-week betalain-rich beetroot concentrate supplementation on cycling performance and select physiological parameters. Eur. J. Appl. Physiol. 2018, 118, 2465–2476. [Google Scholar] [CrossRef]
- Reid, M.B. Redox interventions to increase exercise performance. J. Physiol. 2016, 594, 5125–5133. [Google Scholar] [CrossRef] [Green Version]
- Bowtell, J.; Kelly, V. Fruit-Derived Polyphenol Supplementation for Athlete Recovery and Performance. Sports Med. 2019, 49, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Porcelli, S.; Pugliese, L.; Rejc, E.; Pavei, G.; Bonato, M.; Montorsi, M.; La Torre, A.; Rasica, L.; Marzorati, M. Effects of a Short-Term High-Nitrate Diet on Exercise Performance. Nutrients 2016, 8, 534. [Google Scholar] [CrossRef] [Green Version]
- McDonagh, S.T.J.; Wylie, L.J.; Thompson, C.; Vanhatalo, A.; Jones, A.M. Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review. Eur. J. Sport Sci. 2019, 19, 15–29. [Google Scholar] [CrossRef]
- Newland, P.K.; Lunsford, V.; Flach, A. The interaction of fatigue, physical activity, and health-related quality of life in adults with multiple sclerosis (MS) and cardiovascular disease (CVD). Appl. Nurs. Res. 2017, 33, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Kenjale, A.A.; Ham, K.L.; Stabler, T.; Robbins, J.L.; Johnson, J.L.; Vanbruggen, M.; Privette, G.; Yim, E.; Kraus, W.E.; Allen, J.D. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J. Appl. Physiol. 2011, 110, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Coggan, A.R.; Broadstreet, S.R.; Mahmood, K.; Mikhalkova, D.; Madigan, M.; Bole, I.; Park, S.; Leibowitz, J.L.; Kadkhodayan, A.; Thomas, D.P.; et al. Dietary Nitrate Increases VO2peak and Performance but Does Not Alter Ventilation or Efficiency in Patients With Heart Failure With Reduced Ejection Fraction. J. Card. Fail. 2018, 24, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Rasica, L.; Porcelli, S.; Marzorati, M.; Salvadego, D.; Vezzoli, A.; Agosti, F.; De Col, A.; Tringali, G.; Jones, A.M.; Sartorio, A.; et al. Ergogenic effects of beetroot juice supplementation during severe-intensity exercise in obese adolescents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R453–R460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, M.J.; Justus, N.W.; Hauser, J.I.; Case, A.H.; Helms, C.C.; Basu, S.; Rogers, Z.; Lewis, M.T.; Miller, G.D. Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients. Nitric Oxide Biol. Chem. 2015, 48, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Curtis, K.J.; O’Brien, K.; Tanner, R.; Feelisch, M.; Polkey, M.I.; Edwards, L.M.; Hopkinson, N.S. Reduced isotime oxygen requirement during submaximal exercise in chronic obstructive pulmonary disease: A randomised controlled trial of acute dietary nitrate supplementation. Am. J. Respir. Crit. Care Med. 2015, 191, A2462. [Google Scholar]
- de Oliveira, G.V.; Morgado, M.; Conte-Junior, C.A.; Alvares, T.S. Acute effect of dietary nitrate on forearm muscle oxygenation, blood volume and strength in older adults: A randomized clinical trial. PLoS ONE 2017, 12, e0188893. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, G.V.; Nascimento, L.; Volino-Souza, M.; Mesquita, J.S.; Alvares, T.S. Beetroot-based gel supplementation improves handgrip strength and forearm muscle O2 saturation but not exercise tolerance and blood volume in jiu-jitsu athletes. Appl. Physiol. Nutr. Metab. 2018, 43, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Curtis, K.J.; O’Brien, K.A.; Tanner, R.J.; Polkey, J.I.; Minnion, M.; Feelisch, M.; Polkey, M.I.; Edwards, L.M.; Hopkinson, N.S. Acute dietary nitrate supplementation and exercise performance in COPD: A double-blind, placebo-controlled, randomised controlled pilot study. PLoS ONE 2015, 10, e0144504. [Google Scholar] [CrossRef] [Green Version]
- Hirai, D.M.; Zelt, J.T.; Jones, J.H.; Castanhas, L.G.; Bentley, R.F.; Earle, W.; Staples, P.; Tschakovsky, M.E.; McCans, J.; O’Donnell, D.E.; et al. Dietary nitrate supplementation and exercise tolerance in patients with heart failure with reduced ejection fraction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R13–R22. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.I.; Gilchrist, M.; Winyard, P.; Jones, A.; Benjamin, N.; Shore, A.C.; Wilkerson, D.P. The effect of dietary nitrate supplementation on the ability of individuals with Type 2 diabetes to perform walking exercise: A randomised control trial. Diabet. Med. 2014, 1, 67. [Google Scholar] [CrossRef]
- Shepherd, A.I.; Gilchrist, M.; Winyard, P.G.; Jones, A.M.; Hallmann, E.; Kazimierczak, R.; Rembialkowska, E.; Benjamin, N.; Shore, A.C.; Wilkerson, D.P. Effects of dietary nitrate supplementation on the oxygen cost of exercise and walking performance in individuals with type 2 diabetes: A randomized, double-blind, placebo-controlled crossover trial. Free Radic. Biol. Med. 2015, 86, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behnia, M.; Avolio, A.; Johnson, B. Influence of dietary nitrate supplementation on lung function and exercise gas exchange in COPD patients. Chest 2017, 152 (Suppl. 4), A791. [Google Scholar] [CrossRef]
