Higher Diet Quality is Associated with Lower Odds of Low Hand Grip Strength in the Korean Elderly Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. General Characteristics
2.3. Dietary Assessment
2.3.1. KHEI
2.3.2. aMED Score
2.3.3. DASH Score
2.4. Hand Grip Strength
2.5. Statistical analysis
3. Results
3.1. General Characteristics
3.2. Association of Diet Quality with Grip Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morrison, S.; Newell, K.M. Aging, neuromuscular decline, and the change in physiological and behavioral complexity of upper-limb movement dynamics. J. Aging Res. 2012, 2012, 891218. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, K.S.; Dias, J.M.; Bastone, A.C.; Vieira, R.A.; Andrade, A.C.; Perracini, M.R.; Guerra, R.O.; Dias, R.C. Handgrip strength cutoff points to identify mobility limitation in community-dwelling older people and associated factors. J. Nutr. Health Aging 2016, 20, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Springstroh, K.A.; Gal, N.J.; Ford, A.L.; Whiting, S.J.; Dahl, W.J. Evaluation of handgrip strength and nutritional risk of congregate nutrition program participants in Florida. J. Nutr. Gerontol. Geriatr. 2016, 35, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Bear-Lehman, J.; Desrosiers, J.; Massy-Westropp, N.; Mathiowetz, V. Average grip strength: A meta-analysis of data obtained with a Jamar dynamometer from individuals 75 years or more of age. J. Geriatr. Phys. Ther. 2007, 30, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Izawa, K.P.; Watanabe, S.; Osada, N.; Kasahara, Y.; Yokoyama, H.; Hiraki, K.; Morio, Y.; Yoshioka, S.; Oka, K.; Omiya, K. Handgrip strength as a predictor of prognosis in Japanese patients with congestive heart failure. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Pavasini, R.; Serenelli, M.; Celis-Morales, C.A.; Gray, S.R.; Izawa, K.P.; Watanabe, S.; Colin-Ramirez, E.; Castillo-Martínez, L.; Izumiya, Y.; Hanatani, S.; et al. Grip strength predicts cardiac adverse events in patients with cardiac disorders: An individual patient pooled meta-analysis. Heart 2019, 105, 834–841. [Google Scholar] [CrossRef]
- Stenholm, S.; Tiainen, K.; Rantanen, T.; Sainio, P.; Heliövaara, M.; Impivaara, O.; Koskinen, S. Long-term determinants of muscle strength decline: Prospective evidence from the 22-year mini-Finland follow-up survey. J. Am. Geriatr. Soc. 2012, 60, 77–85. [Google Scholar] [CrossRef]
- Cheung, C.L.; Nguyen, U.S.; Au, E.; Tan, K.C.; Kung, A.W. Association of handgrip strength with chronic diseases and multimorbidity: A cross-sectional study. Age 2013, 35, 929–941. [Google Scholar] [CrossRef]
- Rijk, J.M.; Roos, P.R.; Deckx, L.; van den Akker, M.; Buntinx, F. Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis. Geriatr. Gerontol. Int. 2016, 16, 5–20. [Google Scholar] [CrossRef]
- Abizanda, P.; Navarro, J.L.; Garcia-Tomas, M.I.; Paterna, G. Validity and usefulness of hand-held dynamometry for measuring muscle strength in community-dwelling older persons. Arch. Gerontol. Geriatr. 2012, 54, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Reiß, J.; Schulzke, J.; Valentini, L.; Pirlich, M. Effect of sexual dimorphism on muscle strength in cachexia. J. Cachexia Sarcopenia Muscle 2012, 3, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorpe, R.J., Jr.; Simonsick, E.; Zonderman, A.; Evans, M.K. Association between race, poverty status and grip strength in middle to old age adults. Ethn. Dis. 2016, 26, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Tutkuviene, J.; Schiefenhovel, W. Laterality of handgrip strength: Age-and physical training-related changes in Lithuanian schoolchildren and conscripts. Ann. N. Y. Acad. Sci. 2013, 1288, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, M.F.; Pohlig, R.T.; Shupe, E.S.; Zonderman, A.B.; Evans, M.K. Dietary protein intake and overall diet quality are associated with handgrip strength in African American and white adults. J. Nutr. Health Aging 2018, 22, 700–709. [Google Scholar] [CrossRef]
- Houston, D.K.; Cesari, M.; Ferrucci, L.; Cherubini, A.; Maggio, D.; Bartali, B.; Johnson, M.A.; Schwartz, G.G.; Kritchevsky, S.B. Association between vitamin D status and physical performance: The InCHIANTI study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007, 62, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Lauretani, F.; Semba, R.D.; Bandinelli, S.; Dayhoff-Brannigan, M.; Giacomini, V.; Corsi, A.M.; Guralnik, J.M.; Ferrucci, L. Low plasma carotenoids and skeletal muscle strength decline over 6 years. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 376–383. [Google Scholar] [CrossRef]
