Evolution of Anemia Types During Antiretroviral Therapy—Implications for Treatment Outcomes and Quality of Life Among HIV-Infected Adults
Abstract
:1. Introduction
- To determine the prevalence of anemia of various types at the baseline, and at 6, 12 and 18 months of the follow-up.
- To identify associations between baseline behavioral, sociodemographic and clinical parameters, and the development of specific types of anemia among PLWHA without anemia at enrolment.
- To identify associations between anemia types, and changes in body mass index, CD4-cell count, QOL and Frailty at 6, 12, and 18 months follow-up.
- To identify associations between anemia types, and time to the post-enrolment gain of ≥100 CD4 cells, hospitalization or death.
2. Materials and Methods
2.1. Study Population and Design
2.2. Measurements
- (a)
- Baseline ACD/microcytosis sustained through one or more follow-up.
- (b)
- Baseline ACD/microcytosis resolved in follow-up but replaced with macrocytosis.
- (c)
- Macrocytosis at baseline sustained in all follow-up intervals.
- (d)
- New ACD/microcytic anemia among participants without baseline anemia.
- (e)
- New macrocytosis among participants without baseline anemia.
- (f)
- No anemia at baseline and in follow-up intervals.
2.3. Potential Confounders: Clinical, Socio-Demographic and Behavioral Characteristics
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Change in Anemia Type Over the 18-Month Follow-up
3.3. Associations between Anemia Type and Change in CD4, BMI, QOL and Frailty:
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mildvan, D.; Creagh, T.; Leitz, G.; Anemia Prevalence Study Group. Prevalence of anemia and correlation with biomarkers and specific antiretroviral regimens in 9690 human-immunodeficiency-virus-infected patients: Findings of the Anemia Prevalence Study. Curr. Med. Res. Opin. 2007, 23, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Volberding, P.A.; Levine, A.M.; Dieterich, D.; Mildvan, D.; Mitsuyasu, R.; Saag, M.; Anemia in HIV Working Group. Anemia in HIV infection: Clinical impact and evidence-based management strategies. Clin. Infect. Dis. 2004, 38, 1454–1463. [Google Scholar] [CrossRef]
- Brentlinger, P.E.; Silva, W.P.; Vermund, S.H.; Valverde, E.; Buene, M.; Moon, T.D. Practical management of HIV-associated anemia in resource-limited settings: Prospective observational evaluation of a new mozambican guideline. AIDS Res. Hum. Retroviruses 2016, 32, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Woldeamanuel, G.G.; Wondimu, D.H. Prevalence of anemia before and after initiation of antiretroviral therapy among HIV infected patients at Black Lion Specialized Hospital, Addis Ababa, Ethiopia: A cross sectional study. BMC Hematol. 2018, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoff, A.D.; Wood, R.; Cobelens, F.G.; Gupta-Wright, A.; Bekker, L.G.; Lawn, S.D. Resolution of anaemia in a cohort of HIV-infected patients with a high prevalence and incidence of tuberculosis receiving antiretroviral therapy in South Africa. BMC Infect. Dis. 2014, 14, 3860. [Google Scholar] [CrossRef] [PubMed]
