Sex- and Age-Related Differences in the Contribution of Ultrasound-Measured Visceral and Subcutaneous Abdominal Fat to Fatty Liver Index in Overweight and Obese Caucasian Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Procedures
2.2. Clinical and Anthropometrical Examination
2.3. Abdominal Ultrasonography
2.4. Blood Sampling and Fatty Liver Index Determination
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bedogni, G.; Nobili, V.; Tiribelli, C. Epidemiology of fatty liver: An update. World J. Gastroenterol. 2014, 20, 9050–9054. [Google Scholar] [CrossRef] [PubMed]
- Volzke, H. Multicausality in fatty liver disease: Is there a rationale to distinguish between alcoholic and non-alcoholic origin? World J. Gastroenterol. 2012, 18, 3492–3501. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelber-Sagi, S.; Webb, M.; Assy, N.; Blendis, L.; Yeshua, H.; Leshno, M.; Ratziu, V.; Halpern, Z.; Oren, R.; Santo, E. Comparison of fatty liver index with noninvasive methods for steatosis detection and quantification. World J. Gastroenterol. 2013, 19, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Koehler, E.M.; Schouten, J.N.; Hansen, B.E.; Hofman, A.; Stricker, B.H.; Janssen, H.L. External validation of the fatty liver index for identifying nonalcoholic fatty liver disease in a population-based study. Clin. Gastroenterol. Hepatol. 2013, 11, 1201–1204. [Google Scholar] [CrossRef]
- Foschi, F.G.; Bedogni, G.; Domenicali, M.; Giacomoni, P.; Dall’Aglio, A.C.; Dazzani, F.; Lanzi, A.; Conti, F.; Savini, S.; Saini, G.; et al. Prevalence of and risk factors for fatty liver in the general population of Northern Italy: The Bagnacavallo Study. BMC Gastroenterol. 2018, 18, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.J.; Fallon, M.B. Gender and racial differences in nonalcoholic fatty liver disease. World J. Hepatol. 2014, 6, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Tota-Maharaj, R.; Blaha, M.J.; Zeb, I.; Katz, R.; Blankstein, R.; Blumenthal, R.S.; Budoff, M.J.; Nasir, K. Ethnic and sex differences in fatty liver on cardiac computed tomography: The multi-ethnic study of atherosclerosis. Mayo Clin. Proc. 2014, 89, 493–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex Differences in NAFLD: State of the Art and Identification of Research Gaps. Hepatology 2019. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Mann, R.E.; Smart, R.G.; Govoni, R. The epidemiology of alcoholic liver disease. Alcohol. Res. Health 2003, 27, 209–219. [Google Scholar] [PubMed]
- Zelber-Sagi, S.; Nitzan-Kaluski, D.; Halpern, Z.; Oren, R. Prevalence of primary non-alcoholic fatty liver disease in a population-based study and its association with biochemical and anthropometric measures. Liver Int. 2006, 26, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The diagnosis and management of non-alcoholic fatty liver disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef] [PubMed]
- Hunter, G.R.; Gower, B.A.; Kane, B.L. Age Related Shift in Visceral Fat. Int. J. Body Compos. Res. 2010, 8, 103–108. [Google Scholar] [PubMed]
- Wajchenberg, B.L. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr. Rev. 2000, 21, 697–738. [Google Scholar] [CrossRef] [PubMed]
- Demerath, E.W.; Sun, S.S.; Rogers, N.; Lee, M.; Reed, D.; Choh, A.C.; Couch, W.; Czerwinski, S.A.; Chumlea, W.C.; Siervogel, R.M.; et al. Anatomical patterning of visceral adipose tissue: Race, sex, and age variation. Obesity (Silver Spring) 2007, 15, 2984–2993. [Google Scholar] [CrossRef]