- Semba, R.D.; Blaum, C.; Guralnik, J.M.; Moncrief, D.T.; Ricks, M.O.; Fried, L.P. Carotenoid and vitamin E status are associated with indicators of sarcopenia among older women living in the community. Aging Clin. Exp. Res. 2003, 15, 482–487. [Google Scholar] [CrossRef]
- Saito, K.; Yokoyama, T.; Yoshida, H.; Kim, H.; Shimada, H.; Yoshida, Y.; Iwasa, H.; Shimizu, Y.; Kondo, Y.; Handa, S.; et al. A significant relationship between plasma vitamin C concentration and physical performance among Japanese elderly women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2012, 67, 295–301. [Google Scholar] [CrossRef]
- Lauretani, F.; Semba, R.D.; Bandinelli, S.; Ray, A.L.; Guralnik, J.M.; Ferrucci, L. Association of low plasma selenium concentrations with poor muscle strength in older community-dwelling adults: The InCHIANTI Study. Am. J. Clin. Nutr. 2007, 86, 347–352. [Google Scholar] [CrossRef]
- Rahi, B.; Morais, J.A.; Dionne, I.J.; Gaudreau, P.; Payette, H.; Shatenstein, B. The combined effects of diet quality and physical activity on maintenance of muscle strength among diabetic older adults from the NuAge cohort. Exp. Gerontol. 2014, 49, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Talegawkar, S.A.; Bandinelli, S.; Bandeen-Roche, K.; Chen, P.; Milaneschi, Y.; Tanaka, T.; Semba, R.D.; Guralnik, J.M.; Ferrucci, L. A higher adherence to a Mediterranean-style diet is inversely associated with the development of frailty in community-dwelling elderly men and women. J. Nutr. 2012, 142, 2161–2166. [Google Scholar] [CrossRef] [PubMed]
- Fougère, B.; Mazzuco, S.; Spagnolo, P.; Guyonnet, S.; Vellas, B.; Cesari, M.; Gallucci, M. Association between the Mediterranean-style dietary pattern score and physical performance: Results from TRELONG study. J. Nutr. Health Aging 2016, 20, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Muscogiuri, G.; Di Somma, C.; Tramontano, G.; De Luca, V.; Illario, M.; Colao, A.; Savastano, S. Association between Mediterranean diet and hand grip strength in older adult women. Clin. Nutr. 2019, 38, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Perälä, M.M.; von Bonsdorff, M.B.; Männistö, S.; Salonen, M.K.; Simonen, M.; Kanerva, N.; Rantanen, T.; Pohjolainen, P.; Eriksson, J.G. The healthy Nordic diet predicts muscle strength 10 years later in old women, but not old men. Age Ageing 2017, 46, 588–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, E.K.; Han, C.; Jo, S.A.; Park, M.K.; Kim, S.; Kim, E.; Park, M.H.; Lee, J.; Jo, I. Morbidity and related factors among elderly people in South Korea: Results from the Ansan Geriatric (AGE) cohort study. BMC Public Health 2007, 7, 10. [Google Scholar] [CrossRef]
- Jeong, G.W.; Kim, Y.J.; Park, S.; Kim, H.; Kwon, O. Associations of recommended food score and physical performance in Korean elderly. BMC Public Health 2019, 19, 128. [Google Scholar] [CrossRef]
- Lee, J.A. Relationship between grip strength and prevalence of hypertension in Korean adults: The Sixth Korea National Health and Nutrition Examination Survey (2015). Off. J. Korean Acad. Kinesiol. 2017, 19, 53–60. [Google Scholar]
- Lee, S.H.; Kim, S.J.; Han, Y.; Ryu, Y.J.; Lee, J.H.; Chang, J.H. Hand grip strength and chronic obstructive pulmonary disease in Korea: An analysis in KNHANES VI. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 2313–2321. [Google Scholar] [CrossRef]
- Oh, Y.H.; Moon, J.H.; Kong, M.H.; Oh, B.; Kim, H.J. The Association between hand grip strength and health-related quality of life in Korean adults. Korean J. Sports Med. 2017, 35, 103–111. [Google Scholar] [CrossRef]
- Kwak, Y.; Kim, Y. Quality of life and subjective health status according to handgrip strength in the elderly: A cross-sectional study. Aging Ment. Health 2019, 23, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare (KR). Korean National Health and Nutrition Examination Survey (KNHANES). Available online: http://knhanes.cdc.go.kr (accessed on 19 March 2009).
- Yook, S.M.; Park, S.; Moon, H.K.; Kim, K.; Shim, J.E.; Hwang, J.Y. Development of Korean Healthy Eating Index for adults using the Korea National Health and Nutrition Examination Survey data. J. Nutr. Health 2015, 48, 419–428. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare (KR). Dietary Guidelines for Korean Adults; Ministry of Health and Welfare: Seoul, Korea, 8 December 2009. Available online: http://www.mw.go.kr/front_new/jb/sjb030301vw.jsp?PAR_MENU_ID=03&MENU_ID=0320&CONT_SEQ=224044&page=1 (accessed on 27 March 2014).