- Daka, D.; Lelissa, D.; Amsalu, A. Prevalence of anaemia before and after the initiation of antiretroviral therapy at ART center of Hawassa University Referral Hospital, Hawassa, South Ethiopia. Sch. J. Med. 2013, 3, 1–6. [Google Scholar]
- Ezeamama, A.E.; Guwatudde, D.; Sikorskii, A.; Kabagambe, E.K.; Spelts, R.; Vahey, G.; Fenton, J.I.; Fawzi, W.W. Impaired hematologic status in relation to clinical outcomes among HIV-infected adults from Uganda: A prospective cohort study. Nutrients 2018, 10, 475. [Google Scholar] [CrossRef]
- Enawgaw, B.; Alem, M.; Addis, Z.; Melku, M. Determination of hematological and immunological parameters among HIV positive patients taking highly active antiretroviral treatment and treatment naive in the antiretroviral therapy clinic of Gondar University Hospital, Gondar, Northwest Ethiopia: A comparative cross-sectional study. BMC Hematol. 2014, 14, 8. [Google Scholar]
- Morris, M.S.; Jacques, P.F.; Rosenberg, I.H.; Selhub, J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am. J. Clin. Nutr. 2007, 85, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Allain, T.J.; Gomo, Z.; Wilson, A.O.; Ndemera, B.; Adamchak, D.J.; Matenga, J.A. Anaemia, macrocytosis, vitamin B12 and folate levels in elderly Zimbabweans. Cent. Afr. J. Med. 1997, 43, 325–328. [Google Scholar]
- Thoradeniya, T.; Wickremasinghe, R.; Ramanayake, R.; Atukorala, S. Low folic acid status and its association with anaemia in urban adolescent girls and women of childbearing age in Sri Lanka. Br. J. Nutr. 2006, 95, 511–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kufel, W.D.; Hale, C.M.; Sidman, E.F.; Orellana, C.E.; Miller, C.D. Nucleoside Reverse Transcriptase Inhibitor (NRTI) associated macrocytosis. Int. J. Virol. AIDS 2016, 3, 18. [Google Scholar] [CrossRef]
- Genne, D.; Sudre, P.; Anwar, D.; Goehring, C.; Saaidia, A.; Hirschel, B.; Study, S.H.C. Causes of macrocytosis in HIV-infected patients not treated with zidovudine. J. Infect. 2000, 40, 160–163. [Google Scholar] [CrossRef]
- Sternfeld, T.; Lorenz, A.; Schmid, M.; Schlamp, A.; Demmelmair, H.; Koletzko, B.; Bogner, J.R. Increased red cell corpuscular volume and hepatic mitochondrial function in NRTI-treated HIV infected patients. Curr. HIV Res. 2009, 7, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Yu, I.; Greenberg, R.N.; Crawford, T.N.; Thornton, A.C.; Myint, T. Persistence of Macrocytosis after Discontinuation of Zidovudine in HIV-Infected Patients. J. Int. Assoc. Provid. AIDS Care 2017, 16, 512–515. [Google Scholar] [CrossRef]
- Oliveira, O.C.; Oliveira, R.A.; Souza Ldo, R. Impact of antiretroviral therapy on occurrences of macrocytosis in patients with HIV/AIDS in Maringa, State of Parana. Rev. Soc. Bras. Med. Trop. 2011, 44, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Berhane, K.; Karim, R.; Cohen, M.H.; Masri-Lavine, L.; Young, M.; Anastos, K.; Augenbraun, M.; Watts, D.H.; Levine, A.M. Impact of highly active antiretroviral therapy on anemia and relationship between anemia and survival in a large cohort of HIV-infected women: Women’s Interagency HIV Study. J. Acquir. Immune. Defic. Syndr. 2004, 37, 1245–1252. [Google Scholar] [CrossRef]
