Sarcopenia is Associated with Malnutrition but Not with Systemic Inflammation in Older Persons with Advanced CKD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Characteristics
2.2. Assessment of Sarcopenia
2.3. Nutritional Intake, Body Composition and Nutritional Status
2.4. Physical Performance
2.5. Assessment of Depression
2.6. Assessment of Frailty
2.7. Biochemical Parameters
2.8. Detection of Serum Levels of Cytokines
2.9. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Nutritional Parameters
3.3. Inflammation and Sarcopenia
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Walston, J.D. Sarcopenia in older adults. Curr. Opin. Rheumatol. 2012, 24, 623–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moorthi, R.N.; Avin, K.G. Clinical relevance of sarcopenia in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2017, 26, 219–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonanni, A.; Mannucci, I.; Verzola, D.; Antonella, S.; Stefano, S.; Ezio, G.; Giacomo, G. Protein-energy wasting and mortality in chronic kidney disease. Int. J. Environ. Res. Public Health 2011, 8, 1631–1654. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.A.; Cordeiro, A.C.; Avesani, C.M.; Carrero, J.J.; Lindholm, B.; Amparo, F.C.; Amodeo, C.; Cuppari, L.; Kamimura, M.A. Sarcopenia in chronic kidney disease on conservative therapy: Prevalence and association with mortality. Nephrol. Dial. Transplant. 2015, 30, 1718–1725. [Google Scholar] [CrossRef] [PubMed]
- De Souza, V.A.; Oliveira, D.; Barbosa, S.R.; do Amaral Corrêa, J.O.; Colugnati, F.A.B.; Mansur, H.N.; da Silva Fernandes, M.N.; Bastos, M.G. Sarcopenia in patients with chronic kidney disease not yet on dialysis: Analysis of the prevalence and associated factors. PLoS ONE 2017, 12, e0176230. [Google Scholar] [CrossRef] [PubMed]
- Stangl, M.K.; Böcker, W.; Chubanov, V.; Ferrari, U.; Fischereder, M.; Gudermann, T.; Hesse, E.; Meinke, P.; Reincke, M.; Reisch, N.; et al. Sarcopenia—Endocrinological and neurological aspects. Exp. Clin. Endocrinol. Diabetes 2019, 127, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Verzola, D.; Barisione, C.; Picciotto, D.; Garibotto, G.; Koppe, L. Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int. 2019, 95, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Fahal, I.H. Uraemic sarcopenia: Aetiology and implications. Nephrol. Dial. Transplant. 2014, 29, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef]
- Metter, E.J.; Talbot, L.A.; Schrager, M.; Conwit, R. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, B359–B365. [Google Scholar] [CrossRef]
