Six Weeks of Calorie Restriction Improves Body Composition and Lipid Profile in Obese and Overweight Former Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dietary Intervention
2.3. Diet Control
2.4. Anthropometric Data
2.5. Biochemical Variables and Test Procedures
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Availability of Data and Material
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CRI | Caloric restriction diet I |
CRII | Caloric restriction diet II |
BM | Body mass |
BMI | Body mass index |
BF | Body fat |
FFM | Fat free mass |
MM | Muscle mass |
TBW | Total body water |
GL | Glucose |
TCh | Total cholesterol |
HDL | HDL cholesterol |
LDL | LDL cholesterol |
TG | Triglycerides |
TL | Total lipids |
IGF-1 | Insulin-like growth factor-1 |
I | Insulin |
HOMA-IR | Homeostasis model assessment- insulin resistance |
CRs | Calorie restrictions |
TDEE | Total daily energy expenditure |
AF | Activity factor |
RMR | Resting metabolic rate |
ANOVA | Analysis of variance |
HOMA-IR | Homeostasis model assessment- insulin resistance |
CRs | Calorie restrictions |
TDEE | Total daily energy expenditure |
AF | Activity factor |
RMR | Resting metabolic rate |
ANOVA | Analysis of variance |
References
- Maciejewska, D.; Michalczyk, M.; Czerwińska-Rogowska, M.; Banaszczak, M.; Ryterska, K.; Jakubczyk, K.; Piotrwski, J.; Hołowko, J.; Drozd, A.; Wysokińki, P.; et al. Seeking Optimal Nutrition for Healthy Body Mass Reduction among Former Athletes. J. Hum. Kinet. 2017, 60, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Sarna, S.; Sahi, T.; Koskenvuo, M.; Kaprio, J. Increased life expectancy of world class male athletes. Med. Sci. Sports Exerc. 1993, 25, 237–244. [Google Scholar] [CrossRef] [PubMed]
- O’Kane, J.W.; Teitz, C.C.; Fontana, S.M.; Lind, B.K. Prevalence of obesity in adult population of former college rowers. J. Am. Board Fam. Pract. 2002, 15, 451–456. [Google Scholar] [PubMed]
- Pihl, E.; Jurimae, T. Relationships between body weight change and cardiovascular disease risk factors in male former athletes. Int. J. Obes. 2001, 25, 1057–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albuquerque, F.N.; Kuniyoshi, F.H.S.; Calvin, A.D.; Sierra-Johnson, J.; Romero-Corral, A.; Lopez-Jimenez, F.; George, C.F.; Rapoport, D.M.; Vogel, R.A.; Khandheria, B.; et al. Sleep-disordered breathing, Hypertension and Obesity in Retired National Football League Players. J. Am. Coll. Cardiol. 2010, 56, 1432–1433. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.; Soares, J.M. Are former elite athletes more protected against metabolic syndrome? J. Cardiol. 2013, 61, 440–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, N.A.; Caudwell, P.; Hopkins, M.; Byrne, N.M.; Colley, R.; Hills, A.P.; Stubbs, J.R.; Blundell, J.E. Metabolic and Behavioral Compensatory Responses to Exercise Interventions: Barriers to Weight Loss. Obesity 2007, 15, 1373–1383. [Google Scholar] [CrossRef]