- Bertoli, S.; Leone, A.; Ponissi, V.; Bedogni, G.; Beggio, V.; Strepparava, M.G.; Battezzati, A. Prevalence of and risk factors for binge eating behaviour in 6930 adults starting a weight loss or maintenance programme. Public Health Nutr. 2016, 19, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Armellini, F.; Zamboni, M.; Rigo, L.; Todesco, T.; Bergamo-Andreis, I.A.; Procacci, C.; Bosello, O. The contribution of sonography to the measurement of intra-abdominal fat. J. Clin. Ultrasound. 1990, 18, 563–567. [Google Scholar] [CrossRef]
- Bertoli, S.; Leone, A.; Vignati, L.; Spadafranca, A.; Bedogni, G.; Vanzulli, A.; Rodeschini, E.; Battezzati, A. Metabolic correlates of subcutaneous and visceral abdominal fat measured by ultrasonography: A comparison with waist circumference. Nutr. J. 2016, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Parker, R. The role of adipose tissue in fatty liver diseases. Liver Res. 2018, 2, 35–42. [Google Scholar] [CrossRef]
- Manne, V.; Handa, P.; Kowdley, K.V. Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2018, 22, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997, 46, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.E.; Mokan, M.; Simoneau, J.A.; Mandarino, L.J. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J. Clin. Investig. 1993, 92, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saponaro, C.; Gaggini, M.; Carli, F.; Gastaldelli, A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015, 7, 9453–9474. [Google Scholar] [CrossRef] [Green Version]
- Petta, S.; Gastaldelli, A.; Rebelos, E.; Bugianesi, E.; Messa, P.; Miele, L.; Svegliati-Baroni, G.; Valenti, L.; Bonino, F. Pathophysiology of Non Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2016, 17, 2082. [Google Scholar] [CrossRef]
- Marra, F.; Bertolani, C. Adipokines in liver diseases. Hepatology 2009, 50, 957–969. [Google Scholar] [CrossRef]
- Friedman, S.L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008, 88, 125–172. [Google Scholar] [CrossRef]
- Angulo, P. NAFLD, obesity, and bariatric surgery. Gastroenterology 2006, 130, 1848–1852. [Google Scholar] [CrossRef]
- Cao, Q.; Mak, K.M.; Ren, C.; Lieber, C.S. Leptin stimulates tissue inhibitor of metalloproteinase-1 in human hepatic stellate cells: Respective roles of the JAK/STAT and JAK-mediated H2O2-dependant MAPK pathways. J. Biol. Chem. 2004, 279, 4292–4304. [Google Scholar] [CrossRef] [Green Version]
- Lord, G.M.; Matarese, G.; Howard, J.K.; Baker, R.J.; Bloom, S.R.; Lechler, R.I. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998, 394, 897–901. [Google Scholar] [CrossRef]
- Arner, P. Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann. Med. 1995, 27, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Shulman, G.I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 2014, 371, 1131–1141. [Google Scholar] [CrossRef] [PubMed]
- Sam, S. Differential effect of subcutaneous abdominal and visceral adipose tissue on cardiometabolic risk. Horm. Mol. Biol. Clin. Investig. 2018, 33. [Google Scholar] [CrossRef]
- Fan, J.-G.; Farrell, G.C. VAT fat is bad for the liver, SAT fat is not! J. Gastroenterol. Hepatol. 2008, 23, 829–832. [Google Scholar] [CrossRef]