- Lino, V.T.S.; Rodrigues, N.C.P.; O’Dwyer, G.; de Andrade, M.K.N.; Mattos, I.E.; Portela, M.C. Handgrip strength and factors associated in poor elderly assisted at a primary care unit in Rio de Janeiro, Brazil. PLoS ONE 2016, 11, e0166373. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Muscaritoli, M.; Andreozzi, P.; Sgreccia, A.; De Leo, S.; Mazzaferro, S.; Mitterhofer, A.; Pasquali, M.; Protopapa, P.; Spagnoli, A.; et al. Sarcopenia and cardiovascular risk indices in patients with chronic kidney disease on conservative and replacement therapy. Nutrition 2019, 62, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-T.; Wu, H.-L.; Guo, H.-R.; Tseng, C.; Wang, M.; Lin, C.; Sung, J. Handgrip strength is an independent predictor of renal outcomes in patients with chronic kidney diseases. Nephrol. Dial. Transplant. 2011, 26, 3588–3595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florkowski, C.M.; Chew-Harris, J.S. Methods of estimating GFR—Different equations including CKD-EPI. Clin. Biochem. Rev. 2011, 32, 75–79. [Google Scholar]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Maroni, B.J.; Steinman, T.I.; Mitch, W.E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985, 27, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Yasui, S.; Shirai, Y.; Tanimura, M.; Matsuura, S.; Saito, Y.; Miyata, K.; Ishikawa, E.; Miki, C.; Hamada, Y.; et al. Prevalence of protein-energy wasting (PEW) and evaluation of diagnostic criteria in Japanese maintenance hemodialysis patients. Asia Pac. J. Clin. Nutr. 2016, 25, 292–299. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kopple, J.D.; Block, G.; Humphreys, M.H. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2001, 38, 1251–1263. [Google Scholar] [CrossRef] [PubMed]
- Afşar, B.; Sezer, S.; Ozdemir, F.N.; Celik, H.; Elsurer, R.; Haberal, M. Malnutrition-inflammation score is a useful tool in peritoneal dialysis patients. Perit. Dial. Int. 2006, 26, 705–711. [Google Scholar]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Winograd, C.H. Physical performance measures in the assessment of older persons. Aging 1994, 6, 303–305. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Jekel, K.; Damian, M.; Wattmo, C.; Hausner, L.; Bullock, R.; Connelly, P.; Dubois, B.; Eriksdotter, M.; Ewers, M.; Graessel, E.; et al. Mild cognitive impairment and deficits in instrumental activities of daily living: A systematic review. Alzheimers Res. Ther. 2015, 7, 17. [Google Scholar] [CrossRef]
- Parmelee, P.A.; Katz, I.R.; Lawton, M.P. Depression among institutionalized aged: Assessment and prevalence estimation. J. Gerontol. 1989, 44, M22–M29. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zúñiga, C.; Arai, H.; Boirie, Y.; Chen, L.; Fielding, R.; Martin, F.; Michel, J.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef]
- Shahar, D.R.; Yu, B.; Houston, D.K.; Kritchevsky, S.; Newman, A.; Sellmeyer, D.; Tylavsky, F.; Lee, J.; Harris, T. Health, Aging, and Body Composition Study. Misreporting of energy intake in the elderly using doubly labeled water to measure total energy expenditure and weight change. J. Am. Coll Nutr. 2010, 29, 14–24. [Google Scholar] [CrossRef]
- Hirai, K.; Ookawara, S.; Morishita, Y. Sarcopenia and physical inactivity in patients with chronic kidney disease. Nephrourol. Mon. 2016, 8, e37443. [Google Scholar] [CrossRef]
