Role of Berry Anthocyanins and Phenolic Acids on Cell Migration and Angiogenesis: An Updated Overview
Abstract
:1. Introduction
1.1. Cell Migration
1.2. Angiogenesis
1.3. Phytochemicals
2. Endothelial Cell Migration and Angiogenesis: Role of Anthocyanins
3. Endothelial Cell Migration and Angiogenesis: Role of Phenolic Acids
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zegers, M.M.; Friedl, P. Rho gtpases in collective cell migration. Small GTPases 2014, 5, e28997. [Google Scholar] [CrossRef] [PubMed]
- Szabo, A.; Mayor, R. Cell traction in collective cell migration and morphogenesis: The chase and run mechanism. Cell Adhes. Migr. 2015, 9, 380–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaelis, U. Mechanisms of endothelial cell migration. Cell. Mol. Life Sci. 2014, 71, 4131–4148. [Google Scholar] [CrossRef] [PubMed]
- Combedazou, A.; Gayral, S.; Colombie, N.; Fougerat, A.; Laffargue, M.; Ramel, D. Small GTPases orchestrate cell-cell communication during collective cell movement. Small GTPases 2017, 0, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Heng, Y.W.; Koh, C.G. Actin cytoskeleton dynamics and the cell division cycle. Int. J. Biochem. Cell Biol. 2010, 42, 1622–1633. [Google Scholar] [CrossRef] [PubMed]
- Murali, A.; Rajalingam, K. Small Rho GTPases in the control of cell shape and mobility. Cell. Mol. Life Sci. 2014, 71, 1703–1721. [Google Scholar] [CrossRef]
- Sadok, A.; Marshall, C. Rho GTPases. Small GTPases 2014, 5, e983878. [Google Scholar] [CrossRef]
- Simons, M. Angiogenesis: Where do we stand now? Circulation 2005, 111, 1556–1566. [Google Scholar] [CrossRef]
- Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 2005, 438, 932. [Google Scholar] [CrossRef]
- Daub, J.T.; Merks, R.M. A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull. Math. Biol. 2013, 75, 1377–1399. [Google Scholar] [CrossRef]
- Helisch, A.; Schaper, W. Arteriogenesis: The development and growth of collateral arteries. Microcirculation 2003, 10, 83–97. [Google Scholar] [CrossRef] [PubMed]
- de Muinck, E.D.; Simons, M. Re-evaluating therapeutic neovascularization. J. Mol. Cell. Cardiol. 2004, 36, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Asahara, T.; Masuda, H.; Takahashi, T.; Kalka, C.; Pastore, C.; Silver, M.; Kearne, M.; Magner, M.; Isner, J.M. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 1999, 85, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Luttun, A.; Carmeliet, P. De novo vasculogenesis in the heart. Cardiovasc. Res. 2003, 58, 378–389. [Google Scholar] [CrossRef] [Green Version]
- Rizov, M.; Andreeva, P.; Dimova, I. Molecular regulation and role of angiogenesis in reproduction. Taiwan J. Obstet. Gynecol. 2017, 56, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 2003, 9, 653–660. [Google Scholar] [CrossRef]
- Abeyrathna, P.; Su, Y. The critical role of akt in cardiovascular function. Vasc. Pharmacol. 2015, 74, 38–48. [Google Scholar] [CrossRef]
- Burgering, B.M.; Coffer, P.J. Protein kinase b (c-akt) in phosphatidylinositol-3-oh kinase signal transduction. Nature 1995, 376, 599–602. [Google Scholar] [CrossRef]
- Abid, M.R.; Guo, S.; Minami, T.; Spokes, K.C.; Ueki, K.; Skurk, C.; Walsh, K.; Aird, W.C. Vascular endothelial growth factor activates pi3k/akt/forkhead signaling in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 294–300. [Google Scholar] [CrossRef]
- Laughner, E.; Taghavi, P.; Chiles, K.; Mahon, P.C.; Semenza, G.L. Her2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (hif-1alpha) synthesis: Novel mechanism for hif-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol. 2001, 21, 3995–4004. [Google Scholar] [CrossRef]
