Effects of LC-PUFA Supplementation in Patients with Phenylketonuria: A Systematic Review of Controlled Trials
Abstract
:1. Introduction
2. Methods
2.1. Inclusion and Exclusion Criteria
2.2. Intervention Types
2.3. Primary Outcome Measures
2.4. Literature Search
2.5. Study Selection
2.6. Data Extraction
2.7. Assessment of Risk of Bias
3. Results
3.1. LC-PUFA Supplementation and Circulating and Erythrocyte Lipids
3.2. LC-PUFA Supplementation and Visual Function
3.3. LC-PUFA Supplementation and Neurocognitive Function
3.4. Risk-of-Bias Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Camp:, K.M.; Parisi, M.A.; Acosta, P.B.; Berry, G.T.; Bilder, D.A.; Blau, N.; Young, J.M. Phenylketonuria scientific review conference: State of the science and future research needs. Mol. Genet. Metab. 2014, 112, 87–122. [Google Scholar] [CrossRef] [PubMed]
- Seashore, M.R.; Friedman, E.; Novelly, R.A.; Bapat, V. Loss of intellectual function in children with phenylketonuria after relaxation of dietary phenylalanine restriction. Pediatrics 1985, 75, 226–332. [Google Scholar] [PubMed]
- Azen, C.G.; Koch, R.; Friedman, E.G.; Berlow, S.; Coldwell, J.; Krause, W.; Matalon, R.; McCabe, E.; O’Flynn, M.; Peterson, R.; et al. Intellectual development in 12-year-old children treated for phenylketonuria. Am. J. Dis. Child. 1991, 145, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Jahja, R.; Huijbregts, S.C.; de Sonneville, L.M.; van der Meere, J.J.; Bosch, A.M.; Hollak, C.E.; Rubio-Gozalbo, M.E.; Brouwers, M.C.; Hofstede, F.C.; de Vries, M.C.; et al. Mental health and social functioning in early treated Phenylketonuria: The PKU-COBESO study. Mol. Genet. Metab. 2013, 110, S57–S61. [Google Scholar] [CrossRef] [PubMed]
- Burlina, A.P.; Lachmann, R.H.; Manara, R.; Cazzorla, C.; Celato, A.; van Spronsen, F.J.; Burlina, A. The neurological and psychological phenotype of adult patients with early-treated phenylketonuria: A systematic review. J. Inherit. Metab. Dis. 2019, 42, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Enns, G.M.; Koch, R.; Brumm, V.; Blakely, E.; Suter, R.; Jurecki, E. Suboptimal outcomes in patients with PKU treated early with diet alone: revisiting the evidence. Mol. Genet. Metab. 2010, 101, 99–109. [Google Scholar] [CrossRef]
- Berry, H.K.; O’Grady, D.J.; Perlmutter, L.J.; Bofinger, M.K. Intellectual development and academic achievement of children treated early for phenylketonuria. Dev. Med. Child Neurol. 1979, 21, 311–320. [Google Scholar] [CrossRef]
- Nardecchia, F.; Manti, F.; Chiarotti, F.; Carducci, C.; Carducci, C.; Leuzzi, V. Neurocognitive and neuroimaging outcome of early treated young adult PKU patients: A longitudinal study. Mol. Genet. Metab. 2015, 115, 84–90. [Google Scholar] [CrossRef]
- Christ, S.E.; Huijbregts, S.C.; de Sonneville, L.M.; White, D.A. Executive function in early-treated phenylketonuria: Profile and underlying mechanisms. Mol. Genet. Metab. 2010, 99, S22–S32. [Google Scholar] [CrossRef]
- van Spronsen, F.J.; van Wegberg, A.M.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M. Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes Endocrinol. 2017, 5, 743–756. [Google Scholar] [CrossRef] [Green Version]
- Bóveda, M.D.; Couce, M.L.; Castiñeiras, D.E.; Cocho, J.A.; Pérez, B.; Ugarte, M.; Fraga, J.M. The tetrahydrobiopterin loading test in 36 patients with hyperphenylalaninaemia: Evaluation of response and subsequent treatment. J. Inherit. Metab. Dis. 2007, 30, 8–12. [Google Scholar] [CrossRef]
- Burlina, A.; Blau, N. Effect of BH(4) supplementation on phenylalanine tolerance. J. Inherit. Metab. Dis. 2009, 32, 40–45. [Google Scholar] [CrossRef]