- Quiros-Roldan, E.; Castelli, F.; Lanza, P.; Pezzoli, C.; Vezzoli, M.; Inflammation in HIV Study Group; Biasiotto, G.; Zanella, I. The impact of antiretroviral therapy on iron homeostasis and inflammation markers in HIV-infected patients with mild anemia. J. Transl. Med. 2017, 15, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bissinger, R.; Bouguerra, G.; Al Mamun Bhuyan, A.; Waibel, S.; Abbes, S.; Lang, F. Efavirenz induced suicidal death of human erythrocytes. Cell Physiol. Biochem. 2015, 37, 2496–2507. [Google Scholar] [CrossRef]
- Freercks, R.J.; Mehta, U.; Stead, D.F.; Meintjes, G.A. Haemolytic anaemia associated with efavirenz. AIDS 2006, 20, 1212–1213. [Google Scholar] [CrossRef] [Green Version]
- Guwatudde, D.; Ezeamama, A.E.; Bagenda, D.; Kyeyune, R.; Wabwire-Mangen, F.; Wamani, H.; Mugusi, F.; Spiegelman, D.; Wang, M.; Manabe, Y.C.; et al. Multivitamin supplementation in HIV infected adults initiating antiretroviral therapy in Uganda: The protocol for a randomized double blinded placebo controlled efficacy trial. BMC Infect. Dis. 2012, 12, 304. [Google Scholar] [CrossRef] [PubMed]
- Stangl, A.L.; Bunnell, R.; Wamai, N.; Masaba, H.; Mermin, J. Measuring quality of life in rural Uganda: Reliability and validity of summary scores from the medical outcomes study HIV health survey (MOS-HIV). Qual. Life Res. 2012, 21, 1655–1663. [Google Scholar] [CrossRef]
- Ezeamama, A.E.; Woolfork, M.N.; Guwatudde, D.; Bagenda, D.; Manabe, Y.C.; Fawzi, W.W.; Smith Fawzi, M.C. Depressive and anxiety symptoms predict sustained quality of life deficits in HIV-positive Ugandan adults despite antiretroviral therapy: A prospective cohort study. Medicine 2016, 95, e2525. [Google Scholar] [CrossRef]
- Desquilbet, L.; Margolick, J.B.; Fried, L.P.; Phair, J.P.; Jamieson, B.D.; Holloway, M.; Jacobson, L.P. Relationship between a frailty-related phenotype and progressive deterioration of the immune system in HIV-infected men. J. Acquir. Immune Defic. Syndr. 2009, 50, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Desquilbet, L.; Jacobson, L.P.; Fried, L.P.; Phair, J.P.; Jamieson, B.D.; Holloway, M.; Margolick, J.B. HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J. Gerontol. A. Biol. Sci. Med. Sci. 2007, 62, 1279–1286. [Google Scholar] [CrossRef]
- Kyeyune, R.; Saathoff, E.; Ezeamama, A.E.; Loscher, T.; Fawzi, W.; Guwatudde, D. Prevalence and correlates of cytopenias in HIV-infected adults initiating highly active antiretroviral therapy in Uganda. BMC Infect. Dis. 2014, 14, 496. [Google Scholar] [CrossRef] [PubMed]
- Ezeamama, A.E.; Guwatudde, D.; Wang, M.; Bagenda, D.; Brown, K.; Kyeyune, R.; Smith, E.; Wamani, H.; Manabe, Y.C.; Fawzi, W.W. High perceived social standing is associated with better health in HIV-infected Ugandan adults on highly active antiretroviral therapy. J. Behav. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Jaganath, D.; Walker, A.S.; Ssali, F.; Musiime, V.; Kiweewa, F.; Kityo, C.; Salata, R.; Mugyenyi, P.; Trial, D.; Trial, A. HIV-associated anemia after 96 weeks on therapy: Determinants across age ranges in Uganda and Zimbabwe. AIDS Res. Hum. Retroviruses 2014, 30, 523–530. [Google Scholar] [CrossRef]