- The Korean Nutrition Society. Dietary Reference Intake for Koreans, 1st ed.; The Korean Nutrition Society: Seoul, Korea, 2010. [Google Scholar]
- Ministry of Health and Welfare (KR). Health Plan 2020; Ministry of Health and Welfare: Seoul, Korea, 2011. Available online: http://www.mw.go.kr/front_new/jb/sjb030301vw.jsp?PAR_MENU_ID=03&MENU_ID=0319&CONT_SEQ=257824&page=1 (accessed on 17 April 2014).
- Trichopoulou, A.; Kouris-Blazos, A.; Wahlqvist, M.L.; Gnardellis, C.; Lagiou, P.; Polychronopoulos, E.; Vassilakou, T.; Liworth, L.; Trichopoulos, D. Diet and overall survival in elderly people. BMJ 1995, 311, 1457–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.; Chiuve, S.E.; Rexrode, K.M.; Hu, F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung, and Blood Institute, US Department of Health and Human Services. Your Guide to Lowering Your Blood Pressure with DASH. Available online: http://www.nhlbi.nih.gov/health/public/heart/hbp/dash/ (accessed on 1 March 2013).
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Bollwein, J.; Diekmann, R.; Kaiser, M.J.; Bauer, J.M.; Uter, W.; Sieber, C.C.; Volkert, D. Dietary quality is related to frailty in community-dwelling older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 483–489. [Google Scholar] [CrossRef]
- Xu, B.; Houston, D.K.; Locher, J.L.; Ellison, K.J.; Gropper, S.; Buys, D.R.; Zizza, C.A. Higher Healthy Eating Index-2005 scores are associated with better physical performance. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2012, 67, 93–99. [Google Scholar] [CrossRef]
- Kojima, N.; Kim, M.; Saito, K.; Yoshida, H.; Yoshida, Y.; Hirano, H.; Obuchi, S.; Shimada, H.; Suzuki, T.; Kim, H. Lifestyle-Related Factors Contributing to Decline in Knee Extension Strength among Elderly Women: A Cross-Sectional and Longitudinal Cohort Study. PLoS ONE 2015, 10, e0132523. [Google Scholar] [CrossRef]
- Reedy, J.; Krebs-Smith, S.M.; Miller, P.E.; Liese, A.D.; Kahle, L.L.; Park, Y.; Subar, A.F. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J. Nutr. 2014, 144, 881–889. [Google Scholar] [CrossRef]
- Distefano, G.; Goodpaster, B.H. Effects of exercise and aging on skeletal muscle. Cold Spring Harb. Perspect. Med. 2018, 8, a029785. [Google Scholar] [CrossRef] [PubMed]
- Drenowatz, C.; Shook, R.P.; Hand, G.A.; Hébert, J.R.; Blair, S.N. The independent association between diet quality and body composition. Sci. Rep. 2014, 4, 4928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agnoli, C.; Sieri, S.; Ricceri, F.; Giraudo, M.T.; Masala, G.; Assedi, M.; Panico, S.; Mattiello, A.; Tumino, R.; Giurdanella, M.C.; et al. Adherence to a Mediterranean diet and long-term changes in weight and waist circumference in the EPIC-Italy cohort. Nutr. Diabetes 2018, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Shirani, F.; Chitsazi, M.J.; Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) diet on weight and body composition in adults: A systematic review and meta-analysis of randomized controlled clinical trials. Obes. Rev. 2016, 17, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Czerwinski, S.; Abellan Van Kan, G.; Morley, J.E.; Cesari, M.; Onder, G.; Woo, J.; Baumgartner, R.; Pillard, F.; Boirie, Y.; et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging 2008, 12, 433–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowlin, S.Y.; Hammer, M.J.; D’Eramo Melkus, G. Diet, inflammation, and glycemic control in type 2 diabetes: An integrative review of the literature. J. Nutr. Metab. 2012, 2012, 542698. [Google Scholar] [CrossRef] [PubMed]