- Landi, F.; Liperoti, R.; Russo, A.; Landi, F.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; et al. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilsirente study. Clin. Nutr. 2012, 31, 652–658. [Google Scholar] [CrossRef]
- Lee, J.S.W.; Auyeung, T.-W.; Kwok, T.; Lau, E.M.C.; Leung, P.-C.; Woo, J. Associated factors and health impact of sarcopenia in older Chinese men and women: A cross-sectional study. Gerontology 2007, 53, 404–410. [Google Scholar] [CrossRef]
- Abellan van Kan, G. Epidemiology and consequences of sarcopenia. J. Nutr. Health Aging 2009, 13, 708–712. [Google Scholar] [CrossRef]
- Ershler, W.B.; Keller, E.T. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Ann. Rev. Med. 2000, 51, 245–270. [Google Scholar] [CrossRef]
- Roubenoff, R.; Parise, H.; Payette, H.A.; Abad, L.W.; D’Agostino, R.; Jacques, P.F.; Wilson, P.W.; Dinarello, C.A.; Harris, T.B. Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: The framingham heart study. Am. J. Med. 2003, 115, 429–435. [Google Scholar] [CrossRef]
- Bian, A.-L.; Hu, H.-Y.; Rong, Y.-D.; Wang, J.; Wang, J.-X.; Zhou, X.-Z. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur. J. Med. Res. 2017, 22, 25. [Google Scholar] [CrossRef]
- Honda, H.; Qureshi, A.R.; Axelsson, J.; Heimburger, O.; Suliman, E.M.; Barany, P.; Stenvinkel, P.; Lindholm, B. Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. Am. J. Clin. Nutr. 2007, 86, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Cesari, M.; Kritchevsky, S.B.; Baumgartner, R.N.; Atkinson, H.H.; Penninx, B.W.; Lenchik, L.; Palla, S.L.; Ambrosius, W.T.; Tracy, R.P.; Pahor, M. Sarcopenia, obesity, and inflammation—Results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study. Am. J. Clin. Nutr. 2005, 82, 428–434. [Google Scholar] [CrossRef]
- Kim, J.-K.; Choi, S.R.; Choi, M.J.; Kim, S.G.; Lee, Y.K.; Noh, J.W.; Kim, H.J.; Song, Y.R. Prevalence of and factors associated with sarcopenia in elderly patients with end-stage renal disease. Clin. Nutr. 2014, 33, 64–68. [Google Scholar] [CrossRef]
- Verzola, D.; Bonanni, A.; Sofia, A.; Montecucco, F.; D’Amato, E.; Cademartori, V.; Parodi, E.L.; Viazzi, F.; Venturelli, C.; Brunori, G.; et al. Toll-like receptor 4 signalling mediates inflammation in skeletal muscle of patients with chronic kidney disease. J. Cachexia Sarcopenia Muscle 2017, 8, 131–144. [Google Scholar] [CrossRef]
Variables | Overall Cohort (n = 113) | No Sarcopenia (n = 86) | Sarcopenia (n = 27) | p |
---|---|---|---|---|
Age (years) | 80 ± 6 | 80 ± 6 | 79 ± 6 | 0.6 |
Male | 77 (68%) | 56 (65%) | 21 (78%) | 0.28 |
Diabetes | 61 (54%) | 48 (56%) | 13 (48%) | 0.41 |
Previous cardiovascular events | 61 (54%) | 43 (53%) | 18 (67) | 0.12 |
eGFR * (mL/min/1.73 m2) | 27 ± 6 | 28 ± 5 | 25 ± 3 | 0.25 |
Creatinine | 2.5 ± 1.2 | 2.6 ± 1.0 | 2.8 ± 1.3 | 0.29 |
Creatinine Clearance (mL/min/1.73 m2) | 27 ± 14 | 28 ± 15 | 19 ± 12 | 0.01 |
Criteria for sarcopenia | ||||
Reduced handgrip strength (%) | 63 | 52 | 100 | <0.0001 |
Reduced MAMC ** (%) | 34 | 13 | 100 | <0.0001 |
Reduced Gait Speed Test (%) | 69 | 63 | 88 | 0.028 |
