Associations Among Taste Perception, Food Neophobia and Preferences in Type 1 Diabetes Children and Adolescents: A Cross-Sectional Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Clinical Assessment
2.3. Taste Sensitivity Assessment
2.3.1. Taste Recognition Ability
2.3.2. PROP Responsiveness
2.3.3. FP Density
2.4. Food Neophobia Assessment
2.5. Food Preferences Assessment
2.6. Statistical Analysis
3. Results
3.1. Taste Sensitivity
3.2. Food Neophobia and Food Preferences
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lotfy, M.; Adeghate, J.; Kalasz, H.; Singh, J.; Adeghate, E. Chronic Complications of Diabetes Mellitus: A Mini Review. Curr. Diabetes Rev. 2017, 13, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Simmons, K.M.; Michels, A.W. Type 1 diabetes: A predictable disease. World J. Diabetes 2015, 6, 380. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, M.B.; Buch, N.H. Studies on the sense of smell and taste in diabetics. Acta Otolaryngol. 1961, 53, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Patterson, D.S.; Turner, P.; Smart, J.V. Smell threshold in diabetes mellitus. Nature 1966, 209, 625. [Google Scholar] [CrossRef] [PubMed]
- Schelling, J.L.; Téreault, L.; Lasagna, L.; Davis, M. Abnormal taste threshold in diabetes. Lancet 1965, 1, 508–512. [Google Scholar] [CrossRef]
- Weinstock, R.S.; Wright, H.N.; Smith, D.U. Olfactory dysfunction in diabetes mellitus. Physiol. Behav. 1993, 53, 17–21. [Google Scholar] [CrossRef]
- Le Floch, J.P.; Le Lièvre, G.; Sadoun, J.; Perlemuter, L.; Peynegre, R.; Hazard, J. Taste impairment and related factors in type I diabetes mellitus. Diabetes Care 1982, 12, 173–178. [Google Scholar] [CrossRef]
- Altundag, A.; Ay, S.A.; Hira, S.; Salıhoglu, M.; Baskoy, K.; Denız, F.; Hummel, T.; Tekelı, H.; Kurt, O.; Yonem, A. Olfactory and gustatory functions in patients with non-complicated type 1 diabetes mellitus. Eur. Arch. Otorhinolaryngol. 2017, 274, 2621–2627. [Google Scholar] [CrossRef]
- Naka, A.; Riedl, M.; Luger, A.; Hummel, T.; Mueller, C.A. Clinical significance of smell and taste disorders in patients with diabetes mellitus. Eur. Arch. Otorhinolaryngol. 2010, 267, 547–550. [Google Scholar] [CrossRef]
- Khobragade, R.; Wakode, S.; Kale, A. Physiological taste threshold in type 1 diabetes mellitus. Indian J. Physiol. Pharmacol. 2012, 56, 42. [Google Scholar]
- Wasalathanthri, S.; Hettiarachchi, P.; Prathapan, S. Sweet taste sensitivity in pre-diabetics, diabetics and normoglycemic controls: A comparative cross sectional study. BMC Endocr. Disord. 2014, 14, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlidis, P.; Gouveris, H.; Kekes, G.; Maurer, J. Electrogustometry thresholds, tongue tip vascularization, and density and morphology of the fungiform papillae in diabetes. B-ENT 2014, 10, 271–278. [Google Scholar] [PubMed]
- Tepper, B.J.; Ullrich, N.V. Influence of genetic taste sensitivity to 6-n-propylthiouracil (PROP), dietary restraint and disinhibition on body mass index in middle-aged women. Physiol. Behav. 2002, 75, 305–312. [Google Scholar] [CrossRef]
- Settle, R.G. The chemical senses in diabetes mellitus. In Smell and Taste in Health and Disease; Getchell, T.V., Doty, R.L., Bartoshuk, L.M., Snow, J.B., Eds.; Raven Press: New York, NY, USA, 1991; pp. 829–844. [Google Scholar]
- Malaisse, W.J. Insulin release: The receptor hypothesis. Diabetologia 2014, 57, 1287–1290. [Google Scholar] [CrossRef] [PubMed]
- Tepper, B.J. Nutritional implications of genetic taste variation: The role of PROP sensitivity and other taste phenotypes. Annu. Rev. Nutr. 2008, 28, 367–388. [Google Scholar] [CrossRef] [PubMed]