- Bescós, R.; Rodríguez, F.A.; Iglesias, X.; Knechtle, B.; Benítez, A.; Marina, M.; Padullés, J.M.; Torrado, P.; Vazquez, J.; Rosemann, T. Nutritional behavior of cyclists during a 24-hour team relay race: A field study report. J. Int. Soc. Sports Nutr. 2012, 9, 3. [Google Scholar] [CrossRef]
- Hulmi, J.J.; Isola, V.; Suonpää, M.; Järvinen, N.J.; Kokkonen, M.; Wennerström, A.; Nyman, K.; Perola, M.; Ahtiainen, J.P.; Häkkinen, K. The Effects of Intensive Weight Reduction on Body Composition and Serum Hormones in Female Fitness Competitors. Front. Physiol. 2016, 7, 689. [Google Scholar] [CrossRef]
- Holloszy, J.O.; Fontana, L. Caloric Restriction in Humans. Exp. Gerontol. 2007, 42, 709–712. [Google Scholar] [CrossRef]
- Fontana, L.; Meyer, T.E.; Klein, S.; Holloszy, J.O. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc. Natl. Acad. Sci. USA 2004, 101, 6659–6663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson-Meyer, D.E.; Heilbronn, L.K.; Redman, L.M.; Newcomer, B.R.; Frisard, M.I.; Anton, S.; Smith, S.R.; Alfonso, A.; Ravussin, E.; the Pennington CALERIE Team. Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, and actopic lipid in overweight subjects. Diabetes Care 2006, 29, 1337–1344. [Google Scholar] [CrossRef]
- Wang, Y. Molecular Links between Caloric Restriction and Sir2/SIRT1 Activation. Diabetes Metab. J. 2014, 38, 321–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharples, A.P.; Hughes, D.C.; Deane, C.S.; Saini, A.; Selman, C.; Stewart, C.E. Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell 2015, 14, 511–523. [Google Scholar] [CrossRef]
- Nguyen, P.A.H.; A Heggermont, W.; Vanhaverbeke, M.; Dubois, C.; Vydt, T.; Vörös, G.; Van Der Schueren, B.; Overbergh, L.; Mathieu, C.; Desmet, W.; et al. Leptin-adiponectin ratio in pre-diabetic patients undergoing percutaneous coronary intervention. Acta Cardiol. 2015, 70, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.E.; Harmancey, R.; Stec, D.E. Lean heart: Role of leptin in cardiac hypertrophy and metabolism. World J. Cardiol. 2015, 7, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Dyck, D.J. Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl. Physiol. Nutr. Metab. 2009, 34, 396–402. [Google Scholar] [CrossRef]
- Komai, N.; Morita, Y.; Sakuta, T.; Kuwabara, A.; Kashihara, N. Anti-tumor necrosis factor therapy increases serum adiponectin levels with the improvement of endothelial dysfunction in patients with rheumatoid arthritis. Mod. Rheumatol. 2007, 17, 385–390. [Google Scholar] [CrossRef]
- Chan, K.C.; Chou, H.H.; Wu, D.J.; Wu, Y.L.; Huang, C.N. Diabetes mellitus has an additional effect on coronary artery disease. Jpn. Heart J. 2004, 45, 921–927. [Google Scholar] [CrossRef]
- Aguirre, G.A.; De Ita, J.R.; De La Garza, R.G.; Castilla-Cortazar, I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J. Transl. Med. 2016, 14, 2486. [Google Scholar] [CrossRef]
- Frystyk, J.; Vestbo, E.; Skjærbaek, C.; Mogensen, C.E.; Ørskov, H. Free insulin-like growth factors in human obesity. Metabolism 1995, 44, 37–44. [Google Scholar] [CrossRef]