- Kureishi, Y.; Luo, Z.; Shiojima, I.; Bialik, A.; Fulton, D.; Lefer, D.J.; Sessa, W.C.; Walsh, K. The hmg-coa reductase inhibitor simvastatin activates the protein kinase akt and promotes angiogenesis in normocholesterolemic animals. Nat. Med. 2000, 6, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Dimmeler, S.; Dernbach, E.; Zeiher, A.M. Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for vegf-induced endothelial cell migration. FEBS Lett. 2000, 477, 258–262. [Google Scholar] [CrossRef]
- Fukumura, D.; Gohongi, T.; Kadambi, A.; Izumi, Y.; Ang, J.; Yun, C.O.; Buerk, D.G.; Huang, P.L.; Jain, R.K. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. USA 2001, 98, 2604–2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibuya, M. Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 2013, 153, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Kerbel, R.S. Angiogenesis as a therapeutic target. Nature 2005, 438, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.Y.; Chen, L.M.; Lin, J.Y.; Tzang, B.S.; Lin, J.A.; Tsai, C.H.; Lin, Y.M.; Huang, C.Y.; Liu, C.J.; Hsu, H.H. 17beta-estradiol inhibits prostaglandin e2-induced cox-2 expressions and cell migration by suppressing akt and erk1/2 signaling pathways in human lovo colon cancer cells. Mol. Cell. Biochem. 2010, 342, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Takeo, M.; Lee, W.; Ito, W. Wound healing and skin regeneration. Cold Spring Harb. Perspect. Med. 2015, 5, a023267. [Google Scholar] [CrossRef]
- Kolluru, G.K.; Bir, S.C.; Kevil, C.G. Endothelial dysfunction and diabetes: Effects on angiogenesis, vascular remodeling, and wound healing. Int. J. Vasc. Med. 2012, 2012, 918267. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Shi, G.; Zhou, J.; Zhang, W.; Gao, C.; Jiang, Y.; Zi, Z.; Zhao, H.; Yang, Y.; Yu, J. Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomed. Pharmacother. 2018, 101, 510–527. [Google Scholar] [CrossRef]
- Okonkwo, U.; DiPietro, L. Diabetes and Wound Angiogenesis. Int. J. Mol. Sci. 2017, 18, 1419. [Google Scholar] [CrossRef]
- Diniz, C.; Suliburska, J.; Ferreira, I.M. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols. Mol. Nutr. Food Res. 2017, 61, 1600912. [Google Scholar] [CrossRef] [PubMed]
- Gacche, R.N.; Meshram, R.J. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim. Biophys. Acta 2014, 1846, 161–179. [Google Scholar] [CrossRef]
- Majewska, I.; Gendaszewska-Darmach, E. Proangiogenic activity of plant extracts in accelerating wound healing-a new face of old phytomedicines. Acta Biochim. Pol. 2011, 58. [Google Scholar] [CrossRef]
- Shibuya, M. Vegf-vegfr system as a target for suppressing inflammation and other diseases. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Stapor, P.; Wang, X.; Goveia, J.; Moens, S.; Carmeliet, P. Angiogenesis revisited–role and therapeutic potential of targeting endothelial metabolism. J. Cell Sci. 2014, 127, 4331–4341. [Google Scholar] [CrossRef] [PubMed]
- Brooks, M.S.-L.; Celli, G.B. Anthocyanins from Natural Sources: Exploiting Targeted Delivery for Improved Health; Royal Society of Chemistry: London, UK, 2019; Volume 12. [Google Scholar]
- Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Muller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 1202–1205. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013, 78, A18–A25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Oak, M.H.; Auger, C.; Belcastro, E.; Park, S.H.; Lee, H.H.; Schini-Kerth, V.B. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic. Biol. Med. 2018, 122, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, B.V.; Barreira, J.C.; Oliveira, M.B.P. Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends Food Sci. Technol. 2016, 50, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Skrovankova, S.; Sumzynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomas-Barberan, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-T.; Lee, C.Y.; Ho, C.-T. Phenolic Compounds in Food and Their Effects on Health; ACS Symposium Series (USA); American Chemical Society: Washington, DC, USA, 1992. [Google Scholar]
- Perez-Vizcaino, F.; Duarte, J. Flavonols and cardiovascular disease. Mol. Asp. Med. 2010, 31, 478–494. [Google Scholar] [CrossRef]
- Shaikh, R.K.Y.; Nazeruddin, G. Synthesis of flavone skeleton by different methods. Orient. J. Chem. 2014, 29, 1475–1487. [Google Scholar]
- Fernandes, I.; Nave, F.; Goncalves, R.; de Freitas, V.; Mateus, N. On the bioavailability of flavanols and anthocyanins: Flavanol-anthocyanin dimers. Food Chem. 2012, 135, 812–818. [Google Scholar] [CrossRef]
- Di Majo, D.; Giammanco, M.; La Guardia, M.; Tripoli, E.; Giammanco, S.; Finotti, E. Flavanones in citrus fruit: Structure–antioxidant activity relationships. Food Res. Int. 2005, 38, 1161–1166. [Google Scholar] [CrossRef]
- Miadoková, E. Isoflavonoids—An overview of their biological activities and potential health benefits. Interdiscip. Toxicol. 2009, 2, 211–218. [Google Scholar] [CrossRef]
- Fernandes, I.; Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Bioavailability of anthocyanins and derivatives. J. Funct. Foods 2014, 7, 54–66. [Google Scholar] [CrossRef]
- Saxena, M.; Saxena, J.; Pradhan, A. Flavonoids and phenolic acids as antioxidants in plants and human health. Int. J. Pharm. Sci. Rev. Res. 2012, 16, 130–134. [Google Scholar]
- Bò, C.D.; Ciappellano, S.; Klimis-Zacas, D.; Martini, D.; Gardana, C.; Riso, P.; Porrini, M. Anthocyanin absorption, metabolism, and distribution from a wild blueberry-enriched diet (vaccinium angustifolium) is affected by diet duration in the sprague− dawley rat. J. Agric. Food Chem. 2009, 58, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Bushway, R.; Gann, D.; Cook, W.; Bushway, A. Mineral and vitamin content of lowbush blueberries (vaccinium angustifolium ait.). J. Food Sci. 1983, 48, 1878. [Google Scholar] [CrossRef]
- McGhie, T.K.; Walton, M.C. The bioavailability and absorption of anthocyanins: Towards a better understanding. Mol. Nutr. Food Res. 2007, 51, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Veitch, N.C.; Grayer, R.J. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 2011, 28, 1626–1695. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangles, O.; Fenger, J.A. The chemical reactivity of anthocyanins and its consequences in food science and nutrition. Molecules 2018, 23, 1970. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, S.; Vrhovsek, U.; Mattivi, F. The interaction of anthocyanins with bilitranslocase. Biochem. Biophys. Res. Commun. 2002, 296, 631–636. [Google Scholar] [CrossRef]
- Passamonti, S.; Terdoslavich, M.; Franca, R.; Vanzo, A.; Tramer, F.; Braidot, E.; Petrussa, E.; Vianello, A. Bioavailability of flavonoids: A review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr. Drug Metab. 2009, 10, 369–394. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: bioactive components and their effect on human health. Nutrition. 2014, 30, 134–144. [Google Scholar] [CrossRef]
