Mixed Nut Consumption May Improve Cardiovascular Disease Risk Factors in Overweight and Obese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Dietary Assessment and Physical Activity Level
2.4. Blood Collection and Biochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Participants
3.2. Anthropometric Measures, Blood Pressure, and Physical Activity Level
3.3. Dietary Intakes
3.4. Biochemical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Cardiovascular Diseases (CVDs). 2017. Available online: http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed on 28 March 2019).
- American Heart Association. Cardiovascular Disease: A Costly Burden for America, Projections through 2035; The American Heart Association Office of Federal Advocacy: Washington, DC, USA, 2017. [Google Scholar]
- Kris-Etherton, P.M.; Hu, F.B.; Ros, E.; Sabaté, J. The Role of Tree Nuts and Peanuts in the Prevention of Coronary Heart Disease: Multiple Potential Mechanisms. J. Nutr. 2008, 38, 1746S–1751S. [Google Scholar] [CrossRef]
- Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006, 83, 456S–460S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Willett, W.C. Dietary fats and coronary heart disease. J. Int. Med. 2012, 272, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113 (Suppl. 2), S68–S78. [Google Scholar] [CrossRef]
- Vivekananthan, D.P.; Penn, M.S.; Sapp, S.K.; Hsu, A.; Topol, E.J. Use of antioxidant vitamins for the prevention of cardiovascular disease: Meta-analysis of randomised trials. Lancet 2003, 361, 2017–2023. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Pereira, M.A.; Kroenke, C.H.; Hilner, J.E.; Van Horn, L.; Slattery, M.L.; Jacobs, D.R. Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. JAMA-J. Am. Med. Assoc. 1999, 282, 1539–1546. [Google Scholar] [CrossRef]
- Tresserra-Rimbau, A.; Rimm, E.B.; Medina-Remon, A.; Martinez-Gonzalez, M.A.; de la Torre, R.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr. Metab. Cardiovas. 2014, 24, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Earnest, C.P.; Mikus, C.R.; Lemieux, I.; Arsenault, B.J.; Church, T.S. Examination of encapsulated phytosterol ester supplementation on lipid indices associated with cardiovascular disease. Nutrition 2007, 23, 625–633. [Google Scholar] [CrossRef]
- Estruch, R.; Martınez-Gonzalez, M.; Corella, D.; Salas-Salvado, J.; Ruiz-Gutierrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Vinyoles, E.; et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: Randomized trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef]
- Knekt, P.; Reunanen, A.; Jarvinen, R.; Seppänen, R.; Heliövaara, M.; Aromaa, A. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am. J. Epidemiol. 1994, 139, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Liu, Y.H.; Chen, C.M.; Chang, W.H.; Chen, C.Y. The effect of almonds on inflammation and oxidative stress in Chinese patients with type 2 diabetes mellitus: A randomized crossover controlled feeding trial. Eur. J. Nutr. 2013, 52, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Misra, A.; Pandey, R.M.; Bhatt, S.P.; Saluja, S. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in Asian Indians with metabolic syndrome: A 24-wk, randomized control trial. Nutrition 2014, 30, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Fitó, M.; Guxens, M.; Corella, D.; Sáez, G.; Estruch, R.; de la Torre, R.; Francés, F.; Cabezas, C.; López-Sabater, M.D.C.; Marrugat, J.; et al. Effect of a traditional Mediterranean diet on lipoprotein oxidation: A randomized controlled trial. Arch. Intern. Med. 2007, 167, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- López-Uriarte, P.; Nogués, R.; Saez, G.; Bulló, M.; Romeu, M.; Masana, L.; Tormos, C.; Casas-Agustench, P.; Salas-Salvadó, J. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin. Nutr. 2010, 29, 373–380. [Google Scholar] [CrossRef]