- Robert, M.; Rocha, J.C.; van Rijn, M.; Ahring, K.; Bélanger-Quintana, A.; MacDonald, A.; Dokoupil, K.; Gokmen Ozel, H.; Lammardo, A.M.; Goyens, P.; et al. Micronutrient status in phenylketonuria. Mol. Genet. Metab. 2013, 110, S6–S17. [Google Scholar] [CrossRef]
- Evans, S.; Daly, A.; MacDonald, J.; Preece, M.A.; Santra, S.; Vijay, S.; Chakrapani, A.; MacDonald, A. The micronutrient status of patients with phenylketonuria on dietary treatment: An ongoing challenge. Ann. Nutr. Metab. 2014, 65, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Crujeiras, V.; Aldámiz-Echevarría, L.; Dalmau, J.; Vitoria, I.; Andrade, F.; Roca, I.; Leis, R.; Fernandez-Marmiesse, A.; Couce, M.L. Vitamin and mineral status in patients with Hyperphenylalaninemia. Mol. Genet. Metab. 2015, 115, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Holman, R. Essential fatty acids. Nutr. Rev. 1958, 16, 33–35. [Google Scholar] [CrossRef] [PubMed]
- Di Pasquale, M.G. The essentials of essential fatty acids. J. Diet. Suppl. 2009, 6, 143–161. [Google Scholar] [CrossRef]
- Cubizolle, A.; Guillou, L.; Mollereau, B.; Hamel, C.P.; Brabet, P. Fatty acid transport protein 1 regulates retinoid metabolism and photoreceptor development in mouse retina. PLoS ONE 2017, 12, e0180148. [Google Scholar] [CrossRef]
- Harauma, A.; Yasuda, H.; Nakamura, M.T.; Salem, N.; Moriguchi, T. Effects of arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid on brain development using artificial rearing of delta-6-desaturase knockout mice. Prostaglandins Leukot. Essent. Fat. Acids 2017, 127, 32–39. [Google Scholar] [CrossRef]
- Janssen, C.I.; Kiliaan, A.J. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of LCPUFA on neural development, aging, and neurodegeneration. Prog. Lipid Res. 2014, 53, 1–17. [Google Scholar] [CrossRef]
- Uauy, R.; Hoffman, D.R.; Peirano, P.; Birch, D.G.; Birch, E.E. Essential fatty acids in visual and brain development. Lipids 2001, 36, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Auestad, N.; Scott, D.T.; Janowsky, J.S.; Jacobsen, C.; Carroll, R.E.; Montalto, M.B.; Halter, R.; Qiu, W.; Jacobs, J.R.; Connor, W.E.; et al. Visual, cognitive, and language assessments at 39 months: A follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics 2003, 112, e177–e183. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, M.; Biasucci, G.; Agostoni, C.; Luotti, D.; Riva, E. Lipid status and fatty acid metabolism in phenylketonuria. J. Inherit. Metab. Dis. 1995, 18, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Lohner, S.; Fekete, K.; Decsi, T. Lower n-3 long-chain polyunsaturated fatty acid values in patients with phenylketonuria: A systematic review and meta-analysis. Nutr. Res. 2013, 33, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M. PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Sackett, D.L.; Strauss, S.E.; Richardson, W.S. Evidence-Based Medicine: How to Practice and Teach EBM; Churchill-Livingstone: London, UK, 2000. [Google Scholar]
- Demmelmair, H.; MacDonald, A.; Kotzaeridou, U.; Burgard, P.; Gonzalez-Lamuno, D.; Verduci, E.; Ersoy, M.; Gokcay, G.; Alyanak, B.; Reischl, E.; et al. Determinants of plasma docosahexaenoic acid levels and their relationship to neurological and cognitive functions in PKU patients: A double blind randomized supplementation study. Nutrients 2018, 10, 1944. [Google Scholar] [CrossRef]
