The Role of Muscle Decline in Type 2 Diabetes Development: A 5-Year Prospective Observational Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Subjects and Study Design
2.3. Anthropometric and Body Composition Measurements
2.4. Blood Collection and Biochemical Analysis
2.5. Calculations
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Zimmet, P.Z.; Magliano, D.J.; Herman, W.H.; Shaw, J.E. Endocrinolgy: A 21st century challenge. Lancet Diabetes 2014, 2, 56–64. [Google Scholar] [CrossRef]
- Roden, M. Future of muscle research in diabetes: A look into the crystal ball. Diabetologia 2015, 58, 1693–1698. [Google Scholar] [CrossRef]
- Srikanthan, P.; Karlamangla, A.S. Relative muscle mass is inversely associated with the insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J. Clin. Endocrinol. Metab. 2011, 9, 2898–2903. [Google Scholar] [CrossRef]
- Rosenberg, I.H. Origins and clinical relevance of sarcopenia. Clin. Geriatr. Med. 2011, 3, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Srikanthan, P.; Hevener, A.L.; Karlamangla, A.S. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: Findings from the National Health and Nutrition Examination Survey III. PLoS ONE 2010, 5, e10805. [Google Scholar] [CrossRef]
- Atlantis, E.; Martin, S.A.; Haven, M.T.; Taylor, A.W.; Wittert, G.A. Inverse associations between muscle mass, strength, and the metabolic syndrome. Metabolism 2009, 7, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 6, 393–403. [Google Scholar]
- Adamska, E.; Waszczeniuk, M.; Gościk, J.; Golonko, A.; Wilk, J.; Pliszka, J.; Maliszewska, K.; Lipińska, D.; Milewski, R.; Wasilewska, A.; et al. The usefulness of glycated hemoglobin A1c (HbA1c) for identifying dysglycemic states in individuals without previously diagnosed diabetes. Adv. Med. Sci. 2012, 2, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Ciborowski, M.; Adamska, E.; Rusak, M.; Godzien, J.; Wilk, J.; Citko, A.; Bauer, W.; Gorska, M.; Kretowski, A. CE-MS-based serum fingerprinting to track evolution of type 2 diabetes mellitus. Electrophoresis 2015, 18, 2286–2293. [Google Scholar] [CrossRef]
- Adamska, E.; Ostrowska, L.; Gościk, J.; Waszczeniuk, M.; Krętowski, A.; Górska, M. Intake of Meals Containing High Levels of Carbohydrates or High Levels of Unsaturated Fatty Acids Induces Postprandial Dysmetabolism in Young Overweight/Obese Men. Biomed. Res. Int. 2015, 2015, 147196. [Google Scholar] [CrossRef]
- Adamska, E.; Kretowski, A.; Goscik, J.; Citko, A.; Bauer, W.; Waszczeniuk, M.; Maliszewska, K.; Paczkowska-Abdulsalam, M.; Niemira, M.; Szczerbinski, L.; et al. The type 2 diabetes susceptibility TCF7L2 gene variants affect postprandial glucose and fat utilization in non-diabetic subjects. Diabetes Metab. 2018, 4, 379–382. [Google Scholar] [CrossRef]
- Kretowski, A.; Adamska, E.; Maliszewska, K.; Wawrusiewicz-Kurylonek, N.; Citko, A.; Goscik, J.; Bauer, W.; Wilk, J.; Golonko, A.; Waszczeniuk, M.; et al. The rs340874 PROX1 type 2 diabetes mellitus risk variant is associated with visceral fat accumulation and alterations in postprandial glucose and lipid metabolism. Genes Nutr. 2015, 2, 454. [Google Scholar] [CrossRef] [PubMed]
- Adamska-Patruno, E.; Ostrowska, L.; Golonko, A.; Pietraszewska, B.; Goscik, J.; Kretowski, A.; Gorska, M. Evaluation of Energy Expenditure and Oxidation of Energy Substrates in Adult Males after Intake of Meals with Varying Fat and Carbohydrate Content. Nutrients 2018, 10, 627. [Google Scholar] [CrossRef] [PubMed]
- Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia. Report of a WHO/IDF Consultation. Available online: http://www.who.int/diabetes/publications/Definition%20and%20diagnosis%20of%20diabetes_new.pdf (accessed on 20 February 2019).