- Wardle, J.; Cooke, L. Genetic and environmental determinants of children’s food preferences. Br. J. Nutr. 2008, 99, S15–S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dovey, T.M.; Staples, P.A.; Gibson, E.L.; Halford, J.C. Food neophobia and ‘picky/fussy’eating in children: A review. Appetite 2008, 50, 181–193. [Google Scholar] [CrossRef]
- Pliner, P.; Hobden, K. Development of a scale to measure neophobia in humans the trait of food. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef]
- Falciglia, G.; Couch, S.; Gribble, L.; Pabst, S.; Frank, R. Food neophobia in childhood affects dietary variety. J. Am. Diet. Assoc. 2000, 100, 1474–1478. [Google Scholar] [CrossRef]
- Laureati, M.; Cattaneo, C.; Bergamaschi, V.; Proserpio, C.; Pagliarini, E. School children preferences for fish formulations: The impact of child and parental food neophobia. J. Sens. Stud. 2016, 31, 408–415. [Google Scholar] [CrossRef]
- Cooke, L.J.; Carnell, S.; Wardle, J. Food neophobia and mealtime food consumption in 4–5 year old children. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke, L.J.; Wardle, J.; Gibson, E.L. Relationship between parental report of food neophobia and everyday food consumption in 2–6-year-old children. Appetite 2003, 41, 205–206. [Google Scholar] [CrossRef]
- Silverstein, J.; Klingensmith, G.; Copeland, K.; Plotnick, L.; Kaufman, F.; Laffel, L.; Deeb, L.; Grey, M.; Anderson, B.; Clark, N. Care of children and adolescents with type 1 diabetes: A statement of the American Diabetes Association. Diabetes Care 2005, 28, 186–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quick, V.; Lipsky, L.M.; Laffel, L.M.B.; Mehta, S.N.; Quinn, H.; Nansel, T.R. Relationships of neophobia and pickiness with dietary variety, dietary quality and diabetes management adherence in youth with type 1 diabetes. Eur. J. Clin. Nutr. 2014, 68, 131. [Google Scholar] [CrossRef] [Green Version]
- WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length Height-For-Age, Weight-For-Age, Weight-For-Length, Weight-For-Height and Body Mass Index-For-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Cacciari, E.; Milani, S.; Balsamo, A.; Spada, E.; Bona, G.; Cavallo, L.; Cerutti, F.; Gargantini, L.; Greggio, N.; Tonini, G.; et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J. Endocrinol. Invest. 2006, 29, 581–593. [Google Scholar] [CrossRef]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Baker-Smith, C.M.; Flinn, S.K.; Flynn, J.T.; Kaelber, D.C.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; et al. Diagnosis, evaluation and management of high blood pressure in children and adolescents. Pediatrics 2018, 142, 20182096. [Google Scholar] [CrossRef] [Green Version]
- Mueller, C.; Kallert, S.; Renner, B.; Stiassny, K.; Temmel, A.F.P.; Hummel, T.; Kobal, G. Quantitative assessment of gustatory function in a clinical context using impregnated “taste strips”. Rhinology 2003, 41, 2–6. [Google Scholar]
- Hummel, T.; Landis, B.N.; Hüttenbrink, K.B. Smell and taste disorders. GMS Curr. Top. Otorhinolaryngol. Head Neck Surg. 2011, 10. [Google Scholar]
- Overberg, J.; Hummel, T.; Krude, H.; Wiegand, S. Differences in taste sensitivity between obese and non- obese children and adolescents. Arch. Dis. Child. 2012, 97, 1048–1052. [Google Scholar] [CrossRef]
- Mameli, C.; Cattaneo, C.; Panelli, S.; Comandatore, F.; Sangiorgio, A.; Bedogni, G.; Bandi, C.; Zuccotti, G.; Pagliarini, E. Taste perception and oral microbiota are associated with obesity in children and adolescents. PLoS ONE 2019, 14, 0221656. [Google Scholar] [CrossRef] [PubMed]