- Yi, S.H.L.; Kable, J.A.; Evatt, M.L.; Singh, R.H. A randomized, placebo-controlled, double-blind trial of supplemental docosahexaenoic acid on cognitive processing speed and executive function in females of reproductive age with phenylketonuria: A pilot study. Prostaglandins Leukot. Essent. Fat. Acids 2011, 85, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Beblo, S.; Demmelmair, H.; Müller-Felber, W.; Hanebutt, F.L. Does dietary DHA improve neural function in children? Observations in phenylketonuria. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 159–164. [Google Scholar] [CrossRef]
- Koletzko, B.; Sauerwald, T.; Demmelmair, H.; Herzog, M.; von Schenck, U.; Böhles, H.; Wendel, U.; Seidel, J. Dietary long-chain polyunsaturated fatty acid supplementation in infants with phenylketonuria: A randomized controlled trial. Inherit. Metab. Dis. 2007, 30, 326–332. [Google Scholar] [CrossRef]
- Agostoni, C.; Harvie, A.; McCulloch, D.L.; Demellweek, C.; Cockburn, F.; Giovannini, M.; Murray, G.; Harkness, R.A.; Riva, E. A randomized trial of long-chain polyunsaturated fatty acid supplementation in infants with phenylketonuria. Dev. Med. Child Neurol. 2006, 48, 207–212. [Google Scholar] [CrossRef]
- Cleary, M.A.; Feillet, F.; White, F.J.; Vidailhet, M.; MacDonald, A.; Grimsley, A.; Maurin, N.; Ogier de Baulny, H.; Rutherford, P.J. Randomised controlled trial of essential fatty acid supplementation in phenylketonuria. Eur. J. Clin. Nutr. 2006, 60, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Beblo, S.; Reinhardt, B.S.; Muntau, M.D.; Mueller-Felber, W.; Roscher, A.A.; Koletzko, B. Fish oil supplementation improves visual evoked potentials in children wiyh phenylketonuria. Neurology 2001, 57, 1488–1491. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Masetto, N.; Biasucci, G.; Rottoli, A.; Bonvisutto, M.; Bruzzese, M.G.; Giovannini, M.; Riva, E. Effects of long-chain polyunsaturated fatty acid supplementation on fatty acid status and visual function in treated children with hyperphenylalaninemia. J. Pediatr. 2000, 137, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Riva, E.; Biasucci, G.; Luotti, D.; Bruzzese, M.G.; Marangoni, F.; Giovannini, M. The effects of n-3 and n-6 polyunsaturated fatty acids on plasma lipids and fatty acids on treated phenylketonuric children. Prostaglandins Leukot. Essent. Fat. Acids 1995, 53, 401–404. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Sterne, J.A.C. Cochrane Handbook for Systematic Reviews of Interventions; Version 5.1.0.; Higgins, J.P.T., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2006; Chapter 8; Available online: www.cochrane-handbook.org (accessed on 15 November 2006).
- Larque, E.; Demmelmair, H.; Koletzko, B. Perinatal Supply and Metabolism of Long-Chain Polyunsaturated Fat. Acids Ann. N. Y. Acad. Sci. 2002, 967, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Birch, E.E.; Carlson, S.E.; Hoffman, D.R.; Fitzgerald-Gustafson, K.M.; Fu, V.L.N.; Drover, J.R.; Castañeda, Y.S.; Minns, L.; Wheaton, D.K.; Mundy, D.; et al. The DIAMOND (DHA Intake and Measurement of Neural Development) Study: A double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am. J. Clin. Nutr. 2010, 91, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Uauy, R.; Hoffman, D.R.; Mena, P.; Llanos, A.; Birch, E.E. Term infant studies of DHA and ARA supplementation on neurodevelopment: Results of randomized controlled trials. J. Pediatr. 2003, 143, S17–S25. [Google Scholar] [CrossRef]
- Alshweki, A.; Pérez, A.; Baña, A.M.; de Castro, M.J.; Andrade, F.; Aldamiz-Echevarría, L.; Sáenz de Pipaón, M.; fraga, J.M.; Couce, M.L. Effects of different arachidonic acid supplementation on psychomotor development in very preterm infants; a randomized controlled trial. Nutr. J. 2015, 14, 101. [Google Scholar] [CrossRef]