- Casas, R.; Urpi-Sardà, M.; Sacanella, E.; Arranz, S.; Corella, D.; Castañer, O.; Lamuela-Raventós, R.M.; Salas-Salvadó, J.; Lapetra, J.; Portillo, M.P.; et al. Anti-Inflammatory Effects of the Mediterranean Diet in the Early and Late Stages of Atheroma Plaque Development. Mediat. Inflamm. 2017, 2017, 3674390. [Google Scholar] [CrossRef]
- Welch, A.A. Nutritional influences on age-related skeletal muscle loss. Proc. Nutr. Soc. 2014, 73, 16–33. [Google Scholar] [CrossRef]
- Otten, L.; Bosy-Westphal, A.; Ordemann, J.; Rothkegel, E.; Stobäus, N.; Elbelt, U.; Norman, K. Abdominal fat distribution differently affects muscle strength of the upper and lower extremities in women. Eur. J. Clin. Nutr. 2017, 71, 372–376. [Google Scholar] [CrossRef]
- Le Lay, S.; Simard, G.; Martinez, M.C.; Andriantsitohaina, R. Oxidative stress and metabolic pathologies: From an adipocentric point of view. Oxidative Med. Cell. Longev. 2014, 2014, 908539. [Google Scholar] [CrossRef]
- Gomes, A.P.; Soares, A.L.; Gonçalves, H. Low diet quality in older adults: A population-based study in southern Brazil. Cienc. Saude Coletiva 2016, 21, 3417–3428. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, T.I.; Previdelli, A.N.; Ferreira, M.P.D.; Marques, K.M.; Goulart, R.M.M.; de Aquino, R.D. Factors associated with diet quality of older adults. Rev. Nutr. 2017, 30, 297–306. [Google Scholar] [CrossRef] [Green Version]
- de Souza Fernandes, D.P.; Duarte, M.S.L.; Pessoa, M.C.; Franceschini, S.D.C.C.; Ribeiro, A.Q. Evaluation of diet quality of the elderly and associated factors. Arch. Gerontol. Geriatr. 2017, 72, 174–180. [Google Scholar]
- Drewnowski, A.; Evans, W.J. Nutrition, physical activity, and quality of life in older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56 (Suppl. 2), 89–94. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.M.; Jameson, K.A.; Batelaan, S.F.; Martin, H.J.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Sayer, A.A.; Hertfordshire Cohort Study Group. Diet and its relationship with grip strength in community-dwelling older men and women: The Hertfordshire cohort study. J. Am. Geriatr. Soc. 2008, 56, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Jagger, C.; Davies, K.; Adamson, A.; Kirkwood, T.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Sayer, A.A. Effect of Dietary Patterns on Muscle Strength and Physical Performance in the Very Old: Findings from the Newcastle 85+ Study. PLoS ONE 2016, 11, e0149699. [Google Scholar] [CrossRef] [PubMed]
- Korea Centers for Disease Control and Prevention. Korea National Health and Nutrition Examination Survey (KNHANES) IV; Ministry of Health and Welfare: Seoul, Korea, 2010. [Google Scholar]
KHEI 2 | aMED 3 | DASH 4 | |||||||
---|---|---|---|---|---|---|---|---|---|
Component | Maximum Score | Criteria for Maximum Score | Criteria for Minimum Score | Maximum Score | Criteria for Maximum Score | Criteria for Minimum Score | Maximum Score | Criteria for Maximum Score | Criteria for Minimum Score |
Breakfast | 10 | Have breakfast in 2 d | Nothing | — | — | — | — | — | — |
Whole grains | 5 | ≥ 1 svg/d | 0 svg/d | 1 | Median or greater | Less than median | 5 | Highest quintile | Lowest quintile |