- Chang, E.; Varghese, M.; Singer, K. Gender and Sex Differences in Adipose Tissue. Curr. Diab. Rep. 2018, 18, 69. [Google Scholar] [CrossRef]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues—the biology of pear shape. Biol. Sex. Differ. 2012, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- White, U.A.; Tchoukalova, Y.D. Sex dimorphism and depot differences in adipose tissue function. Biochim. Biophys. Acta 2014, 1842, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Yim, J.E.; Heshka, S.; Albu, J.B.; Heymsfield, S.; Gallagher, D. Femoral-gluteal subcutaneous and intermuscular adipose tissues have independent and opposing relationships with CVD risk. J. Appl. Physiol. 2008, 104, 700–707. [Google Scholar] [CrossRef]
- Schreiner, P.J.; Terry, J.G.; Evans, G.W.; Hinson, W.H.; Crouse, J.R., 3rd; Heiss, G. Sex-specific associations of magnetic resonance imaging-derived intra-abdominal and subcutaneous fat areas with conventional anthropometric indices. The Atherosclerosis Risk in Communities Study. Am. J. Epidemiol. 1996, 144, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Camhi, S.M.; Bray, G.A.; Bouchard, C.; Greenway, F.L.; Johnson, W.D.; Newton, R.L.; Ravussin, E.; Ryan, D.H.; Smith, S.R.; Katzmarzyk, P.T. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: Sex and race differences. Obesity (Silver Spring) 2011, 19, 402–408. [Google Scholar] [CrossRef]
- Geer, E.B.; Shen, W. Gender differences in insulin resistance, body composition, and energy balance. Gend. Med. 2009, 6 (Suppl. 1), 60–75. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.; Katz, E.G.; Huxley, R.R. Associations between gender, age and waist circumference. Eur. J. Clin. Nutr. 2010, 64, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meigs, J.B.; Wilson, P.W.; Nathan, D.M.; D’Agostino, R.B., Sr.; Williams, K.; Haffner, S.M. Prevalence and characteristics of the metabolic syndrome in the San Antonio Heart and Framingham Offspring Studies. Diabetes 2003, 52, 2160–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, M.D. Role of body fat distribution and the metabolic complications of obesity. J. Clin. Endocrinol. Metab. 2008, 93, S57–S63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic liver disease. Nat. Rev. Dis. Primers. 2018, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Klop, B.; do Rego, A.T.; Cabezas, M.C. Alcohol and plasma triglycerides. Curr. Opin. Lipidol. 2013, 24, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Kessenich, C.R.; Cronin, K. GGT and alcohol consumption. Nurse. Pr. 2012, 37, 9–11. [Google Scholar] [CrossRef]
- Bedogni, G.; Kahn, H.S.; Bellentani, S.; Tiribelli, C. A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol. 2010, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Erol, A.; Karpyak, V.M. Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. Drug Alcohol. Depend. 2015, 156, 1–13. [Google Scholar] [CrossRef]
- Walker, G.E.; Marzullo, P.; Ricotti, R.; Bona, G.; Prodam, F. The pathophysiology of abdominal adipose tissue depots in health and disease. Horm. Mol. Biol. Clin. Investig. 2014, 19, 57–74. [Google Scholar] [CrossRef]