- Fontana, L.; Villareal, D.T.; Das, S.K.; Smith, S.R.; Meydani, S.N.; Pittas, A.G.; Klein, S.; Bhapkar, M.; Rochon, J.; Ravussin, E.; et al. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: A randomized clinical trial. Aging Cell 2016, 15, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Matthews, D.R. The assessment of insulin resistance in man. Diabet. Med. 2002, 19, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Emami, M.; Behforouz, A.; Jarahi, L.; Zarifian, A.; Rashidlamir, A.; Rashed, M.M.; Khaleghzade, H.; Ghaneifar, Z.; Safarian, M.; Azimi-Nezhad, M.; et al. The risk of developing obesity, insulin resistance, and metabolic syndrome in former power-sports athletes—Does sports career termination increase the risk. Indian J. Endocrinol. Metab. 2018, 22, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Distelmaier, K.; Lanza, I.R.; Irving, B.A.; Robinson, M.M.; Konopka, A.R.; Shulman, G.I.; Nair, K.S. Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults. Diabetes 2016, 65, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, M. Nutrition Norms for the Polish Population; Institute of Nutrition: Warsaw, Poland, 2017; pp. 21–39. (In Polish) [Google Scholar]
- Kunachowicz, H.; Nadolna, I.; Iwanow, K.; Przygoda, B. Nutritional Value of Products and Traditional Dishes; PZWL: Warszawa, Poland, 2005. (In Polish) [Google Scholar]
- Fosbøl, M.; Zerahan, B. Contemporary methods of body composition measurement. Clin. Physiol. Funct. Imaging 2014, 35. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Maszczyk, A.; Gołaś, A.; Pietraszewski, P.; Roczniok, R.; Zajac, A.; Stanula, A. Application of Neural and Regression Models in Sports Results Prediction. Procedia Soc. Behav. Sci. 2014, 117, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Maszczyk, A.; Golas, A.; Czuba, M.; Krol, H.; Wilk, M.; Stastny, P.; Goodwin, J.; Kostrzewa, M.; Zajac, A. Emg analysis and modelling of flat bench press using artificial neural networks. S. Afr. J. Res. Sport Phys. Educ. Recreat. 2016, 38, 91–103. [Google Scholar]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, B.I.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, M.M.; Czuba, M.; Zydek, G.; Zając, A.; Langfort, J. Dietary Recommendations for Cyclists during Altitude Training. Nutrients 2016, 8, 377. [Google Scholar] [CrossRef] [PubMed]
- Helms, E.R.; Aragon, A.; Fitschen, P.J. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J. Int. Soc. Sports Nutr. 2014, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Fogelholm, M.; Kaprio, J.; Sarna, S. Healthy lifestyles of former Finnish word class athletes. Med. Sci. Sports Exerc. 1994, 26, 224–229. [Google Scholar] [CrossRef]
- Saarni, S.E.; Rissanen, A.; Sarna, S.; Koskenvuo, M.; Kaprio, J. Weight cycling of athletes and subsequent weight gain in middleage. Int. J. Obes. 2006, 30, 1639–1644. [Google Scholar] [CrossRef] [Green Version]