Refined grains | 5 | Male: ≤ 4 svg/d, Female: ≤ 3 svg/d | Male: ≥ 5 svg/d, Female: ≥ 4 svg/d | — | — | — | — | — | — |
Nuts and legumes | 5 | Highest quintile | Lowest quintile | ||||||
Nuts | — | — | — | 1 | Median or greater | Less than median | — | — | — |
Legumes | — | — | — | 1 | Median or greater | Less than median | — | — | — |
Fruits including juice | 5 | Male: ≥ 3 svg/d, Female: ≥ 2 svg/d | 0 svg/d | 1 | Median or greater | Less than median | 5 | Highest quintile | Lowest quintile |
Fruit excluding juice | 5 | Male: ≥ 1.5 svg/d, Female: ≥ 1 svg/d | 0 svg/d | — | — | — | — | — | — |
Vegetables including Kimchi or pickles | 5 | ≥ 7 svg/d | 0 svg/d | 1 | Median or greater | Less than median | 5 | Highest quintile | Lowest quintile |
Vegetables excluding Kimchi and pickles | 5 | ≥ 4 svg/d | 0 svg/d | — | — | — | — | — | — |
Milk and dairy | 10 | ≥ 1 svg/d | 0 svg/d | — | — | — | 5 | Highest quintile | Lowest quintile |
Protein foods | 10 | Male: ≥ 5 svg/d, Female: ≥ 4 svg/d | 0 svg/d | — | — | — | — | — | — |
Red and processed meat | — | — | — | 1 | Median or greater | Less than median | 5 | Lowest quintile | Highest quintile |
Ratio of white meat to red meat | 5 | 4: 1 (≥ 4) | 0 svg/d (Red meat only) | — | — | — | — | — | — |
Fish | — | — | — | 1 | Median or greater | Less than median | — | — | — |
Sugar-sweetened beverages | — | — | — | — | — | — | 5 | Lowest quintile | Highest quintile |
Alcohol | — | — | — | 1 | Male: 10-25 g/d Female: 5-15 g/d | Male: < 10 or > 25 g/d Female: < 5 or > 15 g/d | — | — | — |
Sodium | 10 | ≤ 2000 mg/d | > 85 percentile | — | — | — | 5 | Lowest quintile | Highest quintile |
Percentages of energy from empty calorie foods | 10 | ≤ 5% energy | ≥ 10% energy | — | — | — | — | — | — |
Percentages of energy from carbohydrates | 5 | 55~70% | < 15 percentile > 85 percentile | — | — | — | — | — | — |
Percentages of energy from fat | 10 | 15~25% | < 15 percentile > 85 percentile | — | — | — | — | — | — |
MUFA: SFA ratio | — | — | — | 1 | Median or greater | Less than median | — | — | — |
KHEI | aMED | DASH | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | p-Value | p-Value (T1 vs. T3) | p-Value (T2 vs. T3) | T1 | T2 | T3 | p-Value | p-Value (T1 vs. T3) | p-Value (T2 vs. T3) | T1 | T2 | T3 | p-Value | p-Value (T1 vs. T3) | p-Value (T2 vs. T3) | |
Men | ||||||||||||||||||
n | 569 | 570 | 570 | 632 | 373 | 704 | 594 | 489 | 626 | |||||||||
Low muscle strength 2, n (%) | 143 (24.0) | 121 (21.5) | 80 (13.0) | <0.001 | 174 (27.4) | 75 (20.4) | 95 (12.5) | <0.001 | 131 (21.7) | 111 (22.0) | 102 (15.5) | 0.018 | ||||||
Age, y | 72.9 ± 0.2 | 72.1 ± 0.2 | 72.0 ± 0.2 | 0.007 | 0.004 | 0.689 | 73.3 ± 0.2 | 72.4 ± 0.3 | 71.5 ± 0.2 | <0.001 | <0.001 | 0.012 | 72.2 ± 0.2 | 72.8 ± 0.3 | 72.1 ± 0.2 | 0.080 | 0.582 | 0.030 |
BMI, kg/m2 | 23.3 ± 0.2 | 23.8 ± 0.1 | 23.9 ± 0.1 | 0.008 | 0.005 | 0.907 | 23.4 ± 0.2 | 23.8 ± 0.2 | 23.8 ± 0.1 | 0.036 | 0.015 | 0.971 | 23.5 ± 0.2 | 23.5 ± 0.1 | 24.0 ± 0.1 | 0.038 | 0.028 | 0.030 |
Education, n (%) | ||||||||||||||||||
<= Elementary school | 284 (56.1) | 220 (42.7) | 141(26.6) | <0.001 | 293 (53.9) | 141 (39.3) | 211 (32.4) | <0.001 | 261 (49.5) | 188 (42.7) | 196 (33.5) | <0.001 | ||||||
> Elementary school | 219 (43.9) | 308 (57.3) | 392 (73.4) | 271 (46.1) | 207 (60.7) | 441 (67.6) | 272 (50.5) | 254 (57.3) | 393 (66.5) | |||||||||