- Wien, M.A.; Sabate, J.M.; Ikle, D.N.; Cole, S.E.; Kandeel, F.R. Almonds vs. complex carbohydrates in a weight reduction program. Int. J. Obes. 2003, 27, 1365–1372. [Google Scholar] [CrossRef]
- Sari, I.; Baltaci, Y.; Bagci, C.; Davutoglu, V.; Erel, O.; Celik, H.; Ozer, O.; Aksoy, N.; Aksoy, M. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: A prospective study. Nutrition 2010, 26, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.O.; Holbrook, M.; Duess, M.A.; Dohadwala, M.M.; Hamburg, N.M.; Asztalos, B.F.; Milbury, P.E.; Blumberg, J.B.; Vita, J.A. Effect of almond consumption on vascular function in patients with coronary artery disease: A randomized, controlled, cross-over trial. Nutr. J. 2015, 14, 61. [Google Scholar] [CrossRef]
- Cortes, B.; Nunez, I.; Cofan, M.; Gilabert, R.; Perez-Heras, A.; Casals, E.; Deulofeu, R.; Ros, E. Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function. J. Am. Coll. Cardiol. 2006, 48, 1666–1671. [Google Scholar] [CrossRef]
- Sauder, K.A.; McCrea, C.; Ulbrecht, J.; Kris-Etherton, P.M.; West, S.G. Effects of pistachios on the lipid/lipoprotein profile, glycemic control, inflammation, and endothelial function in type 2 diabetes: A randomized trial. Metabolism 2015, 64, 1521–1529. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, J.C.; Most, M.M.; Lefevre, M.; Greenway, F.L.; Rood, J.C. Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am. J. Clinic. Nutr. 2002, 76, 1000–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casas-Agustench, P.; López-Uriarte, P.; Bullo, M.; Ros, E.; Cabré-Vila, J.J.; Salas-Salvadó, J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr. Metab. Cardiovas. 2011, 21, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Nam, G.E.; Seo, J.A.; Yoon, T.; Seo, I.; Lee, J.H.; Im, D.; Bahn, K.N.; Jeong, S.A.; Kang, T.S.; et al. Nut consumption has favorable effects on lipid profiles of Korean women with metabolic syndrome. Nutr. Res. 2014, 34, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.L.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H. Obesity and cardiovascular disease—Pathophysiology, evaluation, and effect of weight loss. Arterioscl. Throm. Vas. 2006, 26, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jönsson, L.S.; Kolb, H.; Lansink, M.; et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br. J. Nutr. 2011, 106 (Suppl. 3), S5–S78. [Google Scholar] [CrossRef] [PubMed]
- Tey, S.L.; Gray, A.R.; Chisholm, A.W.; Delahunty, C.M.; Brown, R.C. The dose of hazelnuts influences acceptance and diet quality but not inflammatory markers and body composition in overweight and obese individuals. J. Nutr. 2013, 143, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- USDA, United States Department of Agriculture. Supertracker Home. 2012. Available online: https://www.supertracker.usda.gov/default.aspx (accessed on 28 March 2019).