- Ezeamama, A.E.; Guwatudde, D.; Wang, M.; Bagenda, D.; Kyeyune, R.; Sudfeld, C.; Manabe, Y.C.; Fawzi, W.W. Vitamin-D deficiency impairs CD4+T-cell count recovery rate in HIV-positive adults on highly active antiretroviral therapy: A longitudinal study. Clin. Nutr. 2015. [Google Scholar] [CrossRef]
- Guwatudde, D.; Wang, M.; Ezeamama, A.E.; Bagenda, D.; Kyeyune, R.; Wamani, H.; Manabe, Y.C.; Fawzi, W.W. The effect of standard dose multivitamin supplementation on disease progression in HIV-infected adults initiating HAART: A randomized double blind placebo-controlled trial in Uganda. BMC Infect. Dis. 2015, 15, 348. [Google Scholar] [CrossRef] [PubMed]
- Muma, R.D.; Ross, M.W.; Parcel, G.S.; Pollard, R.B. Zidovudine Adherence among Individuals with Hiv-Infection. AIDS Care 1995, 7, 439–447. [Google Scholar] [CrossRef]
- Fischl, M.A.; Richman, D.D.; Grieco, M.H.; Gottlieb, M.S.; Volberding, P.A.; Laskin, O.L.; Leedom, J.M.; Groopman, J.E.; Mildvan, D.; Schooley, R.T.; et al. The Efficacy of Azidothymidine (Azt) in the Treatment of Patients with Aids and Aids-Related Complex - a Double-Blind, Placebo-Controlled Trial. N. Engl. J. Med. 1987, 317, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Hirokawa, M. Diagnosis and treatment of macrocytic anemias in adults. J. Gen. Fam. Med. 2017, 18, 200–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panwar, A.; Sharma, S.C.; Kumar, N.; Sharma, A. A study of anemia in human immunodeficiency virus patients: Estimating the prevalence, analyzing the causative effect of nutritional deficiencies, and correlating the degree of severity with CD4 cell counts. Med. J. DY Patil. Vidyapeeth 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Bain, B.J. Pathogenesis and pathophysiology of anemia in HIV infection. Curr. Opin. Hematol. 1999, 6, 89–93. [Google Scholar] [CrossRef]
- Kreuzer, K.A.; Rockstroh, J.K. Pathogenesis and pathophysiology of anemia in HIV infection. Ann. Hematol. 1997, 75, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Woldeamanuel, G.G.; Wondimu, D.H. Prevalence of thrombocytopenia before and after initiation of HAART among HIV infected patients at black lion specialized hospital, Addis Ababa, Ethiopia: A cross sectional study. BMC Hematol. 2018, 18, 9. [Google Scholar] [CrossRef]
- Redig, A.J.; Berliner, N. Pathogenesis and clinical implications of HIV-related anemia in 2013. Hematology Am. Soc. Hematol. Educ. Program 2013, 2013, 377–381. [Google Scholar] [CrossRef] [Green Version]
No Anemia n = 170 | Microcytic Anemia, n = 38 | Macrocytic Anemia, n = 45 | Anemia of Chronic Disease, n = 147 | p-Value (Chi-square) | |
---|---|---|---|---|---|
Socio-demographic Factors | |||||
Age | 0.64 | ||||
18–29 | 44 (25.88%) | 10 (26.32%) | 14 (31.11%) | 30 (20.41%) | |
30–35 | 45 (26.47%) | 7 (18.42%) | 14 (31.11%) | 38 (25.85%) | |
36–41 | 39 (22.94%) | 13 (34.21%) | 9 (20.00%) | 42 (28.57%) | |
42+ | 42 (24.71%) | 8 (21.05%) | 8 (17.78%) | 37 (25.17%) | |
Sex | 0.0044 | ||||
Male | 39 (22.94%) | 11 (28.95%) | 12 (26.67%) | 61 (41.50%) | |
Female | 131 (77.06%) | 27 (71.05%) | 33 (73.33%) | 86 (58.50%) | |
Wealth Quintile | 0.068 | ||||
1 | 32 (18.82%) | 7 (18.42%) | 8 (17.78%) | 33 (22.45%) | |
2 | 32 (18.82%) | 5 (13.16%) | 6 (13.33%) | 37 (25.17%) | |