- Sunman, M.L.; Hoerr, S.L.; Sprague, H.; Olson, H.W.; Quinn, T.J. Lifestyle variables as predictors of survival in former college men. Nutr. Res. 1991, 11, 141–148. [Google Scholar] [CrossRef]
- Martin, A.; Booth, J.N.; Laird, Y.; Sproule, J.; Reilly, J.J.; Saunders, D.H. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Syst. Rev. 2018, 3, CD009728. [Google Scholar] [CrossRef]
- Lau, D.C.; Douketis, J.D.; Morrison, K.M.; Hramiak, I.M.; Sharma, A.M.; Ur, E. Obesity Canada Clinical Practice Guidelines Expert Panel. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children [summary]. CMAJ 2007, 176, 1–13. [Google Scholar] [CrossRef]
- Racette, S.B.; Rochon, J.; Uhrich, M.L.; Villareal, D.T.; Das, S.K.; Fontana, L.; Bhapkar, M.; Martin, C.K.; Redman, L.M.; Fuss, P.J.; et al. Effects of Two Years of Calorie Restriction on Aerobic Capacity and Muscle Strength. Med. Sci. Sports Exerc. 2017, 49, 2240–2249. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chen, P.C.; Kuo, H.K.; Lin, L.Y.; Lin, J.W.; Hwang, J.J. Effects of obesity, physical activity, and cardiorespiratory fitness on blood pressure, inflammation, and insulin resistance in the National Health and Nutrition Survey 1999–2002. Nutr. Metab. Cardiovasc. Dis. 2009, 20, 713–719. [Google Scholar] [CrossRef]
- Vink, R.G.; Roumans, N.J.; Čajlaković, M.; Cleutjens, J.P.M.; Boekschoten, M.V.; Fazelzadeh, P.; Vogel, M.A.A.; Blaak, E.E.; Mariman, E.C.; Van Baak, M.A.; et al. Diet-induced weight loss decreases adipose tissue oxygen tension with parallel changes in adipose tissue phenotype and insulin sensitivity in overweight humans. Int. J. Obes. 2017, 41, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Meehan, C.A.; Cochran, E.; Mattingly, M.; Gorden, P.; Brown, R.J.; Stergios, P. Mild Caloric Restriction Decreases Insulin Requirements in Patients with Type 2 Diabetes and Severe Insulin Resistance. Medicine 2015, 94, e1160. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.P.; Albert, S.G.; Reeds, D.N.; Kress, K.S.; Ezekiel, U.R.; McDaniel, J.L.; Patterson, B.W.; Klein, S.; Villareal, D.T. Calorie Restriction and Matched Weight Loss from Exercise: Independent and Additive Effects on Glucoregulation and the Incretin System in Overweight Women and Men. Diabetes Care 2015, 38, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- MacLean, P.S.; Higgins, J.A.; Giles, E.D.; Sherk, V.D.; Jackman, M.R. The role for adipose tissue in weight regain after weight loss. Obes. Rev. 2015, 16, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wing, R.R.; Sinha, M.K.; Considine, R.V.; Caro, J.F.; Lang, W. Relationship Between Weight Loss Maintenance and Changes in Serum Leptin Levels. Horm. Metab. Res. 1996, 28, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Sartorio, A.; Agosti, F.; Resnik, M.; Lafortuna, C.L. Effects of a 3-week integrated body weight reduction program on leptin levels and body composition in severe obese subjects. J. Endocrinol. Investig. 2003, 26, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, J.P.; Richards, A.A.; Hickman, I.J.; Macdonald, G.A.; Prins, J.B. Adiponectin—A key adipokine in the metabolic syndrome. Diabetes Obes. Metab. 2006, 8, 264–280. [Google Scholar] [CrossRef] [PubMed]