- Landis, B.N.; Welge-Luessen, A.; Brämerson, A.; Bende, M.; Mueller, C.A.; Nordin, S.; Hummel, T. “Taste Strips”—a rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. J. Neurol. 2009, 256, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, C.A.; Pintscher, K.; Renner, B. Clinical test of gustatory function including umami taste. Ann. Otol. Rhinol. Laryngol. 2011, 120, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Bartoshuk, L.M.; Duffy, V.B.; Fast, K.; Green, B.G.; Prutkin, J.; Snyder, D.J. Labeled scales (eg, category, Likert, VAS) and invalid across-group comparisons: What we have learned from genetic variation in taste. Food Qual. Prefer. 2003, 14, 125–138. [Google Scholar] [CrossRef]
- Green, B.G.; Dalton, P.; Cowart, B.; Shaffer, G.; Rankin, K.; Higgins, J. Evaluating the ‘Labeled Magnitude Scale’ for measuring sensations of taste and smell. Chem. Senses 1996, 21, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Tepper, B.J.; Christensen, C.M.; Cao, J. Development of brief methods to classify individuals by PROP taster status. Physiol. Behav. 2001, 73, 571–577. [Google Scholar] [CrossRef]
- Proserpio, C.; Laureati, M.; Invitti, C.; Pagliarini, E. Reduced taste responsiveness and increased food neophobia characterize obese adults. Food Qual. Prefer. 2018, 63, 73–79. [Google Scholar] [CrossRef]
- Nuessle, T.M.; Garneau, N.L.; Sloan, M.M.; Santorico, S.A. Denver papillae protocol for objective analysis of fungiform papillae. J. Vis. Exp. 2015, 100. [Google Scholar] [CrossRef] [Green Version]
- Laureati, M.; Bergamaschi, V.; Pagliarini, E. Assessing childhood food neophobia: Validation of a scale in Italian primary school children. Food Qual. Prefer. 2015, 40, 8–15. [Google Scholar] [CrossRef]
- Proserpio, C.; Almli, V.; Sandvik, P.; Sandell, M.; Methven, L.; Wallner, M.; Jilani, H.; Zeinstra, G.; Alfaro, B.; Laureati, M. Cross-national differences in child food neophobia: A comparison of five European countries. Food Qual. Prefer. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.D.; Fildes, A.; Cooke, L.; Herle, M.; Shakeshaft, N.; Plomin, R.; Llewellyn, C. Genetic and environmental influences on food preferences in adolescence. Am. J. Clin. Nutr. 2016, 104, 446–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagliarini, E.; Ratti, S.; Balzaretti, C.; Dragoni, I. Evaluation of a hedonistic scaling method for measuring the acceptability of school lunches by children. Ital. J. Food Sci. 2003, 15, 215–224. [Google Scholar]
- Hardy, S.L.; Brennand, C.P.; Wyse, B.W. Taste thresholds of individuals with diabetes mellitus and of control subjects. J. Am. Diet. Assoc. 1981, 79, 286–289. [Google Scholar] [PubMed]
- Perros, P.; Counsell, C.; Mac Farlane, T.W.; Frier, B.M. Altered taste sensation in newly-diagnosed NIDDM. Diabetes Care 1996, 19, 768–770. [Google Scholar] [CrossRef]
- Gaphor, S.M.; Saeed, R.A. The evaluation of taste threshold for four main tastes between diabetic and healthy individuals. Eur. Sci. J. 2014, 10, 434–439. [Google Scholar]
- Abbasi, A.A. Diabetes: Diagnostic and therapeutic significance of taste impairment. Geriatrics 1981, 36, 73–78. [Google Scholar]
- Gondivkar, S.M.; Indurkar, A.; Degwekar, S.; Bhowate, R. Evaluation of gustatory function in patients with diabetes mellitus type 2. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, 876–880. [Google Scholar] [CrossRef]
- De Carli, L.; Gambino, R.; Lubrano, C.; Rosato, R.; Bongiovanni, D.; Lanfranco, F.; Broglio, F.; Ghigo, E.; Bo, S. Impaired taste sensation in type 2 diabetic patients without chronic complications: A case-control study. J. Endocrinol. Invest. 2018, 41, 765–772. [Google Scholar] [CrossRef]
- Borgnakke, W.S.; Anderson, P.F.; Shannon, C.; Jivanescu, A. Is there a relationship between oral health and diabetic neuropathy? Curr. Diab. Rep. 2015, 15, 93. [Google Scholar] [CrossRef]