- Craig, C.L.; Marshall, A.L.; Sjoestroem, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Benefits of nut consumption on insulin resistance and cardiovascular risk factors: Multiple potential mechanisms of actions. Nutrients 2017, 9, 1271. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.G.M.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and Human Health Outcomes: A Systematic Review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef]
- Hagstrom, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stal, P.; Askling, J.; Hultcrantz, R.; Kechagias, S. Cardiovascular risk factors in non-alcoholic fatty liver disease. Liver Int. 2019, 39, 197–204. [Google Scholar] [CrossRef]
- Rashmee, P.; Sood, G.K. Non-alcoholic fatty liver disease and cardiovascular risk. World J. Gastrointest. Pathophysiol. 2017, 8, 51–58. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Song, R.; Nguyen, C.; Zerlin, A.; Karp, H.; Naowamondhol, K.; Thames, G.; Gao, K.; Li, L.; Tseng, C.H.; et al. Pistachio Nuts Reduce Triglycerides and Body Weight by Comparison to Refined Carbohydrate Snack in Obese Subjects on a 12-Week Weight Loss Program. J. Am. Coll. Nutr. 2010, 29, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Viguiliouk, E.; Kendall, C.W.; Blanco Mejia, S.; Cozma, A.I.; Ha, V.; Mirrahimi, A.; Jayalath, V.H.; Augustin, L.S.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 2014, 9, e103376. [Google Scholar] [CrossRef] [PubMed]
- Parham, M.; Heidari, S.; Khorramirad, A.; Hozoori, M.; Hosseinzadeh, F.; Bakhtyari, L.; Vafaeimanesh, J. Effects of pistachio nut supplementation on blood glucose in patients with type 2 diabetes: A randomized crossover trial. Rev. Diabet. Stud. 2014, 11, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Neale, E.P.; Tapsell, L.C.; Guan, V.; Batterham, M.J. The effect of nut consumption on markers of inflammation and endothelial function: A systematic review and meta-analysis of randomized controlled trials. BMJ Open 2017, 7, e016863. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Li, N.; Zhang, W.; Zhang, X.; Lapsley, K.; Huang, G.; Blumberg, J.; Ma, G.; Chen, J. A pilot study on the effects of almond consumption on DNA damage and oxidative stress in smokers. Nutr. Cancer 2006, 54, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, T.; Yatsuya, H.; Toyoshima, H.; Sasaki, S.; Li, Y.; Otsuka, R.; Wada, K.; Hotta, Y.; Mitsuhashi, H.; Matsushita, K.; et al. Higher dietary intake of alpha-linolenic acid is associated with lower insulin resistance in middle-aged Japanese. Prev. Med. 2010, 50, 272–276. [Google Scholar] [CrossRef]
- Xiong, Y.; Swaminath, G.; Cao, Q.; Yang, L.; Guo, Q.; Salomonis, H.; Lu, J.; Houze, J.B.; Dransfield, P.J.; Wang, Y.; et al. Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol. Cell. Endocrinol. 2013, 369, 119–129. [Google Scholar] [CrossRef]
- Clemmons, D.R. The relative roles of growth hormone and IGF-1 in controlling insulin sensitivity. J. Clin. Investig. 2004, 113, 25–27. [Google Scholar] [CrossRef] [Green Version]