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, W.J.; Erkelens, D.W.; Reitsma, W.D.; Doorenbos, H. Glucose tolerance and insulin release, a mathematical approach I. Assay of the beta-cell response after oral glucose loading. Diabetes 1976, 4, 241–244. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Kuhn, M. Caret: Classification and Regression Training; R Package Version 2016, 6.0-68; 2016. Available online: https://CRAN. R-project.org/package=caret. R package version 6.0-73. 9 (accessed on 20 December 2018).
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of Statistics; R Package Version 1.6-7; TU Wien: Vienna, Austria, 2015. [Google Scholar]
- Son, J.W.; Lee, S.S.; Kim, S.R.; Yoo, S.J.; Cha, B.Y.; Son, H.Y.; Cho, N.H. Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: Findings from the KoGES. Diabetologia 2017, 60, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.N.; Park, M.S.; Yang, S.J.; Yoo, H.J.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: The Korean Sarcopenic Obesity Study (KSOD). Diabetes Care 2010, 33, 1497–1499. [Google Scholar] [CrossRef] [PubMed]
- Nader, G.A.; Esser, K.A. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J. Appl. Physiol. 2001, 5, 1936–1942. [Google Scholar] [CrossRef]
- Doherty, T.J. Invited review: Aging and sarcopenia. J. Appl. Physiol. 2003, 4, 1717–1727. [Google Scholar] [CrossRef]
- Cleasby, M.E.; Jamieson, P.M.; Atherton, P.J. Insulin resistance and sarcopenia: Mechanistic links between common co-morbidities. J. Endocrinol. 2016, 229, R67–R81. [Google Scholar] [CrossRef]
- Dubé, J.; Goodpaster, B.H. Assessment of intramuscular triglycerides: Contribution to metabolic abnormalities. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 553–559. [Google Scholar]
- Goodpaster, B.H.; Theriault, R.; Watkins, S.C.; Kelley, D.E. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism 2000, 4, 467–472. [Google Scholar] [CrossRef]
- Pellegrinelli, V.; Rouault, C.; Rodrigez-Cuenca, S.; Albert, V.; Edom-Vovard, F.; Vidal-Puig, A.; Clément, K.; Butler-Browne, G.S.; Lacasa, D. Human adipocytes induce inflammation and atrophy in muscle cell during obesity. Diabetes 2015, 9, 3121–3134. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Z.; Hu, J.; Du, J.; Mitch, W.E. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 2006, 9, 4160–4168. [Google Scholar] [CrossRef]
- Kelley, D.E.; He, J.; Menshikova, E.V.; Ritov, V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002, 51, 2944–2950. [Google Scholar] [CrossRef]
- Jerusalem, F.; Engel, A.G.; Peterson, H.A. Human muscle fiber fine structure: Morphometric data on controls. Neurology 1975, 25, 127–134. [Google Scholar] [CrossRef]
- Kalyani, R.R.; Corriere, M.; Ferruci, L. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014, 10, 819–829. [Google Scholar] [CrossRef]