- Saibabu, V.; Fatima, Z.; Khan, L.A.; Hameed, S. Therapeutic potential of dietary phenolic acids. Adv. Pharmacol. Sci. 2015, 2015, 823539. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S. Antioxidant activities of selected berries and their free, esterified, and insoluble-bound phenolic acid contents. Prev. Nutr. Food Sci. 2018, 23, 35. [Google Scholar] [CrossRef]
- Li, S.; Tan, H.Y.; Wang, N.; Cheung, F.; Hong, M.; Feng, Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid. Med. Cell. Longev. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Naseri, R.; Farzaei, F.; Haratipour, P.; Nabavi, S.F.; Habtemariam, S.; Farzaei, M.H.; Khodarahmi, R.; Tewari, D.; Momtaz, S. Anthocyanins in the management of metabolic syndrome: A pharmacological and biopharmaceutical review. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Favot, L.; Matz, R.; Lugnier, C.; Andriantsitohaina, R. Delphinidin inhibits endothelial cell proliferation and cell cycle progression through a transient activation of erk-1/-2. Biochem. Pharmacol. 2003, 65, 669–675. [Google Scholar] [CrossRef]
- Lamy, S.; Blanchette, M.; Michaud-Levesque, J.; Lafleur, R.; Durocher, Y.; Moghrabi, A.; Barrette, S.; Gingras, D.; Beliveau, R. Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis 2006, 27, 989–996. [Google Scholar] [CrossRef]
- Lamy, S.; Beaulieu, E.; Labbé, D.; Bédard, V.; Moghrabi, A.; Barrette, S.; Gingras, D.; Béliveau, R. Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signaling. Carcinogenesis 2008, 29, 1033–1041. [Google Scholar] [CrossRef] [Green Version]
- Duluc, L.; Jacques, C.; Soleti, R.; Andriantsitohaina, R.; Simard, G. Delphinidin inhibits vegf induced-mitochondrial biogenesis and akt activation in endothelial cells. Int. J. Biochem. Cell Biol. 2014, 53, 9–14. [Google Scholar] [CrossRef]
- Matsunaga, N.; Tsuruma, K.; Shimazawa, M.; Yokota, S.; Hara, H. Inhibitory actions of bilberry anthocyanidins on angiogenesis. Phytother. Res. 2010, 24 (Suppl. 1), S42–S47. [Google Scholar] [CrossRef] [PubMed]
- Lamy, S.; Akla, N.; Ouanouki, A.; Lord-Dufour, S.; Beliveau, R. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/stat3 pathway. Exp. Cell Res. 2012, 318, 1586–1596. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, E.; Calabriso, N.; Massaro, M.; Pellegrino, M.; Storelli, C.; Martines, G.; De Caterina, R.; Carluccio, M.A. Mediterranean diet polyphenols reduce inflammatory angiogenesis through mmp-9 and cox-2 inhibition in human vascular endothelial cells: A potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch. Biochem. Biophys. 2012, 527, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Qin, C.; Fan, X.; Li, Y.; Gu, B. Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells. Eur. J. Pharmacol. 2014, 723, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Son, J.E.; Jeong, H.; Kim, H.; Kim, Y.A.; Lee, E.; Lee, H.J.; Lee, K.W. Pelargonidin attenuates pdgf-bb-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem. Pharmacol. 2014, 89, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Son, J.E.; Lee, E.; Jung, S.K.; Kim, J.E.; Oak, M.H.; Lee, K.W.; Lee, H.J. Anthocyanidins, novel fak inhibitors, attenuate pdgf-bb-induced aortic smooth muscle cell migration and neointima formation. Cardiovasc. Res. 2014, 101, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Wang, Y.; Liu, Y.; Xia, M. Supplementation of cyanidin-3-o-beta-glucoside promotes endothelial repair and prevents enhanced atherogenesis in diabetic apolipoprotein e-deficient mice. J. Nutr. 2013, 143, 1248–1253. [Google Scholar] [CrossRef]