- Baack, M.L.; Baack, M.D.; Norris, W.A.; Yao, J.; Colaizy, T. Long Chain Polyunsaturated Fatty Acid Levels in U.S. Donor Human Milk: Meeting the Needs of Premature Infants? J. Perinatol. 2012, 32, 598–603. [Google Scholar] [CrossRef]
- Abedi, E.; Sahari, M. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef]
- Pounis, G.; de Lorgeril, M.; Salen, P.; Laporte, F.; Krogh, V.; Siani, A.; Arnout, J.; Cappuccio, F.P.; van Dongen, M.; Donati, M.B.; et al. European Collaborative Group of the IMMIDIET Project. Dietary patterns and fatty acids levels of three European populations. Results from the IMMIDIET study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Infante, J.P.; Huszagh, V.A. Impaired arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acid synthesis by phenylalanine metabolites as etiological factors in the neuropathology of phenylketonuria. Mol. Genet. Metab. 2001, 72, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Vlaardingerbroek, H.; Hornstra, G.; de Koning, T.J.; Smeitink, J.A.; Bakker, H.D.; de Klerk, H.B.; Rubio-Gozalbo, M.E. Essential polyunsaturated fatty acids in plasma and erythrocytes of children with inborn errors of amino acid metabolism. Mol. Genet. Metab. 2006, 88, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Vilaseca, M.A.; Gómez-López, L.; Lambruschini, N.; Gutiérrez, A.; García, R.; Meavilla, S.; Moreno, J.; Artuch, R. Long-chain polyunsaturated fatty acid concentration in patients with inborn errors of metabolism. Nutr. Hosp. 2011, 26, 128–136. [Google Scholar] [PubMed]
- Moseley, K.; Koch, R.; Moser, A.B. Lipid status and long-chain polyunsaturated fatty acid concentrations in adults and adolescents with phenylketonuria on phenylalanine-restricted diet. J. Inherit. Metab. Dis. 2002, 25, 56–64. [Google Scholar] [CrossRef]
- Fekete, K.; Decsi, T. Long-chain polyunsaturated fatty acids in inborn errors of metabolism. Nutrients 2010, 2, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Decsi, T.; Sperl, W.; Koletzko, B. Essential fatty acids in clinically stable children with propionic acidaemia. J. Inherit. Metab. Dis. 1997, 20, 778–782. [Google Scholar] [CrossRef]
- Fokkema, M.R.; Smit, E.N.; Martini, L.A.; Woltil, H.A.; Boersma, E.R.; Muskiet, F.A. Assessment of fatty acid and omega 3 fatty acid status by measurement of erythrocyte 20:3 omega 9 (Mead acid), 22:5 omega 6/20:4 omega 6 and 22:5 omega 6/22 omega 3. Prostaglandins Leukot. Essent. Fat. Acids 2002, 67, 345–356. [Google Scholar] [CrossRef]
- ESPGHAN Committee on Nutrition. Supplementation of N-3 LCPUFA to the diet of children older than 2 years: A commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2011, 53, 2–10. [Google Scholar] [CrossRef]
- Walsh, P.; Kane, N.; Butler, S. The clinical role of evoked potentials. J. Neurol. Neurosurg Psychiatry 2005, 76, ii16–ii22. [Google Scholar] [CrossRef] [Green Version]
- Gramer, G.; Förl, B.; Springer, C.; Weimer, P.; Haege, G.; Mackensen, F.; Müller, E.; Völcker, H.E.; Hoffmann, G.F.; Lindner, M.; et al. Visual functions in phenylketonuria-evaluating the dopamine and long-chain polyunsaturated fatty acids depletion hypotheses. Mol. Genet. Metab. 2013, 108, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.M.; McCulloch, D.L.; Herbert, A.M.; Robinson, P.H.; Taylor, M.J. Visual event-related potentials in children with phenylketonuria. Acta. Paediatr. 2000, 89, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Bennett, L.D.; Brush, R.S.; Chan, M.; Lydic, T.A.; Reese, K.; Reid, G.E.; Busik, J.V.; Elliott, M.H.; Anderson, R.E. Effect of reduced retinal VLC-PUFA on rod and cone photoreceptors. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3150–31577. [Google Scholar] [CrossRef] [PubMed]