- Negrato, C.A.; Tarzia, O. Buccal alterations in diabetes mellitus. Diabetol. Metab. Syndr. 2010, 15, 2–3. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, G.E.; Sundberg, H.E.; Fjellstom, C.A.; Wikblad, K.F. Type 2 diabetes and oral health. A comparison between diabetic and non-diabetic subjects. Diabetes Res. Clin. Pract. 2000, 50, 27–34. [Google Scholar] [CrossRef]
- Bromley, S.M. Smell and taste disorders: A primary care approach. Am. Fam. Physician 2000, 61, 427–436. [Google Scholar] [PubMed]
- Henkin, R.I.; Levy, L.M.; Fordyce, A. Taste and smell function in chronic disease: A review of clinical and biochemical evaluations of taste and smell dysfunction in over 5000 patients at The Taste and Smell Clinic in Washington, DC. Am. J. Otolaryngol. 2013, 34, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Henkin, R.I.; Martin, B.M.; Agarwal, R.P. Decreased parotid saliva gustin/carbonic anhydrase VI secretion: An enzyme disorder manifested by gustatory and olfactory dysfunction. Am. J. Med. Sci. 1999, 318, 380–391. [Google Scholar] [CrossRef]
- Padiglia, A.; Zonza, A.; Atzori, E.; Chillotti, C.; Calo, C.; Tepper, B.J.; Barbarossa, I.T. Sensitivity to 6-n-propylthiouracil is associated with gustin (carbonic anhydrase VI) gene polymorphism, salivary zinc, and body mass index in humans. Am. J. Clin. Nutr. 2010, 92, 539–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melis, M.; Grzeschuchna, L.; Sollai, G.; Hummel, T.; Tomassini Barbarossa, I. Taste disorders are partly genetically determined: Role of the TAS2R38 gene, a pilot study. Laryngoscope 2019, 129, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Piochi, M.; Dinnella, C.; Prescott, J.; Monteleone, E. Associations between human fungiform papillae and responsiveness to oral stimuli: Effects of individual variability, population characteristics, and methods for papillae quantification. Chem. Senses 2018, 43, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Dinnella, C.; Monteleone, E.; Piochi, M.; Spinelli, S.; Prescott, J.; Pierguidi, L.; Gasperi, F.; Laureati, M.; Pagliarini, E.; Predieri, S. Individual variation in PROP status, fungiform papillae density, and responsiveness to taste stimuli in a large population sample. Chem. Senses 2018, 43, 697–710. [Google Scholar] [CrossRef]
- Fischer, M.E.; Cruickshanks, K.J.; Schubert, C.R.; Pinto, A.; Klein, R.; Pankratz, N.; Pankow, J.S.; Huang, G.H. Factors related to fungiform papillae density: The beaver dam offspring study. Chem. Senses 2013, 38, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.N.; Hendrie, G.A.; Carty, D. Sensitivity, hedonics and preferences for basic tastes and fat amongstadults and children of differing weight status: A comprehensive review. Food Qual. Prefer. 2016, 48, 359–367. [Google Scholar] [CrossRef]
- Cattaneo, C.; Riso, P.; Laureati, M.; Gargari, G.; Pagliarini, E. Exploring Associations between Interindividual Differences in Taste Perception, Oral Microbiota Composition, and Reported Food Intake. Nutrients 2019, 11, 1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewnowski, A.; Gomez-Carneros, C. Bitter taste, phytonutrients, and the consumer: A review. Am. J. Clin. Nutr. 2000, 72, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Laureati, M.; Bergamaschi, V.; Pagliarini, E. School-based intervention with children. Peer-modeling, reward and repeated exposure reduce food neophobia and increase liking of fruits and vegetables. Appetite 2014, 83, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Wardle, J.; Cooke, L.J.; Gibson, E.L.; Sapochnik, M.; Sheiham, A.; Lawson, M. Increasing children’s acceptance of vegetables; a randomized trial of parent-led exposure. Appetite 2003, 40, 155–162. [Google Scholar] [CrossRef]
- Le Floch, J.P.; Le Lièvre, G.; Labroue, M.; Peynègre, R.; Perlemuter, L. Early detection of diabetic patients at risk of developing degenerative complications using electric gustometry: A five-year follow-up study. Eur. J. Med. 1992, 1, 208–214. [Google Scholar]