- Azzout-Marniche, D.; Gaudichon, C.; Tomé, D. Dietary protein and blood glucose control. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weickert, M.; Pfeiffer, A.F.H. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Mukuddem-Petersen, J.; Oosthuizen, W.; Jerling, J.C. A systematic review of the effects of nuts on blood lipid profiles in humans. J. Nutr. 2005, 135, 2082e9. [Google Scholar] [CrossRef] [PubMed]
- Mukuddem-Petersen, J.; Stonehouse, O.W.; Jerling, J.C.; Hanekom, S.M.; White, Z. Effects of a high walnut and high cashew nut diet on selected markers of the metabolic syndrome: A controlled feeding trial. Br. J. Nutr. 2007, 97, 1144e53. [Google Scholar] [CrossRef] [PubMed]
- Tapsell, L.C.; Gillen, L.J.; Patch, C.S.; Batterham, M.; Owen, A.; Bare, M.; Kennedy, M. Including walnuts in a low-fat/modified-fat diet improves HDL cholesterol-to-total cholesterol ratios in patients with type 2 diabetes. Diabetes Care 2004, 27, 2777–2783. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Oda, K.; Ros, E. Nut consumption and blood lipid levels: A pooled analysis of 25 intervention trials. Arch. Intern. Med. 2010, 170, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Paramsothy, P.; Knopp, R.H.; Kahn, S.E.; Retzlaff, B.M.; Fish, B.; Ma, L.; Ostlund, R.E. Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity. Am. J. Clin. Nutr. 2011, 95, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health. EFSA J. 2011, 9, 2474. [Google Scholar] [CrossRef]
- Lee, R.; Margaritis, M.; Channon, K.M.; Antoniades, C. Evaluating Oxidative Stress in Human Cardiovascular Disease: Methodological Aspects and Considerations. Curr. Med. Chem. 2012, 19, 2504–2520. [Google Scholar] [CrossRef] [Green Version]
- Kelly, F.J.; Fussell, J.C. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic. Biol. Med. 2017, 110, 345–367. [Google Scholar] [CrossRef] [Green Version]
- Han, J.M.; Jo, A.N.; Lee, S.M.; Bae, H.S.; Jun, D.W.; Cho, Y.K.; Suk, K.T.; Yoon, J.H.; Ahn, S.B.; Cho, Y.J.; et al. Associations between intakes of individual nutrients or whole food groups and non-alcoholic fatty liver disease among Korean adults. J. Gastroen. Hepatol. 2014, 29, 1265–1272. [Google Scholar] [CrossRef]
- Abazarfard, Z.; Eslamian, G.; Salehi, M.; Keshavarzi, S. A randomized controlled trial of the effects of an almond-enriched, hypocaloric diet on liver function tests in overweight/obese women. Iran. Red Crescent Med. J. 2016, 18, e23628. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.Y.; Groven, S.; Marx, A.; Rasmussen, C.; Beidler, J. Anti-inflammatory, antioxidant, and hypolipidemic effects of mixed nuts in atherogenic diet-fed rats. Molecule 2018, 23, 3126. [Google Scholar] [CrossRef] [PubMed]