Physical performance | ||||
PAS *** | 7 ± 5 | 7 ± 5 | 4 ± 6 | 0.0014 |
SPPB **** | 7 ± 4 | 8 ± 4 | 6 ± 3.75 | 0.0008 |
IADL scale ***** | 5.0 ± 1.0 | 5.0 ± 1.0 | 5 ± 1.8 | 0.016 |
Frail patients (%) ****** | 50 (45%) | 33 (38%) | 17 (63%) | 0.023 |
Depression (%) | 33 | 67 | 32 | 0.16 |
Depression score | 9.1 ± 6.0 | 8.3 ± 5.5 | 11.8 ± 7.1 | 0.008 |
Variables | Overall Cohort (n = 113) | No Sarcopenia (n = 86) | Sarcopenia (n = 27) | p |
---|---|---|---|---|
Prescribed hypoproteic diet, n (%) | 36 (33%) | 33 (38%) | 3 (11%) | 0.0065 |
Serum parameters | ||||
Albumin (g/dL) | 4.1 ± 0.4 | 4.0 ± 0.3 | 4.1 ± 0.4 | 0.73 |
Prealbumin (mg/dL) | 28 ± 5 | 28 ± 5 | 28 ± 6 | 0.74 |
Total Cholesterol (mg/dL) | 159 ± 42 | 157 ± 39 | 174 ± 52 | 0.25 |
HDL (mg/dL) | 52 ± 18 | 51 ± 18 | 56 ± 15 | 0.19 |
LDL (mg/dL) | 89 ± 30 | 87 ± 29 | 93 ± 33 | 0.37 |
Triglycerides (mg/dL) | 128 ± 55 | 129 ± 57 | 123 ± 51 | 0.6 |
Transferrin (mg/dL) | 229 ± 37 | 231 ± 40 | 228 ± 40 | 0.68 |
Transferrin saturation, % | 22 ± 11 | 23 ± 9 | 22 ± 8 | 0.61 |
Potassium (mmol/L) | 4.7 ± 0.5 | 4.6 ± 0.4 | 4.7 ± 0.5 | 0.19 |
Phosphorous (mg/dL) | 3.6 ± 5.6 | 3.5 ± 0.6 | 3.8 ± 0.6 | 0.07 |
Uric Acid (mg/dL) | 6.1 ± 1.4 | 6.1 ± 1.3 | 6.2 ± 1.8 | 0.8 |
Vitamin D status | ||||
Vitamin D 25 OH (ng/mL) | 27 ± 21 | 29 ± 17 | 29 ± 17 | 0.96 |
<15 ng/mL, % | 19(22/113) | 17 (15/86) | 25 (7/27) | 0.36 |
15–30 ng/mL, % | 38(44/113) | 44 (38/86) | 25 (7/27) | 0.07 |
>30 ng/mL, % | 38(44/113) | 36 (31/86) | 48 (13/27) | 0.30 |
Calcifediol supplementation, % | 69 (79/113) | 70 (61/86) | 66 (18/27) | 0.49 |
24 h urine collection | ||||
Urinary urea (mg/24 h) | 15,450 ± 8050 | 16,400 ± 8832 | 13,600 ± 6022 | 0.02 |
Urinary urea/BMI ((mg/24 h)/(kg/m2)) | 573 ± 192 | 571 ± 186 | 576 ± 217 | 0.97 |
Urinary urea/Urinary creatinine | 17.9 ± 5.1 | 17.3 ± 4.6 | 19.1 ± 7.2 | 0.075 |
nPCR (g/kg/24 h) | 0.73 ± 0.28 | 0.72 ± 0.30 | 0.74 ± 0.21 | 0.75 |
Urinary creatinine (mg/24 h) | 898 ± 316 | 920 ± 320 | 713 ± 274 | 0.0034 |
Urinary creatinine/BMI (mg/(kg/m2)) | 31.4 ± 11.6 | 32.2 ± 11.9 | 28.8 ± 10.6 | 0.19 |
Urinary creatinine/height (mg/m) | 532 ± 184 | 565 ± 183 | 442 ± 158 | 0.0024 |
Urinary Phosphorous (mg/24h) | 503 ± 194 | 512 ± 197 | 381 ± 146 | 0.0025 |
Estimated nutritional intake | ||||
Calories (Kcal) | 1538 ± 414 | 1519 ± 436 | 1572 ± 375 | 0.60 |
Kcal/weigh (Kcal/Kg) | 21 ± 9 | 20 ± 9 | 24 ± 8 | 0.0058 |
Proteins (%) | 15 ± 5 | 15 ± 5 | 15 ± 5.75 | 0.33 |
Carbohydrates (%) | 45 ± 9 | 45 ± 9 | 45 ± 7 | 0.93 |
Lipids (%) | 39 ± 8 | 40 ± 8 | 39 ± 7 | 0.73 |
Nutritional Variables | Overall Cohort (n = 113) | No Sarcopenia (n = 86) | Sarcopenia (n = 27) | p |
---|---|---|---|---|
BMI (kg/m2) | 27.5 ± 5.6 | 28.4 ± 5.5 | 24.8 ± 3.0 | <0.0001 |
Body composition (bio-impedentiometry) | ||||
OH (L) | 1.3 ± 1.7 | 1.2 ± 1.8 | 1.4 ± 1.4 | 0.62 |
LTI (kg/m2) | 13.5 ± 2.9 | 13.5 ± 3.1 | 13.3 ± 2.9 | 0.75 |
Lean tissue proportion (%) | 49 ± 12 | 48 ± 12 | 51 ± 11 | 0.30 |
FTI (kg/m2) | 13.7 ± 4.9 | 14.4 ± 5.1 | 11.6 ± 3.9 | 0.023 |