- Chau, D.; Cho, L.M.; Jani, P.; St Jeor, S.T. Individualizing recommendations for weight management in the elderly. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 27–31. [Google Scholar] [CrossRef]
- Benton, M.J.; Whyte, M.D.; Dyal, B.W. Sarcopenic obesity: Strategies for management. Am. J. Nurs. 2011, 111, 38–44. [Google Scholar] [CrossRef]
- Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 18, 1343–1350. [Google Scholar] [CrossRef]
- Kirska, A.M.; Rockette-Wagner, B.; Edelstein, S.L.; Venditti, E.M.; Bray, G.A.; Delahanty, L.M.; Horton, E.S.; Hoskin, M.A.; Knowler, W.C. Physical Activity and Diabetes Development: The Diabetes Prevention Program (DPP) Outcomes Study. In Proceedings of the 76th Scientific Sessions, American Diabetes Association, New Orleans, LA, USA, 10–14 June 2016. [Google Scholar]
- Smith, A.D.; Alessio Crippa Woodcock, J.; Soren, B. Physical activity and incident type 2 diabetes mellitus: A systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia 2016, 12, 2527–2545. [Google Scholar] [CrossRef]
Visit I | Visit II * | |
---|---|---|
N | 1160 | 219 |
Women/Men | 583/568 (51%/49%) | 103/116 (47%/53%) |
Mean age (years) | 44 | 49 |
BMI > 25 kg/m2 | 763 (70%) | 141 (71%) |
BMI < 25 kg/m2 | 356 (30%) | 59 (29%) |
IFG (N) | 298 | 78 |
IGT (N) | 88 | 19 |
T2DM(N) | 96 | 16 |
Healthy | IFG | IGT | T2DM | |
---|---|---|---|---|
N/% | 93/45.6% | 78/37.7% | 19/9.3% | 16/7.4% |
Age [years] | 42 ± 1.61 | 49 ± 1.55 (p < 0.03) | 56 ± 2.20 (p < 0.01) | 56 ± 3.03 (p < 0.01) |
BMI [kg/m²] | 25.70 ± 0.54 | 29.51 ± 0.84 p < 0.01 | 30.73 ± 1.38 p = 0.03 | 34.46 ± 2.59 p = 0.02 |
Waist circumference [cm] | 88.21 ± 1.52 | 100.42 ± 1.94 p < 0.01 | 103.33 ± 3.43 p = 0.02 | 113.53 ± 6.27 p < 0.01 |
Hip circumference [cm] | 95.67 ± 1.12 | 104.75 ± 1.49 p < 0.01 | 109.11 ± 2.54 p < 0.01 | 114.60 ± 4.89 p < 0.01 |
Muscle mass [%] | 35.35 ± 0.61 | 31.78 ± 0.69 p = 0.02 | 28.61 ± 0.99 p < 0.01 | 28.74 ± 2.03 p = 0.03 |
Subcutaneous fat [%] | 76.12 ± 0.74 | 70.21 ± 0.89 p < 0.01 | 68.83 ± 1.95 p = 0.06 | 64.25 ± 2.94 p < 0.01 |
Visceral fat [%] | 23.80 ± 0.74 | 29.78 ± 0.89 p < 0.01 | 31.15 ± 1.95 p = 0.06 | 35.80 ± 2.96 p < 0.01 |
VAT/SAT ratio | 0.30 ± 0.01 | 0.44 ± 0.02 p < 0.01 | 0.48 ± 0.05 p = 0.06 | 0.62 ± 0.09 p < 0.01 |
HOMA-IR index | 2.38 ± 0.11 | 3.95 ± 0.25 p < 0.01 | 4.03 ± 0.44 p = 0.02 | 7.05 ± 1.23 p < 0.01 |
Non-IFG † | IFG ‡ | Odds Ratio § | |
---|---|---|---|
Δ % waist circumference (cm) | 99.86 ± 0.73 | 103.11 ± 1.07 | OR = 1.06 (CI 1.01–1.1) (p < 0.01) |
Δ % hip circumference (cm) | 98.26 ± 0.74 | 100.64 ± 0.91 | OR = 1.05 (CI 1.0–1.0) (p = 0.03) |
Δ % muscle mass (%) | 102.77 ± 1.30 | 102.79 ± 1.50 | OR = 0.99 (CI 0.9–1.05) (p = 0.98) |
Δ % HOMA-IR | 125.65 ± 8.42 | 142.80 ± 8.52 | OR = 1.004 (CI 1.0–1.008) (p = 0.05) |
Δ % visceral fat (%) | 85.61 ± 4.14 | 97.53 ± 5.70 | OR = 1.01 (CI 0.9–1.02) (p = 0.09) |