- Ellis, P.R.; Kendall, C.W.; Ren, Y.; Parker, C.; Pacy, J.F.; Waldron, K.W.; Jenkins, D.J. Role of cell walls in the bioaccessibility of lipids in almond seeds. Am. J. Clin. Nutr. 2004, 80, 604–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.Y.; Dhillon, J.; Mattes, R.D. A review of the effects of nuts on appetite, food intake, metabolism, and body weight. Am. J. Clin. Nutr. 2014, 100 (Suppl.), 412S–422S. [Google Scholar] [CrossRef] [Green Version]
- Novotny, J.A.; Gebauer, S.K.; Baer, D.J. Discrepancy between the Atwater factor predicted and empirically measured energy values of almonds in human diets. Am. J. Clin. Nutr. 2012, 96, 296–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alper, C.M.; Mattes, R.D. Effects of chronic peanut consumption on energy balance and hedonics. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- Coelho, S.B.; de Sales, R.L.; Iyer, S.; Bressan, J.; Costa, N.M.B.; Lokko, P.; Mattes, R. Effects of peanut oil load on energy expenditure, body composition, lipid profile, and appetite in lean and overweight adults. Nutrition 2006, 22, 585–592. [Google Scholar] [CrossRef]
- Hollis, J.; Mattes, R. Effect of chronic consumption of almonds on body weight in healthy humans. Br. J. Nutr. 2007, 98, 651–656. [Google Scholar] [CrossRef]
Measurements | Pretzel Group (n = 24, 9 F) | Nut Group (n = 24, 10 F) | ||||
---|---|---|---|---|---|---|
Baseline | Week 4 | Week 8 | Baseline | Week 4 | Week 8 | |
Weight (kg)* | 95.1 ± 12.2a | 95.2 ± 12.6a | 96.2 ± 12.3a | 90.3 ± 13.8b | 89.8 ± 14.2bc | 89.4 ± 14.0c |
BMI (kg/m2)* | 31.6 ± 3.1a | 31.7 ± 3.1a | 31.9 ± 3.3a | 30.9 ± 2.8ab | 30.7 ± 2.8b | 30.6 ± 2.8c |
Body Fat (%) | 39.1 ± 7.7 | 39.5 ± 7.9 | 39.6 ± 8.3 | 37.8 ± 9.1 | 38.5 ± 9.6 | 38.3 ± 9.7 |
Waist circumference (cm) | 101.4 ± 2.0 | 100.9 ± 1.9 | 100.7 ± 2.1 | 98.3 ± 2.0 | 96.3 ± 1.9 | 97.3 ± 2.1 |
W/H | 0.87 ± 0.07 | 0.88 ± 0.08 | 0.88 ± 0.08 | 0.88 ± 0.08 | 0.87 ± 0.07 | 0.87 ± 0.08 |
SBP (mm Hg) | 126.8 ± 13.7 | 126.4 ± 13.8 | 127.7 ± 11.6 | 127.6 ± 12.7 | 126.7 ± 12.7 | 125.9 ± 15.3 |
DBP (mm Hg) | 80.7 ± 8.3 | 80.3 ± 9.6 | 80.0 ± 9.6 | 84.3 ± 8.2 | 82.4 ± 10.3 | 82.1 ± 8.8 |
Nutrients | Pretzel Group (n = 24, 9 F) | Nut Group (n = 24, 10 F) | ||||
---|---|---|---|---|---|---|
Baseline | Week 4 | Week 8 | Baseline | Week 4 | Week 8 | |
Energy (kcal/d) | 1898 ± 489 | 1900 ± 597 | 2041 ± 518 | 2087 ± 552 | 2313 ± 791 | 2283 ± 608 |
CHO (%) | 48.5 ± 9.2a | 52.4 ± 10.7b | 45.9 ± 9.6a | 43.6 ± 10.3a | 38.4 ± 7.8c | 39.1 ± 10.4c |
Total fat (%) | 34.5 ± 8.0a | 30.7 ± 8.7a | 32.6 ± 7.9a | 38.7 ± 11.4a | 44.7 ± 12.3b | 43.4 ± 12.2b |
SFA (%) | 11.5 ± 3.6 | 9.9 ± 3.9 | 10.4 ± 2.9 | 12.3 ± 4.5 | 12.1 ± 3.3 | 12.2 ± 3.8 |
MUFA (%) | 12.5 ± 3.1a | 11.4 ± 5.0a | 11.8 ± 3.6a | 13.8 ± 4.7a | 19.7 ± 7.5b | 18.2 ± 7.0b |
PUFA (%) | 7.6 ± 2.1 | 7.9 ± 2.5 | 8.3 ± 3.1 | 9.6 ± 3.9 | 10.0 ± 3.3 | 10.2 ± 3.1 |
Protein (%) | 17.9 ± 5.3 | 17.9 ± 4.2 | 22.6 ± 14.1 | 18.9 ± 5.8 | 16.7 ± 4.3 | 18.0 ± 4.9 |
Fiber (g/d) | 17.0 ± 7.9 | 18.8 ± 8.4 | 19.4 ± 8.4 | 17.6 ± 7.4 | 23.3 ± 10.2 | 20.5 ± 8.7 |