- Krhač, M.; Lovrenčić, M.V. Update on biomarkers of glycemic control. World J. Diabetes 2019, 10, 1. [Google Scholar] [CrossRef]
- Beck, R.W.; Bergenstal, R.M.; Riddlesworth, T.D.; Kollman, C.; Li, Z.; Brown, A.S.; Close, K.L. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care 2019, 42, 400–405. [Google Scholar] [CrossRef] [Green Version]
- Wright, L.A.C.; Hirsch, I.B. Metrics beyond hemoglobin A1C in diabetes management: Time in range, hypoglycemia, and other parameters. Diabetes Technol. Ther. 2017, 19, 16. [Google Scholar] [CrossRef] [Green Version]
- Naguib, J.M.; Kulinskaya, E.; Lomax, C.L.; Garralda, M.E. Neuro-cognitive performance in children with type 1 diabetes--a meta-analysis. J. Pediatr. Psychol. 2009, 34, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Cato, A.; Hershey, T. Cognition and Type 1 Diabetes in Children and Adolescents. Diabetes Spectr. 2016, 29, 197–202. [Google Scholar] [CrossRef] [Green Version]
Taste Measurements | T1D Mean (Robust 95% CI) | Control Subjects Mean (Robust 95% CI) | Mean Difference (Robust 95% CI) * | p-Value (LRM) |
---|---|---|---|---|
TTS | 11.5 (10.6 to 12.5) | 13.4 (12.8 to 13.9) | −1.8 (−2.9 to −0.7) | 0.002 |
Bitter taste score | 2.9 (2.5 to 3.3) | 3.5 (3.1 to 3.8) | −0.6 (−1.1 to −0.01) | 0.038 |
Salty taste score | 3.1 (2.6 to 3.5) | 3.4 (3.1 to 3.6) | −0.3 (−0.8 to 0.2) | 0.214 |
Sweet taste score | 3.6 (3.5 to 3.8) | 3.5 (3.2 to 3.7) | −0.2 (−0.5 to 0.1) | 0.221 |
Sour taste score | 2.1 (1.8 to 2.4) | 2.9 (2.6 to 3.2) | −0.7 (−1.2 to −0.3) | 0.001 |
Food Categories | T1D Mean (Robust 95% CI) | Control Subjects Mean (Robust 95% CI) | Mean Difference (95% Robust CI) * | p-Value (LRM) |
---|---|---|---|---|
Vegetables | 4.8 (4.4 to 5.1) | 4.1 (3.6 to 4.6) | 0.7 (0.1 to 1.3) | 0.023 |
Fruits | 5.9 (5.5 to 6.2) | 5.3 (4.9 to 5.7) | 0.6 (0.1 to 1.1) | 0.028 |
Starches | 5.9 (5.6 to 6.2) | 6.0 (5.7 to 6.3) | −0.1 (−0.5 to 0.3) | 0.760 |
Fats and oils | 5.0 (4.5 to 5.4) | 4.6 (4.1 to 5.1) | 0.4 (−0.3 to 1.1) | 0.252 |
Meat and fish | 5.5 (5.1 to 5.8) | 5.6 (5.3 to 5.9) | −0.1 (−0.5 to 0.4) | 0.692 |
Dairy products | 5.5 (5.2 to 5.9) | 5.1 (4.7 to 5.5) | 0.5 (−0.1 to 1.0) | 0.113 |
Snacks | 5.6 (5.2 to 6.0) | 5.6 (5.3 to 6.0) | −0.01 ** (−0.6 to 0.5) | 0.869 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mameli, C.; Cattaneo, C.; Lonoce, L.; Bedogni, G.; Redaelli, F.C.; Macedoni, M.; Zuccotti, G.; Pagliarini, E. Associations Among Taste Perception, Food Neophobia and Preferences in Type 1 Diabetes Children and Adolescents: A Cross-Sectional Study. Nutrients 2019, 11, 3052. https://doi.org/10.3390/nu11123052
Mameli C, Cattaneo C, Lonoce L, Bedogni G, Redaelli FC, Macedoni M, Zuccotti G, Pagliarini E. Associations Among Taste Perception, Food Neophobia and Preferences in Type 1 Diabetes Children and Adolescents: A Cross-Sectional Study. Nutrients. 2019; 11(12):3052. https://doi.org/10.3390/nu11123052
Chicago/Turabian StyleMameli, Chiara, Camilla Cattaneo, Luisa Lonoce, Giorgio Bedogni, Francesca Chiara Redaelli, Maddalena Macedoni, Gianvincenzo Zuccotti, and Ella Pagliarini. 2019. "Associations Among Taste Perception, Food Neophobia and Preferences in Type 1 Diabetes Children and Adolescents: A Cross-Sectional Study" Nutrients 11, no. 12: 3052. https://doi.org/10.3390/nu11123052
APA StyleMameli, C., Cattaneo, C., Lonoce, L., Bedogni, G., Redaelli, F. C., Macedoni, M., Zuccotti, G., & Pagliarini, E. (2019). Associations Among Taste Perception, Food Neophobia and Preferences in Type 1 Diabetes Children and Adolescents: A Cross-Sectional Study. Nutrients, 11(12), 3052. https://doi.org/10.3390/nu11123052