- Kuk, J.L.; Saunders, T.J.; Davidson, L.E.; Ross, R. Age-related changes in total and regional fat distribution. Ageing Res. Rev. 2009, 8, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.S.; Nicklas, B.J. Age-related changes in fat deposition in mid-thigh muscle in women: Relationships with metabolic cardiovascular disease risk factors. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, D.E.; Goodpaster, B.; Wing, R.R.; Simoneau, J.A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 1999, 277, E1130–E1141. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, S.; Leone, A.; Vignati, L.; Bedogni, G.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M.; Spadafranca, A.; Vanzulli, A.; Battezzati, A. Adherence to the Mediterranean diet is inversely associated with visceral abdominal tissue in Caucasian subjects. Clin. Nutr. 2015, 34, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Yasutake, K.; Kohjima, M.; Kotoh, K.; Nakashima, M.; Nakamuta, M.; Enjoji, M. Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 1756–1767. [Google Scholar] [CrossRef]
- Leone, A.; Battezzati, A.; De Amicis, R.; De Carlo, G.; Bertoli, S. Trends of Adherence to the Mediterranean Dietary Pattern in Northern Italy from 2010 to 2016. Nutrients 2017, 9, 734. [Google Scholar] [CrossRef] [Green Version]
Women | Men | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
n = 5530 | n = 2573 | n = 8103 | |||||||
P25 | P50 | P75 | P25 | P50 | P75 | P25 | P50 | P75 | |
Age (years) | 39 | 48 | 57 | 40 | 48 | 57 | 39 | 48 | 57 |
BMI (kg/m2) | 27.3 | 29.8 | 33.6 | 28.2 | 30.7 | 33.7 | 27.5 | 30.1 | 33.7 |
Waist circumference (cm) | 90.3 | 97.0 | 105.4 | 101.0 | 107.8 | 116.2 | 92.9 | 100.6 | 109.7 |
SAT (cm) | 2.3 | 3.0 | 3.8 | 2.0 | 2.7 | 3.5 | 2.2 | 2.9 | 3.8 |
VAT (cm) | 3.5 | 4.9 | 6.7 | 5.9 | 7.7 | 9.6 | 4.0 | 5.7 | 7.9 |
Triglycerides (mg/dL) | 67 | 90 | 125 | 87 | 122 | 174 | 72 | 99 | 140 |
GGT (U/L) | 12 | 17 | 24 | 22 | 31 | 46 | 14 | 20 | 32 |
Fatty Liver Index | 26.8 | 49.6 | 77.0 | 60.3 | 80.5 | 92.3 | 33.9 | 61.2 | 84.9 |
n | % | n | % | n | % | ||||
Age classes | |||||||||
18–19 years | 73 | 1.3 | 22 | 0.9 | 95 | 1.2 | |||
20–29 years | 481 | 8.7 | 156 | 6.1 | 637 | 7.9 | |||
30–39 years | 941 | 17.0 | 461 | 17.9 | 1402 | 17.3 | |||
40–49 years | 1525 | 27.6 | 771 | 30.0 | 2296 | 28.3 | |||
50–59 years | 1383 | 25.0 | 627 | 24.4 | 2010 | 24.8 | |||
60–69 years | 800 | 14.5 | 402 | 15.6 | 1202 | 14.8 | |||
≥70 years | 327 | 5.9 | 134 | 5.2 | 461 | 5.7 | |||
Total | 5530 | 100.0 | 2573 | 100.0 | 8103 | 100.0 | |||
BMI classes | |||||||||
Overweight | 2845 | 51.4 | 1094 | 42.5 | 3939 | 48.6 | |||
Obese | 2685 | 48.6 | 1479 | 57.5 | 4164 | 51.4 | |||
Total | 5530 | 100.0 | 2573 | 100.0 | 8103 | 100.0 | |||
FLI classes | |||||||||
0–9.9 | 163 | 2.9 | 3 | 0.1 | 166 | 2.0 | |||
10–19.9 | 709 | 12.8 | 37 | 1.4 | 746 | 9.2 | |||
20–29.9 | 737 | 13.3 | 82 | 3.2 | 819 | 10.1 | |||
30–39.9 | 625 | 11.3 | 118 | 4.6 | 743 | 9.2 | |||
40–49.9 | 562 | 10.2 | 180 | 7.0 | 742 | 9.2 | |||
50–59.9 | 523 | 9.5 | 217 | 8.4 | 740 | 9.1 | |||
60–69.9 | 500 | 9.0 | 265 | 10.3 | 765 | 9.4 | |||
70–79.9 | 489 | 8.8 | 365 | 14.2 | 854 | 10.5 | |||
80–89.9 | 556 | 10.1 | 513 | 19.9 | 1069 | 13.2 | |||
90–100 | 666 | 12.0 | 793 | 30.8 | 1459 | 18.0 | |||
Total | 5530 | 100.0 | 2573 | 100.0 | 8103 | 100.0 | |||
Risk of fatty liver disease | |||||||||
<60 | 3320 | 60.0 | 637 | 24.8 | 3957 | 48.8 | |||
≥60 | 2210 | 40.0 | 1936 | 75.2 | 4146 | 51.2 | |||
Total | 5530 | 100.0 | 2573 | 100.0 | 8103 | 100.0 |
Fatty Liver Index | Fatty Liver Index | |
---|---|---|
Sex (male) | 26.95 *** | 29.27 *** |
[22.21,31.69] | [27.67,30.87] | |
Age (years) | 0.41 *** | 0.85 *** |
[0.27,0.55] | [0.79,0.91] | |