No response | 66 | 42 | 37 | 68 | 25 | 52 | 61 | 47 | 37 | |||||||||
Smoking status, n (%) | ||||||||||||||||||
Nonsmoker | 96 (18.0) | 96 (16.0) | 139 (27.1) | <0.001 | 113 (19.7) | 68 (17.6) | 150 (22.3) | 0.060 | 93 (16.4) | 99 (20.5) | 139 (23.8) | <0.001 | ||||||
Ex-smoker | 298 (58.5) | 343 (63.3) | 340 (59.7) | 333 (57.3) | 228 (63.9) | 420 (61.6) | 329 (59.2) | 271 (59.0) | 381 (63.2) | |||||||||
Current smoker | 122 (23.6) | 111 (20.7) | 69 (13.2) | 135 (23.1) | 61 (18.5) | 106 (16.1) | 139 (24.4) | 86 (20.5) | 77 (13.0) | |||||||||
No response | 53 | 20 | 22 | 51 | 16 | 28 | 33 | 33 | 29 | |||||||||
Alcohol consumption, n (%) | ||||||||||||||||||
Never | 154 (30.3) | 189 (32.4) | 201 (37.6) | <0.001 | 218 (39.0) | 109 (30.1) | 217 (30.7) | 0.057 | 187 (33.4) | 145 (31.3) | 212 (35.2) | 0.362 | ||||||
< 1 Months | 57 (10.4) | 83 (15.9) | 110 (19.7) | 87 (14.4) | 59 (16.3) | 104 (15.9) | 80 (13.3) | 71 (16.2) | 99 (16.9) | |||||||||
1 Months | 75 (13.4) | 108 (19.8) | 114 (20.2) | 90 (15.1) | 78 (22.0) | 129 (18.1) | 93 (17.4) | 88 (17.5) | 116 (18.8) | |||||||||
2-4 Months | 96 (19.8) | 89 (17.0) | 76 (13.8) | 81 (14.5) | 53 (15.5) | 127 (19.4) | 93 (17.1) | 81 (19.7) | 87 (14.3) | |||||||||
>= 4 Months | 136 (26.1) | 82 (14.8) | 47 (8.7) | 105 (17.0) | 59 (16.1) | 101 (15.8) | 110 (18.8) | 72 (15.3) | 83 (14.8) | |||||||||
No response | 51 | 19 | 22 | 51 | 15 | 26 | 31 | 32 | 29 | |||||||||
Days of strength exercise (days/week), n (%) | ||||||||||||||||||
No | 403 (79.6) | 363 (66.4) | 347 (65.9) | <0.001 | 449 (78.8) | 255 (73.2) | 409 (61.9) | <0.001 | 415 (76.7) | 330 (73.9) | 368 (62.1) | <0.001 | ||||||
1 days/week | 6 (1.1) | 11 (2.0) | 6 (0.9) | 11 (1.7) | 1 (0.3) | 11 (1.6) | 8 (1.7) | 9 (1.8) | 6 (0.7) | |||||||||
2 days/week | 15 (3.3) | 25 (4.5) | 27 (5.7) | 17 (3.2) | 14 (3.5) | 36 (6.1) | 21 (3.8) | 15 (3.9) | 31 (5.6) | |||||||||
3 days/week | 16 (3.2) | 20 (4.2) | 24 (4.1) | 15 (2.8) | 15 (4.1) | 30 (4.5) | 16 (3.0) | 13 (2.7) | 31 (5.5) | |||||||||
4 days/week | 8 (1.3) | 8 (1.8) | 20 (3.9) | 8 (1.3) | 11 (3.5) | 17 (2.6) | 10 (2.1) | 8 (2.0) | 18 (2.9) | |||||||||
>=5 days/week | 58 (11.4) | 101 (21.2) | 109 (19.5) | 65 (12.1) | 54 (15.4) | 149 (23.2) | 65 (12.8) | 68 (15.8) | 135 (23.2) | |||||||||
No response | 63 | 42 | 37 | 67 | 23 | 52 | 59 | 46 | 37 | |||||||||
Dietary supplement use, n (%) | ||||||||||||||||||
No | 385 (68.2) | 342 (59.0) | 295 (49.8) | <0.001 | 433 (69.1) | 218 (57.2) | 371 (51.5) | <0.001 | 392 (65.2) | 296 (60.1) | 334 (52.4) | <0.001 | ||||||
Yes | 184 (31.8) | 228 (41.0) | 275 (50.2) | 199 (30.9) | 155 (42.8) | 333 (48.5) | 202 (34.8) | 193 (39.9) | 292 (47.6) | |||||||||
Energy intake, kcal/d | 1916.4 ± 37.3 | 1969.8 ± 35.1 | 2002.8 ± 33.67 | 0.209 | 0.078 | 0.482 | 1746.6 ± 32.5 | 1934.3 ± 41.3 | 2161.4 ± 30.2 | <0.001 | <0.001 | <0.001 | 1917.4 ± 33.8 | 1981.7 ± 42.6 | 1991.4 ± 32.1 | 0.222 | 0.105 | 0.856 |
Number of physician diagnosed chronic conditions | 1.3 ± 0.1 | 1.3 ± 0.1 | 1.4 ± 0.1 | 0.407 | 0.246 | 0.232 | 1.2 ± 0.1 | 1.4 ± 0.1 | 1.3 ± 0.1 | 0.132 | 0.103 | 0.607 | 1.2 ± 0.1 | 1.2 ± 0.1 | 1.4 ± 0.1 | 0.028 | 0.016 | 0.039 |
Women | ||||||||||||||||||
n | 655 | 656 | 655 | 736 | 410 | 820 | 633 | 694 | 639 | |||||||||
Low muscle strength 2, n (%) | 171 (26.2) | 130 (19.3) | 87 (14.0) | <0.001 | 200 (27.3) | 86 (20.5) | 102 (12.6) | <0.001 | 158 (24.4) | 151 (22.4) | 79 (12.5) | <0.001 | ||||||