3 | 27 (15.88%) | 15 (39.47%) | 10 (22.22%) | 28 (19.05%) | |
4 | 41 (24.12%) | 4 (10.53%) | 8 (17.78%) | 27 (18.37%) | |
5 | 38 (22.35%) | 7 (18.42%) | 13 (28.89%) | 22 (14.97%) | |
Work Status | |||||
No Income | 22 (12.94%) | 9 (23.68%) | 5 (11.11%) | 16 (10.88%) | 0.0223 |
Informal economic activity | 58 (34.12%) | 12 (31.58%) | 7 (15.56%) | 51 (34.69%) | |
Unskilled employment | 50 (29.41%) | 8 (21.05%) | 17 (37.78%) | 30 (20.41%) | |
Driver/skilled laborer | 13 (7.65%) | 6 (15.79%) | 7 (15.56%) | 27 (18.37%) | |
Professional | 27 (15.88%) | 3 (7.89%) | 9 (20.00%) | 23 (15.65%) | |
Education | |||||
Less than Primary | 75 (44.12%) | 17 (44.74%) | 19 (44.22%) | 55 (37.67%) | 0.6189 |
Primary education complete | 20 (11.76%) | 5 (13.16%) | 9 (20.00%) | 20 (13.70%) | |
Some Ordinary level | 35 (20.59%) | 8 (21.05%) | 4 (8.89%) | 32 (21.92%) | |
Ordinary level or higher | 40 (23.53%) | 8 (21.05%) | 13 (28.89%) | 39 (26.71%) | |
Clinical Measures | |||||
High C-reactive protein | 20 (11.98%) | 10 (26.32%) | 7 (15.56%) | 18 (12.33%) | 0.1722 |
HAART regimen | 0.0876 | ||||
D4T | 1 (0.6) | 0 (0) | 0 (0) | 2 (1.4) | |
Efavirenz | 30 (17.7) | 7 (18.4) | 9 (20.0) | 25 (17.0) | |
Nevirapine | 57 (33.5) | 18 (47.4) | 14 (31.1) | 37 (25.2) | |
Naïve | 82 (48.24%) | 13 (34.21%) | 22 (48.89%) | 83 (56.46%) | |
Other Hematologic Indicators | |||||
WHO Anemia | 0 (0.00%) | 30 (78.95%) | 17 (37.78%) | 147 (100.00%) | <0.0001 |
Low Ferritin | 36 (21.43%) | 8 (21.05%) | 9 (20.00%) | 15 (10.20%) | 0.0821 |
Normal Ferritin | 75 (44.64%) | 15 (39.47%) | 17 (37.78%) | 62 (42.18%) | |
High Ferritin | 57 (33.93%) | 15 (39.47%) | 19 (42.22%) | 70 (47.62%) | |
Behavioral Factors | |||||
Ever Smoked | 0.8339 | ||||
Yes | 32 (18.82%) | 6 (15.79%) | 6 (13.33%) | 26 (17.69%) | |
No | 138 (81.18%) | 32 (84.21%) | 39 (86.67%) | 121 (82.31%) | |
Current Alcohol use | |||||
Never Used | 38 (22.35%) | 10 (26.32%) | 9 (20.00%) | 27 (18.37%) | 0.8941 |
Former User | 94 (55.29%) | 22 (57.89%) | 27 (60.00%) | 89 (60.54%) | |
Current User | 38 (22.35%) | 6 (15.79%) | 9 (20.00%) | 31 (21.09%) | |
Baseline Reported Multivitamin Use | 0.1749 | ||||
Yes | 31 (18.24%) | 10 (26.32%) | 15 (33.33%) | 34 (23.13%) | |
No | 139 (81.76%) | 28 (73.68%) | 30 (66.67%) | 113 (76.87%) | |
Randomized to Multivitamins | 0.0292 | ||||
No | 95 (55.88%) | 19 (50.00%) | 14 (31.11%) | 72 (48.98%) | |
Yes | 75 (44.12%) | 19 (50.00%) | 31 (68.89%) | 75 (51.02%) | |
Vitamin D Deficiency | 0.0288 | ||||
Deficient | 24 (14.20%) | 2 (5.26%) | 11 (24.44%) | 30 (20.55%) | |
Insufficient | 104 (61.54%) | 26 (68.42%) | 30 (66.67%) | 81 (55.48%) | |
Sufficient | 41 (24.26%) | 10 (26.32%) | 4 (8.89%) | 35 (23.97%) | |
Body Mass Index (BMI, kg/m2) | 0.0217 | ||||
Underweight (BMI <18.5) | 15 (8.82%) | 0 (0.00%) | 3 (6.67%) | 4 (2.72%) | |
Normal (18.5 < BMI < 25) | 96 (56.47%) | 29 (76.32%) | 34 (75.56%) | 104 (70.75%) | |
Overweight (25 <BMI<30) | 36 (21.18%) | 5 (13.16%) | 6 (13.33%) | 25 (17.01%) | |
Obese (30<BMI) | 23 (13.53%) | 4 (10.53%) | 2 (4.44%) | 14 (9.52%) | |
Outcome Measures | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | p-value (ANOVA) |