- Paniagua, J.A. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J. Diabetes 2016, 7, 483–514. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002, 8, 1288–1295. [Google Scholar] [CrossRef]
- Frysak, Z.; Schovanek, J.; Iacobone, M.; Karasek, D. Insulin-like Growth Factors in a clinical setting: Review of IGF-I. Biomed. Pap. 2015, 159, 347–351. [Google Scholar] [CrossRef]
- Marquet, L.-A.; Brown, M.; Tafflet, M.; Nassif, H.; Mouraby, R.; Bourhaleb, S.; Toussaint, J.-F.; Desgorces, F.-D. No effect of weight cycling on the post-career BMI of weight class elite athletes. BMC Public Health 2013, 13, 510. [Google Scholar] [CrossRef] [PubMed]
- Hyman, M.H.; Dang, D.L.; Liu, Y. Differences in Obesity Measures and Selected Comorbidities in Former National Football League Professional Athletes. J. Occup. Environ. Med. 2012, 54, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Franchini, E.; Brito, C.J.; Artioli, G.G. Weight loss in combat sports: physiological, psychological and performance effects. J. Int. Soc. Sports Nutr. 2012, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Abbey, E.L.; Wright, C.J.; Kirkpatrick, C.M. Nutrition practices and knowledge among NCAA Division III football players. J. Int. Soc. Sports Nutr. 2017, 14, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalczyk, M.M.; Zajac, A.; Mikolajec, K.; Zydek, G.; Langfort, J. No Modification inBlood Lipoprotein Concentration but Changes in Body Composition after 4 Weeks of Low Carbohydrate Diet (LCD) Followed by 7 Days of Carbohydrate Loading in Basketball Players. J. Hum. Kinet. 2018, 65, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, M.M.; Chycki, J.; Zajac, A.; Maszczyk, A.; Zydek, G.; Langfort, J. Anaerobic Performance after a Low-Carbohydrate Diet (LCD) Followed by 7 Days of Carbohydrate Loading in Male Basketball Players. Nutrients 2019, 11, 778. [Google Scholar] [CrossRef] [PubMed]
- Borchers, J.R.; Clem, K.L.; Habash, D.L.; Nagaraja, H.N.; Stokley, L.M.; Best, T.M. Metabolic syndrome and insulin resistance in Division 1 collegiate football players. Med. Sci. Sports Exerc. 2009, 41, 2105–2110. [Google Scholar] [CrossRef]
- Kujala, U.M.; Kaprio, J.; Taimela, S.; Sarna, S. Prevalence of diabetes, hypertension, and ischemic heart Obesity in College Rowers 455 disease in former elite athletes. Metabolism 1994, 43, 1255–1260. [Google Scholar] [CrossRef]
- Melanson, E.L. The effect of exercise on non-exercise physical activity and sedentary behavior in adults. Obes. Rev. 2017, 18, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Vogt, S.; Schumacher, Y.O.; Roecker, K.; Dickhuth, H.H.; Schoberer, U.; Schmid, A.; Heinrich, L. Power Output during the Tour de France. Int. J. Sports Med. 2007, 28, 756–761. [Google Scholar] [CrossRef]