Age, y | 74.0 ± 0.2 | 72.8 ± 0.2 | 71.5 ± 0.2 | <0.001 | <0.001 | <0.001 | 74.0 ± 0.2 | 73.1 ± 0.3 | 71.5 ± 0.2 | <0.001 | <0.001 | <0.001 | 73.4 ± 0.2 | 73.1 ± 0.2 | 71.8 ± 0.2 | <0.001 | <0.001 | <0.001 |
BMI, kg/m2 | 24.4 ± 0.2 | 24.4 ± 0.2 | 24.5 ± 0.1 | 0.779 | 0.492 | 0.643 | 24.4 ± 0.1 | 24.5 ± 0.2 | 24.4 ± 0.1 | 0.965 | 0.896 | 0.874 | 24.4 ± 0.2 | 24.4 ± 0.2 | 24.5 ± 0.1 | 0.936 | 0.718 | 0.908 |
Education, n (%) | ||||||||||||||||||
<= Elementary school | 517 (87.8) | 464 (76.9) | 361 (58.6) | <0.001 | 547 (83.3) | 295 (78.7) | 500 (63.8) | <0.001 | 478 (83.9) | 465 (72.7) | 399 (66.1) | <0.001 | ||||||
> Elementary school | 58 (12.2) | 135 (23.1) | 249 (41.4) | 100 (16.7) | 76 (21.3) | 266 (36.2) | 86 (16.1) | 160 (27.3) | 196 (33.9) | |||||||||
No response | 80 | 57 | 45 | 89 | 39 | 54 | 69 | 69 | 44 | |||||||||
Smoking status, n (%) | ||||||||||||||||||
Nonsmoker | 537 (89.8) | 579 (94.6) | 600 (95.4) | 0.020 | 609 (90.3) | 368 (94.5) | 739 (95.4) | 0.023 | 524 (89.8) | 602 (93.9) | 590 (96.1) | 0.003 | ||||||
Ex-smoker | 34 (5.4) | 19 (3.4) | 18 (2.9) | 33 (4.9) | 10 (3.4) | 28 (3.1) | 29 (5.0) | 27 (4.2) | 15 (2.4) | |||||||||
Current smoker | 20 (4.8) | 11 (2.1) | 12 (1.8) | 24 (4.8) | 6 (2.1) | 13 (1.5) | 22 (5.2) | 12 (1.9) | 9 (1.5) | |||||||||
No response | 64 | 47 | 25 | 70 | 26 | 40 | 58 | 53 | 25 | |||||||||
Alcohol consumption, n (%) | ||||||||||||||||||
Never | 380 (62.6) | 387 (64.0) | 373 (57.8) | <0.001 | 439 (65.0) | 241 (62.8) | 460 (57.7) | 0.018 | 361 (60.8) | 396 (61.1) | 383 (62.3) | 0.145 | ||||||
< 1 drink/month | 132 (22.7) | 169 (27.7) | 189 (30.5) | 149 (23.1) | 106 (26.9) | 235 (30.7) | 143 (25.6) | 173 (27.5) | 174 (28.2) | |||||||||
1 drink/month | 40 (7.0) | 33 (4.9) | 44 (7.5) | 43 (6.6) | 24 (6.0) | 50 (6.5) | 38 (6.7) | 42 (6.8) | 37 (5.9) | |||||||||
2-4 drink/month | 20 (3.7) | 18 (2.9) | 19 (3.2) | 19 (2.5) | 9 (2.4) | 29 (4.3) | 19(3.4) | 20 (3.4) | 18 (2.9) | |||||||||
>= 4 drink/month | 22 (4.1) | 4 (0.4) | 5 (1.0) | 18 (2.8) | 7 (1.9) | 6 (0.8) | 18 (3.4) | 9 (1.2) | 4 (0.8) | |||||||||
No response | 61 | 45 | 25 | 68 | 23 | 40 | 54 | 54 | 23 | |||||||||
Days of strength exercise (days/week), n (%) | ||||||||||||||||||
No | 542 (93.5) | 546 (92.8) | 516 (83.9) | <0.001 | 608 (93.2) | 338 (91.9) | 658 (86.1) | 0.002 | 528 (93.4) | 565 (90.4) | 511 (86.2) | 0.009 | ||||||
1 day/week | 4 (1.0) | 7 (1.0) | 13 (2.0) | 9 (1.4) | 3 (0.7) | 12 (1.5) | 9 (1.6) | 9 (1.2) | 6 (1.1) | |||||||||
2 days/week | 9 (1.5) | 11 (1.9) | 9 (1.4) | 7 (1.2) | 6 (1.1) | 16 (2.1) | 9 (1.5) | 10 (1.6) | 10 (1.6) | |||||||||
3 days/week | 3 (0.4) | 11 (1.5) | 19 (3.2) | 6 (0.7) | 3 (0.7) | 24 (3.1) | 5 (0.6) | 9 (1.4) | 19 (3.1) | |||||||||
4 days/week | 4 (0.7) | 2 (0.3) | 14 (2.3) | 4 (0.6) | 4 (0.8) | 12 (1.6) | 3 (0.4) | 9 (1.4) | 8 (1.4) | |||||||||
>=5 days/week | 16 (3.0) | 21 (2.8) | 42 (7.3) | 16 (2.9) | 17 (4.8) | 46 (5.5) | 12 (2.5) | 24 (4.0) | 43 (6.6) | |||||||||
No response | 77 | 58 | 42 | 86 | 39 | 52 | 67 | 68 | 42 | |||||||||
Dietary supplement use, n (%) | ||||||||||||||||||
No | 393 (57.8) | 338 (50.3) | 256 (37.9) | <0.001 | 441 (58.3) | 196 (43.5) | 350 (42.3) | <0.001 | 362 (55.9) | 348 (48.5) | 277 (41.4) | <0.001 | ||||||
Yes | 262 (42.2) | 318 (49.7) | 399 (62.1) | 295 (41.7) | 214 (56.5) | 470 (57.7) | 271 (44.1) | 346 (51.5) | 362 (58.6) | |||||||||