CD4 cell count | 146.01 (105.41) | 144.61 (83.40) | 184.8 (93.67) | 146.94 (97.11) | 0.1107 |
Body Mass Index (kg/m2) | 24.32 (4.45) | 22.96 (2.91) | 24.26 (5.20) | 23.15 (4.26) | 0.0588 |
Quality of Life Score | 92.25 (8.88) | 89.34 (9.70) | 94.2 (10.85) | 89.65 (10.60) | 0.0121 |
Frailty Score | 6.78 (2.88) | 6.97 (2.86) | 6.47 (2.90) | 7.71 (3.25) | 0.0203 |
Month 0 | Month 6 | Month 12 | Month 18 | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Entire Sample | n = 400 | n = 387 | n = 372 | n = 366 |
No anemia of any type | 170 (42.5) | 105 (27.1) | 106 (28.5) | 115 (31.4) |
Microcytic Anemia | 38 (9.5) | 12 (3.1) | 11 (3.0) | 9 (2.5) |
macrocytic anemia | 45 (11.3) | 198 (51.2) | 200 (53.8) | 195 (53.3) |
ACD | 147 (36.8) | 72(18.6) | 55 (14.8) | 47 (12.8) |
HAART naïve at enrolment | n = 200 | n = 196 | n = 178 | n = 177 |
No anemia of any type | 82 (41.0) | 50 (25.5) | 48 (27.0) | 50 (28.3) |
Microcytic Anemia | 13 (6.5) | 7 (3.6) | 6 (3.4) | 3 (1.7) |
macrocytic anemia | 22 (11.0) | 108 (55.1) | 102 (57.3) | 102 (57.6) |
ACD | 83 (41.5) | 31 (15.8) | 22 (12.4) | 22 (12.4) |
HAART Experienced at enrollment | n = 200 | n = 191 | n = 194 | n = 189 |
No anemia of any type | 88 (44.0) | 55 (28.8) | 58 (29.9) | 65 (34.4) |
Microcytic Anemia | 25 (12.5) | 5 (2.6) | 5 (2.6) | 6 (3.2) |
macrocytic anemia | 23 (11.5) | 90 (47.1) | 98 (50.5) | 93 (49.2) |
ACD | 64 (32.0) | 41(21.5) | 33 (17.0) | 25 (13.2) |
Incident Macrocytic Anemia | Incident Anemia of Inflammation (ACD) | |
---|---|---|
OR (95% CI) | OR (95% CI) | |
Baseline HAART Regimen | ||
Efavirenz Containing | 0.423 (0.21, 0.85) * | 1.39 (0.47, 4.10) |
Nevirapine Containing | 0.67 (0.38, 1.17) | 0.10 (0.01, 0.87) * |
HAART Naïve | Ref | Ref |
Female vs. Male Sex | 1.05 (0.53, 2.07) | 3.61 (0.71, 18.3) |
Age (per 5-year increment) | 1.09 (0.94, 1.27) | 1.04 (0.83, 1.29) |
BCE vs. Placebo | 1.86 (0.99, 3.51) ** | 0.47 (0.14, 1.68) |
Vitamin D Status | ||
Deficient vs. Sufficient | 1.09 (0.36, 3.34) | 6.71 (0.52, 86.3) |
Insufficient vs. Sufficient | 0.99 (0.47, 2.11) | 3.03 (0.32, 28.8) |
Baseline CD4 | ||
Per 100 cells/L | 0.93 (0.46, 1.14) | 0.47 (0.27, 0.79) * |
≤100 vs. ≥201 cells/L | 1.26 (0.70, 2.26) | 2.24 (0.78, 6.46) |
101–200 vs. ≥201 cells/L | 1.04 (0.54, 2.01) | 1.28 (0.30, 5.48) |
Baseline Ferritin | ||
High vs. Normal | 1.85 (1.03, 3.32) * | 0.49 (0.16, 1.46) |
Low vs. Normal | 1.02 (0.47, 2.23) | 0.71 (0.13, 3.91) |
Baseline BMI category | ||
Underweight | 0.54 (0.16, 1.77) | 2.19 (0.52, 9.12) |
Normal weight | Ref | Ref |
Overweight | 1.23 (0.65, 2.31) | 0.24 (0.03, 1.84) |
Obese | 1.61 (0.76, 3.42) | 1.39 (0.46, (4.15) |
Wealth (per quintile increment) | 0.83 (0.67, 1.03) | 1.00 (0.67, 1.49) |
Q1 (lowest) vs. Q5 (highest) | 2.43 (0.94,6.28) | 1.10 (0.17, 7.08) |
Q2 vs. Q5 (highest) | 2.47 (0.94, 6.46) | 2.32 (0.49, 10.96) |
Q3 vs. Q5 (highest) | 1.66 (0.62, 4.41) | - |
Q4 vs. Q5 (highest) | 2.49 (1.01, 6.14) * | 2.35 (0.50, 11.20) |
Month 0 | Month 6 | Month 12 | Month 18 | p-Trend Group × Time | ||
---|---|---|---|---|---|---|
Outcome | Exposure | Mean Difference (95% CI) | Mean Difference (95% CI) | Mean Difference (95% CI) | Mean Difference (95% CI) | |