Nutrients | CR I MEAN ± SD | CR II MEAN ± SD |
---|---|---|
TEI, kJ | 9589.73 ± 150.6 | 8924.48 ± 217.6 |
TEI, kcal | 2292 ± 36 | 2133 ± 52 |
CARBOHYDRATES, % | 50 ± 0.4 | 50 ± 0.2 |
CARBOHYDRATES, g/kg/body mass | 2.7 ± 0.3 | 2.6 ± 0.5 |
SIMPLE SUGARS, % | <10 | <10 |
FIBER, g/day | 33 ± 0.2 | 34 ± 0.5 |
FAT, % | 30 ± 0.6 | 30 ± 0.8 |
FAT, g/kg body mass | 0.8 ± 0.2 | 0.75 ± 0.3 |
CHOLESTEROL, mg/day | 300 ± 2.1 | 300 ± 1.7 |
PROTEIN, % | 20 ± 0.7 | 20 ± 0.06 |
PROTEIN, g/kg body mass | 1.2 ± 0.6 | 1.1 ± 0.4 |
Variable | CRI, n = 31 Mean ± SD | CR II, n = 32 Mean ± SD |
---|---|---|
BM, kg | 92.3 ± 11.5 | 89.5 ± 14.0 |
BMI | 28.1 ± 4.2 | 28.3 ± 4.1 |
BF, % | 30.4 ± 8.0 | 29.3 ± 8.2 |
FFM, % | 62.84 ± 8.36 | 58.98 ± 16.34 |
FFM, kg | 67.68 ± 4.77 | 63.47 ± 17.48 |
MM, % | 49.13 ± 4.59 | 43.36 ± 11.34 |
TBW, % | 45.24 ± 5.26 | 42.35 ± 11.57 |
Variables | Shapiro-Wilk Test | |
---|---|---|
CR I | CR II | |
BM, kg | 0.756 | 0.767 |
BMI | 0.687 | 0.707 |
BF, % | 0.686 | 0.715 |
FFM, % | 0.713 | 0.743 |
FFM, kg | 0.730 | 0.760 |
MM, % | 0.749 | 0.778 |
TBW, % | 0.764 | 0.791 |
GL, mmol/L | 0.792 | 0.817 |
TCh, mg/dL | 0.805 | 0.828 |
HDL, mg/dL | 0.814 | 0.837 |
LDL, mg/dL | 0.825 | 0.846 |
TG, mg/dL | 0.835 | 0.855 |
TL, mg/dL | 0.844 | 0.863 |
I, mg/dL | 0.851 | 0.869 |
HOMA-IR | 0.858 | 0.874 |
Leptin, ng/mL | 0.791 | 0.813 |
Adiponectin, ng/mL | 0.815 | 0.833 |
IGF-1, ng/mL | 0.818 | 0.841 |
Variable | CR I (n = 31) | CR II (n = 32) | ||||||
---|---|---|---|---|---|---|---|---|
Before | After | ES | Before | After | ES | ES CR II vs. CR I | ||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||||
Body composition | BM, kg | 92.3 ± 11.5 | 90.4 ± 10.7 | 0.014 | 89.5 ± 14.0 | 87.1 ± 12.6 | 0.031 | 0.037 |
BMI | 28.1 ± 4.2 | 27.8 ± 3.7 | 0.011 | 28.3 ± 4.1 | 27.3 ± 4.0 | 0.010 | 0.011 | |
BF, % | 30.4 ± 8.0 | 29.2 ± 5.8 | 0.013 | 30.71 ± 5.9 | 29.0 ± 7.7 | 0.027 | 0.014 | |
FFM, kg | 62.84 ± 8.36 | 58.95 ± 7.26 | 0.015 | 59.98 ± 16.34 | 58.02 ± 14.82 | 0.024 | 0.012 | |
FFM, % | 67.68 ± 4.77 | 67.62 ± 4.95 | 0.010 | 66.39 ± 14.10 | 63.47 ± 17.48 | 0.055 | 0.045 | |
MM, % | 49.13 ± 4.59 | 48.70 ± 6.07 | 0.011 | 48.39 ± 12.62 | 43.36 ± 11.34 | 0.058 | 0.051 | |
TBW, kg | 45.24 ± 5.26 | 45.18 ± 4.83 | 0.010 | 43.95 ± 11.80 | 42.35 ± 11.57 | 0.026 | 0.034 | |
Lipid profile | tCh, mg/dL | 197.2 ± 40.3 | 171.4 ± 53.4 * | 0.343 * | 198.1 ± 40.5 | 187.3 ± 37.1 #* | 0.241 | 0.351 #* |
HDL, mg/dL | 51.6 ± 13.4 | 47.0 ± 16.2 | 0.061 | 54.7 ± 13.3 | 56.4 ± 17.9 | 0.021 | 0.061 | |
LDL, mg/dL | 107.6 ± 28.3 | 102.5 ± 64.7 | 0.072 | 122.8 ± 42.0 | 116.3 ± 34.8 #* | 0.253 | 0.347 #* | |
TG, mg/dL | 102.3 ± 57.3 | 89.7 ± 54.8 * | 0.333 | 108.5 ± 45.8 | 83.0 ± 48.7 * | 0.249 * | 0.057 | |
TL, mg/dL | 599.51 ± 102.7 | 520.80 ± 105.1 * | 0.349 * | 630.44 ± 124.4 | 572.93 ± 97.3 * | 0.135 * | 0.355 | |
Glucose control | GL, mmol/L | 5.24 ± 0.83 | 4.86 ± 1.27 | 0.070 | 5.34 ± 1.53 | 5.17 ± 1.01 | 0.013 | 0.067 |