Fat tissue proportion (%) | 35 ± 9 | 36 ± 9 | 33 ± 8 | 0.20 |
Lean/fat tissue ratio | 1.6 ± 0.98 | 1.5 ± 0.9 | 1.8 ± 1.2 | 0.34 |
MIS | 5 ± 5 | 4.5 ± 4 | 6 ± 6.5 | 0.09 |
PEW | 32 (25%) | 18 (20%) | 14 (52%) | 0.0008 |
ISRNM criteria for PEW | ||||
Serum albumin < 3.8 g/dL | 28 (25%) | 21 (24%) | 7 (26%) | 0.63 |
Serum prealbumin < 30 mg/dL | 59 (56%) | 43 (50%) | 16 (59%) | 0.12 |
Serum total cholesterol < 100 mg/dL | 1 (0%) | 1 (1%) | 0 (0%) | 0.60 |
BMI < 23 kg/m2 | 14 (12%) | 11 (12%) | 3 (11%) | 0.90 |
Unintentional weight loss over time 1 | 19 (17%) | 14 (16%) | 5 (18%) | 0.50 |
Total body fat percentage < 10% | 2 (2%) | 2 (2%) | 0 (0%) | 0.45 |
Muscle wasting 2 | 5 (4%) | 4 (5%) | 1 (4%) | 0.92 |
Unintentional low DPI 3 | 16 (14%) | 14 (16%) | 2 (7%) | 0.33 |
Unintentional low DEI 4 | 49 (51%) | 40 (46%) | 9 (33%) | 0.42 |
Cytokines | Healthy Controls (n = 15) | CKD (n = 109) | p |
---|---|---|---|
TNF alpha (pg/mL) | 7.1 (1.5–20.5) | 14.6 (2.4–42.5) | 0.014 |
IL-12p70 (pg/mL) | 0 (0–1.7) | 0.7 (0–19) | 0.002 |
MCP-1 (pg/mL) | 254 (199–486) | 407 (21–886) | 0.002 |
Fetuin A (g/L) | 0.41 (0.18–0.84) | 0.31 (0.12–0.76) | 0.010 |
IL-6 (pg/mL) | 1.1 (0–17.3) | 3.4 (0–12.9) | 0.066 |
IL-10 (pg/mL) | 5 (1–18) | 2 (0–740) | 0.464 |
IL-17 (pg/mL) | 1.9 (0.5–6.8) | 1.5 (0–17.6) | 0.314 |
Inflammatory Markers | No Sarcopenia (n = 86) | Sarcopenia (n = 27) | p |
---|---|---|---|
TNFα (pg/mL) | 13.6 (2.9–48.8) | 14.6 (2.4–31.4) | 0.981 |
IL-12p70 (pg/mL) | 0.7 (0–15.9) | 0.6 (0–19.3) | 0.842 |
MCP-1 (pg/mL) | 408 (222–886) | 429 (21–796) | 0.543 |
Fetuin A (ng/mL) | 0.29 (0.12–0.76) | 0.29 (0.22–0.52) | 0.445 |
IL-6 (pg/mL) | 3.1 (0–12.9) | 4.1 (0–11.7) | 0.252 |
IL-10 (pg/mL) | 2 (0–740) | 1.4 (0.2–295) | 0.467 |
IL-17 (pg/mL) | 0 (0–8.3) | 0 (0–2.9) | 0.303 |
CRP (mg/dL) | 0.24 (0.30–3.65) | 0.20 (0.05–4.68) | 0.823 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vettoretti, S.; Caldiroli, L.; Armelloni, S.; Ferrari, C.; Cesari, M.; Messa, P. Sarcopenia is Associated with Malnutrition but Not with Systemic Inflammation in Older Persons with Advanced CKD. Nutrients 2019, 11, 1378. https://doi.org/10.3390/nu11061378
Vettoretti S, Caldiroli L, Armelloni S, Ferrari C, Cesari M, Messa P. Sarcopenia is Associated with Malnutrition but Not with Systemic Inflammation in Older Persons with Advanced CKD. Nutrients. 2019; 11(6):1378. https://doi.org/10.3390/nu11061378
Chicago/Turabian StyleVettoretti, Simone, Lara Caldiroli, Silvia Armelloni, Camilla Ferrari, Matteo Cesari, and Piergiorgio Messa. 2019. "Sarcopenia is Associated with Malnutrition but Not with Systemic Inflammation in Older Persons with Advanced CKD" Nutrients 11, no. 6: 1378. https://doi.org/10.3390/nu11061378
APA StyleVettoretti, S., Caldiroli, L., Armelloni, S., Ferrari, C., Cesari, M., & Messa, P. (2019). Sarcopenia is Associated with Malnutrition but Not with Systemic Inflammation in Older Persons with Advanced CKD. Nutrients, 11(6), 1378. https://doi.org/10.3390/nu11061378