- Leong, P.; Basham, J.E.; Yong, T.; Chazan, A.; Finlay, P.; Barnes, S.; Bardin, P.G.; Campbell, D. A double blind randomized placebo control crossover trial on the effect of dietary nitrate supplementation on exercise tolerance in stable moderate chronic obstructive pulmonary disease. BMC Pulm. Med. 2015, 15, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shepherd, A.I.; Wilkerson, D.P.; Dobson, L.; Kelly, J.; Winyard, P.G.; Jones, A.M.; Benjamin, N.; Shore, A.C.; Gilchrist, M. The effect of dietary nitrate supplementation on the oxygen cost of cycling, walking performance and resting blood pressure in individuals with chronic obstructive pulmonary disease: A double blind placebo controlled, randomised control trial. Nitric Oxide Biol. Chem. 2015, 48, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, N.F.; Leveritt, M.D.; Pavey, T.G. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 735–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, F.J.; Schiffer, T.A.; Borniquel, S.; Sahlin, K.; Ekblom, B.; Lundberg, J.O.; Weitzberg, E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011, 13, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, S.K.; Hirai, D.M.; Copp, S.W.; Holdsworth, C.T.; Allen, J.D.; Jones, A.M.; Musch, T.I.; Poole, D.C. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats. J. Physiol. 2013, 591, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, S.K.; Hirai, D.M.; Copp, S.W.; Holdsworth, C.T.; Allen, J.D.; Jones, A.M.; Musch, T.I.; Poole, D.C. Dose dependent effects of nitrate supplementation on cardiovascular control and microvascular oxygenation dynamics in healthy rats. Nitric Oxide 2014, 39, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Kapil, V.; Weitzberg, E.; Lundberg, J.O.; Ahluwalia, A. Clinical evidence demonstrating the utility of inorganic nitrate in cardiovascular health. Nitric Oxide 2014, 38, 45–57. [Google Scholar] [CrossRef]
1 | exp beet/ or exp sugar beet/ | 3268 |
2 | (beet * or “Beta vulgaris” or Betanin).ab,ti. | 18,668 |
3 | 1 or 2 | 19,159 |
4 | exp neoplasm/ | 4,623,242 |
5 | (cancer * or neoplasm * or leuk * or lymphoma *).ab,ti. | 3,205,201 |
6 | 4 or 5 | 5,412,111 |
7 | 3 and 6 [broad, beets and cancer] | 482 |
8 | exp athlete/ | 53,800 |
9 | exp performance/ | 32,549 |
10 | exp endurance/ | 23,154 |
11 | (athlete * or performance * or endurance * or cardio *).ab,ti. | 2,218,686 |
12 | 8 or 9 or 10 or 11 | 2,240,627 |
13 | 3 and 12 [beets and athletic performance and stamina] | 1180 |
14 | exp pediatrics/ | 113,020 |
15 | (child * or pediatric * or paediatric * or adolescen * or infant *).ab,ti. | 2,520,664 |
16 | 14 or 15 | 2,544,678 |
17 | 3 and 16 [beets and pediatric population] | 213 |
18 | 7 or 13 or 17 | 1809 |
19 | Beetle.ab, ti. | 18,518 |
20 | 18 not 19 | 1312 |
NCT Trials | Cancer Population | Outcomes Investigated | Duration | Dosage | Brand |
---|---|---|---|---|---|
03944226 | Breast Cancer | Lipid composition in tumor and breast tissue; water displacement in tumor | 5-day dietary nitrate intervention | 3 doses of 7 cL/70 mL (0.4 g nitrate/dose) of concentrated beetroot juice/day | James White Drinks, UK |
03776149 | Cancer Survivor with History of Anthracycline Chemotherapy | Left ventricular function | 7-day dietary nitrate (beetroot juice) | 140 mL/day | Beet It (Heart-Beet Ltd.) |
02058849 | Head and Neck Cancer | Adherence and endurance at 6 weeks and 12 weeks | Up to 6 weeks | 10 g beetroot crystals mixed with 4–8 oz of water/day | BEETELITE™ NeO shot |
02319356 | Nasopharyngeal Carcinoma | Anaerobic threshold; VO2Max | 7-day dietary nitrate | NO3- 6.2 mmol/day (500 mL) | Beet It Sport Shots, James White Drinks, UK |
02044562 | Colorectal Cancer | Plasma nitrate level | 7-day dietary nitrate | 70 mL/day (0.45 g nitrate) | Did not report |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swartz, M.C.; Allen, K.; Deer, R.R.; Lyons, E.J.; Swartz, M.D.; Clifford, T. A Narrative Review on the Potential of Red Beetroot as an Adjuvant Strategy to Counter Fatigue in Children with Cancer. Nutrients 2019, 11, 3003. https://doi.org/10.3390/nu11123003
Swartz MC, Allen K, Deer RR, Lyons EJ, Swartz MD, Clifford T. A Narrative Review on the Potential of Red Beetroot as an Adjuvant Strategy to Counter Fatigue in Children with Cancer. Nutrients. 2019; 11(12):3003. https://doi.org/10.3390/nu11123003
Chicago/Turabian StyleSwartz, Maria C., Kaitlyn Allen, Rachel R. Deer, Elizabeth J. Lyons, Michael D. Swartz, and Tom Clifford. 2019. "A Narrative Review on the Potential of Red Beetroot as an Adjuvant Strategy to Counter Fatigue in Children with Cancer" Nutrients 11, no. 12: 3003. https://doi.org/10.3390/nu11123003
APA StyleSwartz, M. C., Allen, K., Deer, R. R., Lyons, E. J., Swartz, M. D., & Clifford, T. (2019). A Narrative Review on the Potential of Red Beetroot as an Adjuvant Strategy to Counter Fatigue in Children with Cancer. Nutrients, 11(12), 3003. https://doi.org/10.3390/nu11123003