- Liu, Z.; Schwimer, J.; Liu, D.; Greenway, F.L.; Anthony, C.T.; Woltering, E.A. Black raspberry extract and fractions contain angiogenesis inhibitors. J. Agric. Food Chem. 2005, 53, 3909–3915. [Google Scholar] [CrossRef]
- Matsunaga, N.; Chikaraishi, Y.; Shimazawa, M.; Yokota, S.; Hara, H. Vaccinium myrtillus (bilberry) extracts reduce angiogenesis in vitro and in vivo. Evid. Based Complement. Altern. Med. 2010, 7, 47–56. [Google Scholar] [CrossRef]
- Mauray, A.; Felgines, C.; Morand, C.; Mazur, A.; Scalbert, A.; Milenkovic, D. Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo e-deficient mice. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 72–80. [Google Scholar] [CrossRef]
- Vuthijumnonk, J.; Heyes, J.; Molan, A. Total anthocyanins, chlorogenic acid concentration, antioxidant and in ovo anti-angiogenic activities of rabbiteye blueberries. Int. Food Res. J. 2016, 23, 515. [Google Scholar]
- Bae, H.-S.; Kim, H.J.; da Jeong, H.; Hosoya, T.; Kumazawa, S.; Jun, M.; Kim, O.-Y.; Kim, S.W.; Ahn, M.-R. In vitro and in vivo antiangiogenic activity of crowberry (empetrum nigrum var. Japonicum). Nat. Prod. Commun. 2016, 11, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Tsakiroglou, P.; Weber, J.; Ashworth, S.; Del Bo, C.; Klimis-Zacas, D. Phenolic and anthocyanin fractions from wild blueberries (v. Angustifolium) differentially modulate endothelial cell migration partially through RHOA and RAC1. J. Cell. Biochem. 2019. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Hwang, S.J.; Park, J.-H.; Lee, H.-J. Chlorogenic acid inhibits hypoxia-induced angiogenesis via down-regulation of the hif-1α/akt pathway. Cell. Oncol. 2015, 38, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.M.; Chiu, J.H.; Wu, I.H.; Wang, B.W.; Pan, C.M.; Chen, Y.H. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1 Alpha. J. Nutr. Biochem. 2010, 21, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.S.; Jeong, C.H.; Choi, J.S.; Kim, K.J.; Jeong, J.W. Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother. Res. 2013, 27, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.; Machado, V.; Costa, R.; Figueira, M.; Sepodes, B.; Barata, P.; Ribeiro, L.; Soares, R. Red raspberry phenols inhibit angiogenesis: A morphological and subcellular analysis upon human endothelial cells. J. Cell. Biochem. 2016, 117, 1604–1612. [Google Scholar] [CrossRef] [PubMed]
Reference | Model | Fraction(s) | Source | Concentration | Overall Effect |
---|---|---|---|---|---|
Martin, S., (2003) [69] | BAECS | Delphinidin chloride | Commercially obtained | 10−2 g/L | Anti-angiogenesis |
Lamy, S., et al. (2006) [70] | HUVECs | Delphinidin | Commercially obtained | 25 μM | Anti-angiogenesis |
Lamy, S. et al. (2008) [71] | HUVECs PASMCs | Cyanidin, delphinidin, pelargonidin, and petunidin | Commercially obtained | 25 μM | Anti-angiogenesis |
Duluc, L., et al. (2014) [72] | HUVECs | Delphinidin | Commercially obtained | 10−2 g/L | Anti-angiogenesis |
Matsunaga, N., et al. (2010) [73] | HUVECs | Delphinidin, cyanidin, and malvidin | Commercially obtained | 0.3, 1, 3 and 10 μM | Anti-angiogenesis |
Lamy, S., et al. (2012) [74] | HUVECs HMVECs | Apigenin, delphinidin, ellagic acid, and luteolin | Commercially obtained | 5, 10, 15, 20 and 25 μM | Anti-angiogenesis |
Scodittie, E., et al. (2012) [75] | HUVEC | Quercetin | Commercially obtained | 0.1, 1, 10, 25 and 50 μmol/L | Anti-angiogenesis |