CD4 cell-count | Baseline Anemia Type | <0.0001 | ||||
Microcytic Anemia | −6.79 (−38.4, 24.8) | −5.59 (−46.5, 35.31) | 15.5 (−31.9, 62.8) | −14.3 (−53.7, 25.1) | ||
Macrocytic Anemia | 41.2 (9.1, 73.2) | −24.3 (−56.4, 7.8) | −3.84 (−40.0, 32.3) | −4.87 (−50.0, 40.3) | ||
ACD ** | 3.8 (−18.6, 26.3) | 10.4 (−19.0, 39.7) | −0.29 (−25.6, 25.0) | −7.4 (−36.0, 21.3) | ||
No Anemia | Ref | Ref | Ref | Ref | ||
Current Anemia Type | 0.0077 | |||||
Microcytic Anemia | −4.62 (−32.6, 21.3) | −12.3 (−54.7, 30.2) | −4.1 (−61.8, 53.5) | 57.8 (−3.5, 119.1) | ||
Macrocytic Anemia | 52.7 (25.9, 79.6) | 12.6 (−6.15, 31.3) | −1.7 (−21.2, 17.8) | 12.9 (−8.64, 34.37) | ||
ACD ** | 1.22 (−17.7, 20.1) | 10.9 (−19.3, 41.1) | −9.1 (−33.0, 14.9) | −20.3 (−49.4, 8.8) | ||
No Anemia | Ref | Ref | Ref | Ref | ||
Body Mass Index | Baseline Anemia Type | 0.0852 | ||||
Microcytic Anemia | −0.50 (−0.98, −0.02) | −0.20 (−0.85, 0.45) | 0.54 (−0.19, 1.28) | 0.66 (−0.67, 2.00) | ||
Macrocytic Anemia | −0.33 (−1.03, 0.36) | 0.05 (−0.21, 0.32) | 0.05 (−0.26, 0.35) | −0.04 (−0.43, 0.35) | ||
ACD | −0.71 (−1.04, −0.38) | −0.33 (−0.64, −0.01) | −0.41 (−0.73, −0.09) | −0.32 (−0.87, 0.22) | ||
No Anemia | Ref | Ref | Ref | Ref | ||
Current Anemia Type | 0.0560 | |||||
Microcytic Anemia | −0.51 (−0.98, −0.02) | −0.27 (−0.93, 0.38) | 0.68 (−0.06, 1.42) | 0.81 (−0.50, 2.12) | ||
Macrocytic Anemia | −0.33 (−1.03, 0.38) | 0.05 (−0.21, 0.32) | 0.03 (−0.28, 0.34) | −0.04 (−0.43, 0.35) | ||
ACD | −0.72 (−1.04, −0.38) | −0.35 (−0.67, −0.03) | −0.44 (−0.74, −0.13) | −0.32 (−0.88, 0.23) | ||
No Anemia | Ref | Ref | Ref | Ref | ||
Quality of Life | Baseline Anemia Type | 0.1181 | ||||
Microcytic Anemia | −3.66 (−6.76, −0.56) | −3.68 (−8.75, 1.40) | −0.54 (−6.83, 5.75) | −1.49 (−11.36, 8.39) | ||
Macrocytic Anemia | 0.62 (−2.43, 3.67) | −1.76 (−3.63, 0.10) | −0.75 (−2.19, 0.69) | −1.00 (−2.59, 0.59) | ||
ACD | −2.97 (−4.89, −1.06) | −1.19 (−3.27, 0.88) | −3.24 (−5.94, −0.53) | −2.31 (−5.44, 0.81) | ||
No Anemia | Ref | Ref | Ref | Ref | ||
Current Anemia Type | 0.4860 | |||||
Microcytic Anemia | −3.81 (−6.97, −0.67) | −3.77 (−8.80, 1.25) | −0.92 (−7.18, 5.35) | −2.06 (−11.65, 7.53) | ||
Macrocytic Anemia | 0.45 (−2.60, 3.50) | −1.70 (−3.61, 0.21) | −0.82 (−2.31, 0.66) | −1.07 (−2.69, 0.56) | ||
ACD | −2.96 (−4.87, −1.05) | −1.05 (−3.17, 1.07) | −3.21 (−5.93, −0.49) | −2.31 (−5.51, 0.88) | ||
No Anemia | Ref | Ref | Ref | Ref | ||
Frailty | Baseline Anemia Type | 0.3778 | ||||
Microcytic Anemia | 0.48 (−0.37, 1.34) | 1.15 (−0.70, 3.00) | −0.23 (−1.64, 1.17) | 0.19 (−2.95, 3.33) | ||
Macrocytic Anemia | −0.09 (−0.93, 0.74) | 0.41 (−0.14, 0.95) | 0.56 (0.07, 1.05) | 0.06 (−0.42, 0.55) | ||
ACD | 0.96 (0.34, 1.57) | 0.64 (−0.02, 1.30) | 1.16 (0.46, 1.86) | 0.56 (−0.30, 1.43) | ||
No Anemia | Ref | Ref | Ref | Ref | ||
Current Anemia Type | 0.3616 | |||||
Microcytic Anemia | 0.50 (−0.36, 1.36) | 1.26 (0.59, 3.12) | −0.29 (−1.71, 1.13) | 0.15 (−0.29, 3.29) | ||
Macrocytic Anemia | −0.11 (−0.94, 0.71) | 0.41 (−0.15, 0.96) | 0.55 (0.06, 1.04) | 0.08 (−0.40, 0.57) | ||
ACD | 0.91 (0.29, 1.52) | 0.62 (−0.04, 1.28) | 1.16 (0.47, 1.85) | 0.57 (−0.30, 1.45) | ||
No Anemia | Ref | Ref | Ref | Ref |