Smoking | ||
Ex-smoker | 0.45 | 1.05 |
[−0.58,1.48] | [−0.16,2.27] | |
Smoker | 1.21 * | 2.98 *** |
[0.17,2.25] | [1.76,4.20] | |
Physical activity (yes) | −3.63 *** | −7.12 *** |
[−4.51,−2.75] | [−8.12,−6.13] | |
(VAT/10)0.5 | 144.18 *** | − |
[135.42,152.93] | ||
Sex*(VAT/10)0.5 | −25.80 *** | − |
[−31.07,−20.53] | ||
Age*(VAT/10)0.5 | −0.58 *** | − |
[−0.75,−0.41] | ||
SAT2 | − | 2.32 *** |
[2.10,2.53] | ||
Sex*SAT2 | − | −0.46 *** |
[−0.57,−0.35] | ||
Age*SAT2 | − | −0.02 *** |
[−0.02,−0.01] | ||
Intercept | −49.29 *** | −4.4 ** |
[−56.17,−42.40] | [−7.48,−1.33] | |
Observations | 8103 | 8103 |
Sex | Age (Years) | n | Optimal Cutoff | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VAT | SAT | |||||||||||
VAT | (VAT/10)0.5 | SN | 1-SP | AUC | SAT | SAT2 | SN | 1-SP | AUC | |||
Women | 18–29 | 554 | 4.40 | 0.66 | 0.65 | 0.14 | 0.812 | 3.86 | 14.90 | 0.82 | 0.27 | 0.857 |
30–39 | 941 | 4.79 | 0.69 | 0.69 | 0.20 | 0.811 | 3.41 | 11.63 | 0.76 | 0.34 | 0.775 | |
40–49 | 1525 | 4.88 | 0.70 | 0.81 | 0.26 | 0.844 | 3.23 | 10.43 | 0.69 | 0.31 | 0.747 | |
50–59 | 1383 | 5.60 | 0.75 | 0.76 | 0.21 | 0.848 | 3.00 | 9.00 | 0.65 | 0.38 | 0.666 | |
60–69 | 800 | 6.72 | 0.82 | 0.65 | 0.14 | 0.831 | 2.79 | 7.78 | 0.55 | 0.32 | 0.647 | |
≥70 | 327 | 7.08 | 0.84 | 0.70 | 0.22 | 0.816 | 1.87 | 3.50 | 0.75 | 0.65 | 0.548 | |
Men | 18–29 | 178 | 5.79 | 0.76 | 0.71 | 0.17 | 0.821 | 3.08 | 9.49 | 0.83 | 0.33 | 0.830 |
30–39 | 461 | 6.34 | 0.80 | 0.70 | 0.29 | 0.770 | 3.04 | 9.24 | 0.70 | 0.25 | 0.757 | |
40–49 | 771 | 6.83 | 0.83 | 0.72 | 0.19 | 0.836 | 3.47 | 12.04 | 0.37 | 0.11 | 0.651 | |
50–59 | 627 | 7.4 | 0.86 | 0.74 | 0.26 | 0.816 | 3.13 | 9.80 | 0.33 | 0.12 | 0.618 | |
60–69 | 402 | 8.19 | 0.90 | 0.69 | 0.15 | 0.829 | 2.57 | 6.60 | 0.32 | 0.18 | 0.528 | |
≥70 | 134 | 8.10 | 0.90 | 0.74 | 0.40 | 0.697 | 2.84 | 8.07 | 0.13 | 0.03 | 0.487 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, A.; Battezzati, A.; Bedogni, G.; Vignati, L.; Vanzulli, A.; De Amicis, R.; Foppiani, A.; Bertoli, S. Sex- and Age-Related Differences in the Contribution of Ultrasound-Measured Visceral and Subcutaneous Abdominal Fat to Fatty Liver Index in Overweight and Obese Caucasian Adults. Nutrients 2019, 11, 3008. https://doi.org/10.3390/nu11123008
Leone A, Battezzati A, Bedogni G, Vignati L, Vanzulli A, De Amicis R, Foppiani A, Bertoli S. Sex- and Age-Related Differences in the Contribution of Ultrasound-Measured Visceral and Subcutaneous Abdominal Fat to Fatty Liver Index in Overweight and Obese Caucasian Adults. Nutrients. 2019; 11(12):3008. https://doi.org/10.3390/nu11123008
Chicago/Turabian StyleLeone, Alessandro, Alberto Battezzati, Giorgio Bedogni, Laila Vignati, Angelo Vanzulli, Ramona De Amicis, Andrea Foppiani, and Simona Bertoli. 2019. "Sex- and Age-Related Differences in the Contribution of Ultrasound-Measured Visceral and Subcutaneous Abdominal Fat to Fatty Liver Index in Overweight and Obese Caucasian Adults" Nutrients 11, no. 12: 3008. https://doi.org/10.3390/nu11123008
APA StyleLeone, A., Battezzati, A., Bedogni, G., Vignati, L., Vanzulli, A., De Amicis, R., Foppiani, A., & Bertoli, S. (2019). Sex- and Age-Related Differences in the Contribution of Ultrasound-Measured Visceral and Subcutaneous Abdominal Fat to Fatty Liver Index in Overweight and Obese Caucasian Adults. Nutrients, 11(12), 3008. https://doi.org/10.3390/nu11123008