Cholesterol (g/d) | 294 ± 194 | 296 ± 221 | 329 ± 171 | 345 ± 215 | 396 ± 200 | 391 ± 286 |
Folate | 574 ± 313 | 621 ± 270 | 636 ± 397 | 525 ± 243 | 537 ± 281 | 624 ± 358 |
Vitamin E (mg/d) | 6.99 ± 3.67a | 8.61 ± 9.55a | 9.49 ± 6.86a | 9.31 ± 5.24a | 15.28 ± 10.52b | 13.63 ± 9.53b |
Copper (μg/d) | 1210 ± 644a | 1218 ± 480a | 1282 ± 413a | 1248 ± 463a | 2256 ± 1761b | 1894 ± 1083b |
Sodium (g/d) | 3.17 ± 1.28 | 3.26 ± 1.65 | 3.49 ± 1.64 | 3.31 ± 0.98 | 3.30 ± 1.48 | 3.32 ± 0.85 |
Measurements | Pretzel Group (n = 24, 9 F) | Nut Group (n = 24, 10 F) | ||||
---|---|---|---|---|---|---|
Baseline | Week 4 | Week 8 | Baseline | Week 4 | Week 8 | |
Glucose (mmoL/L) | 5.20 ± 1.19a | 4.83 ± 1.13ab | 5.23 ± 1.23a | 5.21 ± 1.13a | 4.73 ± 0.73b | 4.86 ± 0.89ab |
Insulin (mIU/L) | 24.15 ± 12.4a | 24.40 ± 15.6a | 25.60 ± 14.5a | 24.31 ± 13.2a | 21.29 ± 10.8ab | 19.70 ± 10.9b |
TG (mmoL/L) | 1.13 ± 0.70ab | 1.08 ± 0.71b | 1.30 ± 0.88a | 1.26 ± 1.10ab | 1.07 ± 0.52b | 1.16 ± 0.67ab |
TC (mmoL/L) | 4.05 ± 0.73 | 4.15 ± 0.75 | 4.11 ± 0.81 | 4.04 ± 0.77 | 4.32 ± 0.84 | 4.14 ± 0.87 |
HDL-C (mmoL/L) | 1.31 ± 0.69a | 1.03 ± 0.38b | 1.08 ± 0.45ab | 1.24 ± 0.50ab | 1.24 ± 0.57ab | 1.20 ± 0.50ab |
LDL-C (mmoL/L) | 2.22 ± 0.92a | 2.63 ± 0.75b | 2.44 ± 0.84ab | 2.19 ± 0.86ab | 2.56 ± 1.19ab | 2.44 ± 0.94ab |
TBARS (μM) | 17.0 ± 26.4 | 35.1 ± 71.8 | 34.3 ± 62.9 | 17.5 ± 55.9 | 22.7 ± 54.5 | 22.5 ± 58.0 |
TAC (mM)* | 1.75 ± 0.75a | 1.73 ± 0.98a | 1.76 ± 0.74a | 1.42 ± 0.43b | 1.75 ± 0.36a | 1.62 ± 0.52a |
ALP (U/L) | 46.7 ± 13.7 | 43.6 ± 11.2 | 44.6 ± 8.4 | 46.2 ± 10.0 | 42.9 ± 10.7 | 42.1 ± 8.9 |
LDH (U/L)* | 73.5 ± 13.1a | 79.8 ± 21.5ab | 82.8 ± 18.4b | 88.0 ± 16.1b | 88.6 ± 16.6b | 73.3 ± 17.0a |
ALT (U/L) | 24.2 ± 19.0 | 21.4 ± 9.9 | 21.5 ± 10.1 | 23.5 ± 16.1 | 19.4 ± 5.9 | 22.4 ± 6. 7 |
AST (U/L) | 19.9 ± 7.4 | 20.3 ± 7.9 | 19.8 ± 10.2 | 23.1 ± 13.3 | 19.0 ± 9.9 | 22.6 ± 16.9 |
CK (U/L) | 32.9 ± 30.6 | 40.1 ± 31.1 | 32.8 ± 25.4 | 35.3 ± 25.4 | 29.4 ± 25.5 | 36.7 ± 24.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbaspour, N.; Roberts, T.; Hooshmand, S.; Kern, M.; Hong, M.Y. Mixed Nut Consumption May Improve Cardiovascular Disease Risk Factors in Overweight and Obese Adults. Nutrients 2019, 11, 1488. https://doi.org/10.3390/nu11071488
Abbaspour N, Roberts T, Hooshmand S, Kern M, Hong MY. Mixed Nut Consumption May Improve Cardiovascular Disease Risk Factors in Overweight and Obese Adults. Nutrients. 2019; 11(7):1488. https://doi.org/10.3390/nu11071488
Chicago/Turabian StyleAbbaspour, Nazanin, Traci Roberts, Shirin Hooshmand, Mark Kern, and Mee Young Hong. 2019. "Mixed Nut Consumption May Improve Cardiovascular Disease Risk Factors in Overweight and Obese Adults" Nutrients 11, no. 7: 1488. https://doi.org/10.3390/nu11071488
APA StyleAbbaspour, N., Roberts, T., Hooshmand, S., Kern, M., & Hong, M. Y. (2019). Mixed Nut Consumption May Improve Cardiovascular Disease Risk Factors in Overweight and Obese Adults. Nutrients, 11(7), 1488. https://doi.org/10.3390/nu11071488