Energy intake, kcal/d | 1438.4 ± 30.6 | 1454.8 ± 26.6 | 1537.1 ± 25.3 | 0.015 | 0.012 | 0.018 | 1293.0 ± 24.1 | 1422.6 ± 27.3 | 1669.5 ± 27.9 | <0.001 | <0.001 | <0.001 | 1429.3 ± 28.2 | 1471.9 ± 27.2 | 1529.4 ± 28.5 | 0.043 | 0.013 | 0.130 |
Number of physician diagnosed chronic conditions | 1.7 ± 0.1 | 1.8 ± 0.1 | 1.9 ± 0.1 | 0.096 | 0.042 | 0.662 | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.1 | 0.825 | 0.946 | 0.554 | 1.7 ± 0.1 | 1.8 ± 0.1 | 1.9 ± 0.1 | 0.038 | 0.011 | 0.166 |
Age at menarche, y | 16.1 ± 0.1 | 15.5 ± 0.1 | 15.4 ± 0.1 | <0.001 | <.001 | 0.418 | 15.9 ± 0.1 | 15.8 ± 0.1 | 15.5 ± 0.1 | 0.005 | 0.002 | 0.018 | 16.0 ± 0.1 | 15.7 ± 0.1 | 15.4 ± 0.1 | <0.001 | <0.001 | 0.007 |
KHEI | aMED | DASH | ||||
---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | |
KHEI | 1.00 | 1.00 | 0.38 | 0.43 | 0.53 | 0.55 |
aMDS | 0.38 | 0.43 | 1.00 | 1.00 | 0.59 | 0.60 |
DASH | 0.53 | 0.55 | 0.59 | 0.60 | 1.00 | 1.00 |
Men | Women | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unadjusted | Model 1 | Model 2 | Unadjusted | Model 1 | Model 2 | |||||||
OR | (95% CI) | OR | (95% CI) | OR | (95% CI) | OR | (95% CI) | OR | (95% CI) | OR | (95% CI) | |
KHEI | ||||||||||||
T1 | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | ||||||
T2 | 0.87 | (0.637,1.178) | 1.12 | (0.829,1.730) | 1.27 | (0.878,1.837) | 0.67 | (0.504,0.899) | 0.77 | (0.536,1.106) | 0.75 | (0.522,1.074) |
T3 | 0.47 | (0.326,0.681) | 0.55 | (0.344,0.875) | 0.57 | (0.357,0.919) | 0.46 | (0.332,0.634) | 0.66 | (0.456,0.967) | 0.68 | (0.468,0.999) |
P for trend | <0.001 | 0.008 | 0.015 | <0.001 | 0.027 | 0.053 | ||||||
aMED | ||||||||||||
T1 | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | ||||||
T2 | 0.68 | (0.476,0.968) | 0.89 | (0.594,1.343) | 0.91 | (0.602,1.377) | 0.69 | (0.486,0.972) | 0.74 | (0.496,1.102) | 0.74 | (0.499,1.110) |
T3 | 0.38 | (0.275,0.517) | 0.59 | (0.409,0.861) | 0.64 | (0.440,0.933) | 0.38 | (0.280,0.526) | 0.45 | (0.308,0.668) | 0.47 | (0.319,0.699) |
P for trend | <0.001 | 0.005 | 0.014 | <0.001 | <0.001 | <0.001 | ||||||
DASH | ||||||||||||
T1 | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | 1.00 (ref) | ||||||
T2 | 0.88 | (0.658,1.186) | 0.78 | (0.545,1.119) | 0.81 | (0.560,1.158) | 0.84 | (0.618,1.153) | 0.80 | (0.546,1.176) | 0.82 | (0.884,1.214) |
T3 | 0.66 | (0.469,0.931) | 0.57 | (0.377,0.859) | 0.63 | (0.413,0.948) | 0.54 | (0.386,0.763) | 0.51 | (0.334,0.769) | 0.52 | (0.343,0.796) |
P for trend | 0.018 | 0.010 | 0.032 | <0.001 | 0.002 | 0.004 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kwon, O. Higher Diet Quality is Associated with Lower Odds of Low Hand Grip Strength in the Korean Elderly Population. Nutrients 2019, 11, 1487. https://doi.org/10.3390/nu11071487
Kim H, Kwon O. Higher Diet Quality is Associated with Lower Odds of Low Hand Grip Strength in the Korean Elderly Population. Nutrients. 2019; 11(7):1487. https://doi.org/10.3390/nu11071487
Chicago/Turabian StyleKim, Hyesook, and Oran Kwon. 2019. "Higher Diet Quality is Associated with Lower Odds of Low Hand Grip Strength in the Korean Elderly Population" Nutrients 11, no. 7: 1487. https://doi.org/10.3390/nu11071487
APA StyleKim, H., & Kwon, O. (2019). Higher Diet Quality is Associated with Lower Odds of Low Hand Grip Strength in the Korean Elderly Population. Nutrients, 11(7), 1487. https://doi.org/10.3390/nu11071487