Δ % subcutaneous fat (%) | 110.51 ± 2.62 | 108.26 ± 3.92 | OR = 0.99 (CI 0.9–1.01) (p = 0.62) |
Δ % VAT/SAT ratio | 82.34 ± 5.62 | 100.77 ± 9.21 | OR = 1.01 (CI 0.9–1.01) (p = 0.09) |
Non-IGT † | IGT ‡ | Odds Ratio § | |
---|---|---|---|
Δ % waist circumference (cm) | 102.08 ± 0.69 | 103.03 ± 1.67 | OR = 1.02 (CI 0.9–1.08) (p = 0.54) |
Δ % hip circumference (cm) | 99.34 ± 0.61 | 102.47 ± 0.99 | OR = 1.09 (CI 1.0–1.18) (p = 0.04) |
Δ % muscle mass (%) | 102.51 ± 1.09 | 97.84 ± 2.92 | OR = 0.93 (CI 0.8–1.02) (p = 0.21) |
Δ % HOMA-IR | 128.97 ± 6.12 | 139.51 ± 14.38 | OR = 1.01 (CI 0.9–1.01) (p = 0.13) |
Δ % visceral fat (%) | 91.27 ± 3.95 | 128.66 ± 12.62 | OR = 1.03 (CI 1.0–1.05) (p = 0.01) |
Δ % subcutaneous fat (%) | 110.20 ± 2.48 | 89.35 ± 4.77 | OR = 0.92 (CI 0.8–0.97) (p = 0.01) |
Δ % VAT/SAT ratio | 90.86 ± 5.95 | 150.41 ± 20.22 | OR =1.02 (CI 1.0–1.03) (p = 0.02) |
Non-T2DM † | T2DM ‡ | Odds Ratio § | |
---|---|---|---|
Δ % waist circumference (cm) | 101.93 ± 0.61 | 101.19 ± 2.23 | OR = 0.99 (p = 0.91) |
Δ % hip circumference (cm) | 99.75 ± 0.55 | 97.87 ± 1.86 | OR = 0.96 (p = 0.31) |
Δ % muscle mass (%) | 102.66 ± 0.96 | 94.02 ± 1.56 | OR = 0.84 (p = 0.02) |
Δ % HOMA-IR | 127.95 ± 5.39 | 181.43 ± 25.92 | OR = 1.01 (p < 0.01) |
Δ % visceral fat (%) | 93.89 ± 3.69 | 101.41 ± 5.70 | OR = 1.01 (p = 0.41) |
Δ % subcutaneous fat (%) | 109.58 ± 2.66 | 102.30 ± 4.51 | OR = 0.98 (p = 0.35) |
Δ % VAT/SAT ratio | 95.02 ± 5.60 | 101.72 ± 9.01 | OR = 1.00 (p = 0.53) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maliszewska, K.; Adamska-Patruno, E.; Goscik, J.; Lipinska, D.; Citko, A.; Krahel, A.; Miniewska, K.; Fiedorczuk, J.; Moroz, M.; Gorska, M.; et al. The Role of Muscle Decline in Type 2 Diabetes Development: A 5-Year Prospective Observational Cohort Study. Nutrients 2019, 11, 834. https://doi.org/10.3390/nu11040834
Maliszewska K, Adamska-Patruno E, Goscik J, Lipinska D, Citko A, Krahel A, Miniewska K, Fiedorczuk J, Moroz M, Gorska M, et al. The Role of Muscle Decline in Type 2 Diabetes Development: A 5-Year Prospective Observational Cohort Study. Nutrients. 2019; 11(4):834. https://doi.org/10.3390/nu11040834
Chicago/Turabian StyleMaliszewska, Katarzyna, Edyta Adamska-Patruno, Joanna Goscik, Danuta Lipinska, Anna Citko, Aleksandra Krahel, Katarzyna Miniewska, Joanna Fiedorczuk, Monika Moroz, Maria Gorska, and et al. 2019. "The Role of Muscle Decline in Type 2 Diabetes Development: A 5-Year Prospective Observational Cohort Study" Nutrients 11, no. 4: 834. https://doi.org/10.3390/nu11040834
APA StyleMaliszewska, K., Adamska-Patruno, E., Goscik, J., Lipinska, D., Citko, A., Krahel, A., Miniewska, K., Fiedorczuk, J., Moroz, M., Gorska, M., & Kretowski, A. (2019). The Role of Muscle Decline in Type 2 Diabetes Development: A 5-Year Prospective Observational Cohort Study. Nutrients, 11(4), 834. https://doi.org/10.3390/nu11040834