Events/Person-month | Unadjusted Association Hazard Ratio (95% CI) | Adjusted Association * Hazard Ratio (95% CI) | ||
---|---|---|---|---|
Time to post enrollment gain of > 100 cells/L | Baseline Anemia Type | |||
Microcytic Anemia | 31/465.2 | 1.20 (0.81, 1.78) | 1.16 (0.77, 1.76) | |
Macrocytic Anemia | 24/688.0 | 0.55 (0.35, 0.854) | 0.57 (0.36, 0.89) | |
ACD | 105/1693.5 | 1.05 (0.81, 1.37) | 1.00 (0.76, 1.32) | |
No Anemia | 120/2059.9 | Ref | Ref | |
Pattern of Change in Anemia Type | ||||
ACD/microcytosis sustained in follow-up | 60/1137.1 | 0.76 (0.51, 1.13) | 0.62 (0.40, 0.95) | |
Baseline ACD, resolved then macrocytosis | 52/752.9 | 1.03 (0.69, 1.56) | 0.92 (0.60, 1.41) | |
Macrocytosis all intervals | 22/658.3 | 0.45 (0.27, 0.76) | 0.43 (0.25, 0.73) | |
Incident ACD/microcytic anemia | 9/253.5 | 0.50 (0.25, 1.04) | 0.52 (0.25, 1.08) | |
Incident macrocytosis | 72/1221.4 | 0.85 (0.58, 1.25) | 0.77 (0.52, 1.14) | |
No anemia all intervals | 42/658.6 | Ref | Ref | |
Time to Hospitalization or Death | Type of Anemia at baseline | |||
Microcytic Anemia | 8/596.9 | 0.92 (0.43, 1.98) | 0.73 (0.33, 1.62) | |
Macrocytic Anemia | 12/698.0 | 1.26 (0.66, 2.40) | 1.25 (0.64, 2.46) | |
Anemia of Chronic Disease | 43/2296.0 | 1.30(0.84, 2.0) | 1.10 (0.68, 1.78) | |
No Anemia | 39/2728.3 | Ref | Ref | |
Change in Anemia Type | ||||
ACD/microcytosis sustained in follow-up | 7/364.8 | 1.47 (0.57, 3.79) | 1.37 (0.52, 3.64) | |
Baseline ACD, resolved then macrocytosis | 29/1063.9 | 1.79 (0.90, 3.59) | 1.40 (0.68, 2.92) | |
Incident ACD/microcytic anemia | 17/799.9 | 1.55 (0.73, 3.31) | 1.40 (0.62, 3.18) | |
Macrocytosis all intervals | 17/1691.2 | 0.71 (0.33, 1.52) | 0.62 (0.28, 1.37) | |
Incident macrocytosis | 25/1707.9 | 1.03 (0.50, 2.09) | 0.98 (0.47, 2.05) | |
No anemia all intervals | 11/785 | Ref | Ref |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezeamama, A.E.; Sikorskii, A.; Bajwa, R.K.; Tuke, R.; Kyeyune, R.B.; Fenton, J.I.; Guwatudde, D.; Fawzi, W.W. Evolution of Anemia Types During Antiretroviral Therapy—Implications for Treatment Outcomes and Quality of Life Among HIV-Infected Adults. Nutrients 2019, 11, 755. https://doi.org/10.3390/nu11040755
Ezeamama AE, Sikorskii A, Bajwa RK, Tuke R, Kyeyune RB, Fenton JI, Guwatudde D, Fawzi WW. Evolution of Anemia Types During Antiretroviral Therapy—Implications for Treatment Outcomes and Quality of Life Among HIV-Infected Adults. Nutrients. 2019; 11(4):755. https://doi.org/10.3390/nu11040755
Chicago/Turabian StyleEzeamama, Amara E., Alla Sikorskii, Ramanpreet K. Bajwa, Robert Tuke, Rachel B. Kyeyune, Jenifer I. Fenton, David Guwatudde, and Wafaie W. Fawzi. 2019. "Evolution of Anemia Types During Antiretroviral Therapy—Implications for Treatment Outcomes and Quality of Life Among HIV-Infected Adults" Nutrients 11, no. 4: 755. https://doi.org/10.3390/nu11040755
APA StyleEzeamama, A. E., Sikorskii, A., Bajwa, R. K., Tuke, R., Kyeyune, R. B., Fenton, J. I., Guwatudde, D., & Fawzi, W. W. (2019). Evolution of Anemia Types During Antiretroviral Therapy—Implications for Treatment Outcomes and Quality of Life Among HIV-Infected Adults. Nutrients, 11(4), 755. https://doi.org/10.3390/nu11040755