Zhao, D., et al. (2014) [76] | HUVEC Transgenic zebrafish embryos | Quercetin | Commercially obtained | 50, 100 and 200 μM | Anti-angiogenesis |
Son, J., et al. (2014) [77] | HASMCs HUVECs | Pelargonidin chloride and pelargonidin-3-glucoside chloride | Commercially obtained | 10, 20 and 40 μM | Anti-angiogenesis |
Son, J., et al. (2014) [78] | HASMCs Sprague-Dawley Rats | Petunidin, Delphinidin, Cyanidin, Pelargonidin, Malvidin, and Peonidn | Commercially obtained | 2.5, 5, 10, 20 and 40 μM | Anti-angiogenesis |
Zhang, Y., et al. (2013) [79] | apoE-/- Mouse Model | Cyanidin-3-O-b-glucoside (C3G) | Commercially obtained | 0.2% (w/w) | Pro-angiogenesis |
Liu, Z., et al. (2005) [80] | HPVAM | Crude Extract | Frozen whole black raspberries | 0.075% (w/v) | Anti-angiogenesis |
Matsunaga, N., et al. (2010) [81] | C57BL/6 Mice HUVECs | Anthocyanins | Bilberry | 0.3, 1, 3, 10 and 30 μM | Anti-angiogenesis |
Mauray, A., et al. (2012) [82] | apoE-/- Mouse Model | Anthocyanins | Bilberry | Diet supplemented with 0.02% of Bilberry | Anti-angiogenesis |
Vuthijumnonk, J., et al. (2015) [83] | CAM | Anthocyanins | Rabbit-eye Blueberry | 30 μL from 180 mL crude extract | Anti-angiogenesis |
Bae, K., et al. (2016) [84] | HUVEC CAM | Ethanol Extract | Crowberry | 31.3, 62.5, 125, 250 and 500 μg/mL 25, 50, 100 and 200 μg | Anti-angiogenesis |
Tsakiroglou, P. et al., (2019) [85] | HUVEC Ibidi wound healing assay | Anthocyanin extract | Wild blueberry | 0.002, 8, 15, 60 and 120 μg/mL | Anti-angiogenesis |
Reference | Model | Fraction(s) | Source | Concentration | Overall Effect |
---|---|---|---|---|---|
Park, J., et al. (2015) [86] | HUVECs | Chlorogenic Acid | Commercially obtained | 2 and 10 μM | Anti-angiogenesis |
Lin, C.M., et al. (2010) [87] | HUVECs CAM | Ferulic acid | Commercially obtained | (10−6–10−4 M) (10−6–10−5 M) | Pro-angiogenesis |
Kong, C., et al. (2013) [88] | ECV304 cells Sprague-Dawley Rats | p-Coumaric Acid | Commercially obtained | 0.5 and 1 mM | Anti-angiogenesis |
Sousa, M., et al. (2016) [89] | HMVECs | Total Phenolic Extract | Red Raspberries | 10, 25, 50 and 100 μg GAE/mL | Anti-angiogenesis |
Vuthijumnonk, J., et al. (2015) [83] | CAM | Chlorogenic Acid | Rabbit-eye Blueberry | 30 μL from 180 mL crude extract | Pro-angiogenesis |
Tsakiroglou, P., et al., (2019) [85] | HUVEC Ibidi wound healing assay | Phenolic acid fraction | Wild blueberry | 0.002, 8, 15, 60 and 120 μg/mL | Pro-angiogenesis |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakiroglou, P.; VandenAkker, N.E.; Del Bo’, C.; Riso, P.; Klimis-Zacas, D. Role of Berry Anthocyanins and Phenolic Acids on Cell Migration and Angiogenesis: An Updated Overview. Nutrients 2019, 11, 1075. https://doi.org/10.3390/nu11051075
Tsakiroglou P, VandenAkker NE, Del Bo’ C, Riso P, Klimis-Zacas D. Role of Berry Anthocyanins and Phenolic Acids on Cell Migration and Angiogenesis: An Updated Overview. Nutrients. 2019; 11(5):1075. https://doi.org/10.3390/nu11051075
Chicago/Turabian StyleTsakiroglou, Panagiotis, Natalie E. VandenAkker, Cristian Del Bo’, Patrizia Riso, and Dorothy Klimis-Zacas. 2019. "Role of Berry Anthocyanins and Phenolic Acids on Cell Migration and Angiogenesis: An Updated Overview" Nutrients 11, no. 5: 1075. https://doi.org/10.3390/nu11051075
APA StyleTsakiroglou, P., VandenAkker, N. E., Del Bo’, C., Riso, P., & Klimis-Zacas, D. (2019). Role of Berry Anthocyanins and Phenolic Acids on Cell Migration and Angiogenesis: An Updated Overview. Nutrients, 11(5), 1075. https://doi.org/10.3390/nu11051075