I, mg/dL | 10.9 ± 6.9 | 8.7 ± 5.2 | 0.034 | 10.0 ± 8.2 | 9.06 ± 5.8 | 0.021 | 0.028 | |
HOMA-IR | 2.6 ± 2.3 | 2.4 ± 1.1 | 0.010 | 2.7 ± 1.3 | 2.0 ± 1.4 | 0.010 | 0.012 | |
Leptin, ng/mL | 13.78 ± 4.8 | 9.45 ± 6.9 * | 0.148 * | 13.27 ± 4.7 | 9.69 ± 3.9 * | 0.144 * | 0.019 | |
Adiponectin, ng/mL | 3.33 ± 1.3 | 7.10 ± 3.2 * | 0.166 * | 3.83 ± 1.2 | 6.93 ± 3.3 * | 0.147 * | 0.022 | |
IGF-1, ng/mL | 43.93 ± 4.6 | 42.50 ± 14.8 | 0.041 | 44.76 ± 10.4 | 42.93 ± 6.6 | 0.023 | 0.011 |
Variables | CR I | |||||
1.5–2.5 kg | 2.5–3.0 kg | Over 3 kg | ||||
Before | After | Before | After | Before | After | |
BM, Kg | 97.95 ± 4.5 | 92.26 ± 3.1 | 99.60 ± 6.1 | 94.75 ± 4.2 | 105.67 ± 5.2 | 100.91 ± 8.1 |
BMI | 31.26 ± 1.2 | 28.14 ± 0.2 | 30.65 ± 2.13 | 29.23 ± 1.3 | 32.19 ± 2.5 | 30.86 ± 2.1 |
BF, % | 30.68 ± 3.1 | 29.92 ± 2.1 | 32.46 ± 5.3 | 31.85 ± 3.4 | 37.61 ± 3.4 | 37.10 ± 5.3 |
FFM, % | 69.32 ± 4.2 | 68.05 ± 3.64 | 67.60 ± 4.2 | 66.54 ± 5.3 | 63.02 ± 4.2 | 62.39 ± 5.2 |
FFM, Kg | 59.52 ± 3.1 | 55.75 ± 2.36 * | 60.70 ± 4.1 | 55.91 ± 4.2 | 55.94 ± 4.1 | 53.53 ± 2.5 |
MM, % | 49.97 ± 5.3 | 46.91 ± 2.77 * | 49.56 ± 3.1 | 46.97 ± 2.7 | 42.96 ± 2.6 | 42.67 ± 2.9 |
TBW, % | 50.87 ± 5.3 | 49.19 ± 3.36 | 49.61 ± 4.2 | 48.55 ± 3.1 | 47.59 ± 3.9 | 46.84 ± 2.8 |
Variables | CR II | |||||
1.5–2.5 kg | 2.5–3.0 kg | Over 3 kg | ||||
Before | After | Before | After | Before | After | |
BM, Kg | 96.95 ± 8.9 | 93.37 ± 6.3 | 100.43 ± 4.2 | 96.27 ± 4.3 | 98.67 ± 3.8 | 93.15 ± 2.1 |
BMI | 30.08 ± 1.3 | 28.99 ± 1.4 | 30.78 ± 2.1 | 29.56 ± 1.1 | 30.40 ± 2.1 | 28.30 ± 1.4 |
BF, % | 32.89 ± 2.1 | 31.86 ± 2.4 | 34.44 ± 2.6 | 33.75 ± 1.3 | 33.61 ± 2.1 # | 31.21 ± 0.9 # |
FFM, % | 67.60 ± 3.1 | 65.84 ± 4.2 | 65.56 ± 4.2 | 65.21 ± 3.8 | 68.79 ± 4.9 # | 67.90 ± 5.3 |
FFM, Kg | 58.48 ± 4.1 | 57.86 ± 3.2 | 58.53 ± 3.6 | 55.98 ± 4.1 | 59.71 ± 3.2 | 54.86 ± 3.1 |
MM, % | 47.83 ± 2.1 | 46.92 ± 3.5 | 46.83 ± 2.6 | 44.74 ± 2.5 | 49.86 ± 2.1 # | 46.64 ± 2.5 |
TBW, % | 50.25 ± 4.1 | 48.86 ± 3.4 | 48.85 ± 3.6 | 47.82 ± 4.1 | 50.59 ± 3.2 # | 48.56 ± 3.5 |
Variables | CR I | ||||||
1.5–2.5 kg | 2.5–3.0 kg | Over 3 kg | |||||
Before | After | Before | After | Before | After | ||
Lipid profile | TL, mg/dL | 735.63 ± 33.5 | 609.65 ± 41.23 | 775.00 ± 47.3 | 665.36 ± 63.1 | 608.86 ± 51.3 | 528.50 ± 72.1 |
TG, mg/dL | 131.63 ± 13.37 | 84.41 ± 14.91 * | 127.30 ± 8.2 | 84.45 ± 13.1 | 126.00 ± 11.2 | 82.63 ± 8.2 | |
tCh, mg/dL | 201.56 ± 35.26 | 162.35 ± 26.13 | 200.90 ± 26.1 | 166.55 ± 21.4 | 181.14 ± 38.5 | 165.00 ± 27.2 | |
LDL, mg/dL | 132.25 ± 14.81 | 104.47 ± 12.1 | 139.90 ± 12.5 | 110.45 ± 9.2 | 120.86 ± 17.1 | 99.87 ± 15.5 | |
HDL, mg/dL | 49.81 ± 2.94 | 49.12 ± 3.2 | 46.37 ± 5.3 | 47.62 ± 8.2 | 49.43 ± 3.2 | 50.07 ± 4.1 | |
Glucose control | GL, mmol/L | 5.30 ± 1.42 | 4.78 ± 0.6 | 5.50 ± 0.8 | 4.95 ± 1.7 | 5.51 ± 1.5 | 5.12 ± 1.2 |
I, mg/dL | 11.08 ± 2.62 | 10.14 ± 1.3 | 13.52 ± 4.1 | 12.86 ± 3.1 | 11.79 ± 3.7 | 10.18 ± 4.2 | |
HOMA-IR | 2.68 ± 0.31 | 2.43 ± 0.24 | 3.36 ± 1.3 | 3.15 ± 1.5 | 2.82 ± 0.8 | 2.36 ± 0.7 | |
Leptin, ng/mL | 12.32 ± 1.2 | 9.76 ± 1.3 * | 13.10 ± 1.4 | 8.45 ± 0.4 * | 15.43 ± 2.3 | 9.19 ± 1.3 * | |
Adiponectin, ng/mL | 3.51 ± 0.2 | 6.45 ± 0.5 * | 3.50 ± 0.3 | 7.55 ± 0.5 * | 3.12 ± 0.6 | 7.20 ± 1.2 * | |
IGF-1, ng/mL | 42.23 ± 0.9 | 41.90 ± 2.1 | 43.06 ± 1.1 | 41.60 ± 0.8 | 44.21 ± 3.4 | 43.10 ± 1.5 | |
Variables | CR II | ||||||
1.5–2.5 kg | 2.5–3.0 kg | Over 3 kg | |||||
Before | After | Before | After | Before | After | ||
Lipid profile | TL, mg/dL | 639.71 ± 42.3 | 559.36 ± 23.2 * | 632.70 ± 54.2 | 540.40 ± 21.1 * | 649.14 ± 32.1 | 548.57 ± 24.5 * |
TG, mg/dL | 99.50 ± 4.2 | 71.36 ± 12.1 | 109.00 ± 12.3 | 76.70 ± 21.5 | 109.00 ± 15.1 | 73.86 ± 23.6 | |
tCh, mg/dL | 204.54 ± 18.1 | 183.64 ± 13.1 * | 199.40 ± 14.2 | 172.80 ± 11.2 * | 206.71 ± 14.1 # | 177.57 ± 12.2 * | |
HDL, mg/dL | 55.50 ± 8.2 | 56.63 ± 6.1 | 50.80 ± 3.1 | 49.89 ± 4.1 | 50.42 ± 4.1 | 50.76 ± 3.4 | |
LDL, mg/dL | 131.43 ± 9.4 | 112.64 ± 7.3 * | 126.90 ± 8.2 | 107.60 ± 8.2 * | 134.5 ± 7.27 | 112.29 ± 9.4 * | |
Glucose control | GL, mmol/L | 5.07 ± 1.1 | 5.04 ± 0.8 | 5.34 ± 0.7 | 5.12 ± 0.9 | 5.39 ± 0.8 | 5.10 ± 1.1 |
I, mg/dL | 10.77 ± 1.8 | 8.34 ± 1.3 | 12.29 ± 1.3 | 8.72 ± 2.8 | 14.99 ± 2.1 | 9.90 ± 3.1 | |
HOMA-IR | 2.52 ± 0.5 | 1.93 ± 0.9 | 2.91 ± 0.7 | 2.13 ± 0.5 | 3.57 ± 1.4 | 2.46 ± 1.1 | |
Leptin, ng/mL | 11.86 ± 2.1 | 8.13 * ± 2.5 | 12.10 ± 3.1 | 9.65 * ± 0.3 | 15.15 ± 1.1 | 10.30 * ± 1.2 | |
Adiponectin, ng/mL | 4.08 ± 1.2 | 8.10 * ± 2.6 | 3.84 ± 3.2 | 7.20 * ± 0.4 | 3.60 ± 0.8 | 6.95 * ± 0.4 | |
IGF-1, ng/mL | 44.35 ± 2.7 | 43.16 ± 3.1 | 42.94 ± 2.9 | 43.08 ± 1.5 | 42.40 ± 1.9 | 41.30 ± 0.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hołowko, J.; Michalczyk, M.M.; Zając, A.; Czerwińska-Rogowska, M.; Ryterska, K.; Banaszczak, M.; Jakubczyk, K.; Stachowska, E. Six Weeks of Calorie Restriction Improves Body Composition and Lipid Profile in Obese and Overweight Former Athletes. Nutrients 2019, 11, 1461. https://doi.org/10.3390/nu11071461
Hołowko J, Michalczyk MM, Zając A, Czerwińska-Rogowska M, Ryterska K, Banaszczak M, Jakubczyk K, Stachowska E. Six Weeks of Calorie Restriction Improves Body Composition and Lipid Profile in Obese and Overweight Former Athletes. Nutrients. 2019; 11(7):1461. https://doi.org/10.3390/nu11071461
Chicago/Turabian StyleHołowko, Joanna, Małgorzata Magdalena Michalczyk, Adam Zając, Maja Czerwińska-Rogowska, Karina Ryterska, Marcin Banaszczak, Karolina Jakubczyk, and Ewa Stachowska. 2019. "Six Weeks of Calorie Restriction Improves Body Composition and Lipid Profile in Obese and Overweight Former Athletes" Nutrients 11, no. 7: 1461. https://doi.org/10.3390/nu11071461
APA StyleHołowko, J., Michalczyk, M. M., Zając, A., Czerwińska-Rogowska, M., Ryterska, K., Banaszczak, M., Jakubczyk, K., & Stachowska, E. (2019). Six Weeks of Calorie Restriction Improves Body Composition and Lipid Profile in Obese and Overweight Former Athletes. Nutrients, 11(7), 1461. https://doi.org/10.3390/nu11071461