- Shindou, H.; Koso, H.; Sasaki, J.; Nakanishi, H.; Sagara, H.; Nakagawa, K.M.; Takahashi, Y.; Hishikawa, D.; Iizuka-Hishikawa, Y.; Tokumasu, F.; et al. Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor cells. J. Biol. Chem. 2017, 292, 12054–12064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Peck, D.; White, D.A.; Christ, S.E. Tract-based evaluation of white matter damage in individuals with early-treated phenylketonuria. J. Inherit. Metab. Dis. 2014, 37, 237–243. [Google Scholar] [CrossRef] [PubMed]
- González, M.J.; Polo, M.R.; Ripollés, P.; Gassió, R.; Ormazabal, A.; Sierra, C.; Roura, R.C.; Artuch, R.; Campistol, J. White matter microstructural damage in early treated phenylketonuric patients. Orphanet J. Rare. Dis. 2018, 13, 188. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.J.; Leuzzi, V. White matter pathology in phenylketonuria. Mol. Genet. Metab. 2010, 99, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Stonehouse, W. Does consumption of LC omega-3 PUFA enhance cognitive performance in healthy school-aged children and throughout adulthood? Evidence from clinical trials. Nutrients 2014, 6, 2730–2758. [Google Scholar] [CrossRef]
- Kuratko, C.N.; Barret, E.C.; Nelson, E.B.; Salem, N. The relationship of docosahexaenoic acid (DHA) with learning and behavior in healthy children: A review. Nutrients 2013, 5, 2777–2810. [Google Scholar] [CrossRef]
- Hoffman, D.R.; Boettcher, J.A.; Diersen-Schade, D.A. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: A review of randomized controlled trials. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 151–158. [Google Scholar] [CrossRef]
- Rangel-Huerta, O.D.; Gil, A. Effect of omega-3 fatty acids on cognition: An updated systematic review of randomized clinical trials. Nutr. Rev. 2018, 76, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Verduci, E.; Massetto, N. Long term effects of long chain polyunsaturated fats in hyperphenylalaninemic children. Arch. Dis. Child. 2003, 88, 582–583. [Google Scholar] [CrossRef] [PubMed]
Parameter 1 | Inclusion Criteria |
---|---|
Population | Patients with phenylketonuria |
Intervention | Controlled LC-PUFA intake |
Comparison | Non-exposed control group |
Outcome | Visual and neurocognitive functions and fatty acid levels |
Setting | Controlled trials |
Reference | n | Age 1 | Intervention | Trial Type (Duration of Intervention) | Outcome Measure | Results 2 | Conclusion |
---|---|---|---|---|---|---|---|
Demmelmair et al. (2018) [27] | 109 | 5–13 years | DHA capsules (IG1, 0.1–1.8 mg/kg/day; IG2, 1.9–7 mg/kg/day) | RCT (6 months) | Change in plasma lipid concentration | DHA (mg/L): IG1, 5.1 ± 10.3; IG2, 3.19.5 ± 13.6; CG, 0.0 ± 9.1 | Significant increase in DHA levels |
TC (mmol/L): IG1, 0.0 ± 0.5; IG2, 0.1 ± 0.5; CG, −0.1 ± 0.6 | |||||||
HDL (mmol/L): IG1, 0.0 ± 0.3; IG2, 0.0 ± 0.2; CG, −0.0 ± 0.3 | |||||||
LDL (mmol/L): IG1, 0.2 ± 0.5; IG2, 0.1 ± 0.5; CG, −0.3 ± 1.2 | |||||||
TG (mmol/L): IG1, 0.0 ± 0.5; IG2, −0.1 ± 0.5; CG, −0.1 ± 0.6 | |||||||
Yi et al. (2011) [28] | 33 (33 F) | 12–47 years | DHA capsules (10 mg/kg/day) | RCT (4.5 months) | Plasma and erythrocyte FA | DHA (weight % FA): IG, 3.14 ± 0.57; CG, 0.97 ± 0.34 | Significant increase in plasma DHA and erythrocyte FA levels |
Erythrocyte DHA (weight % erythrocyte FA): IG, 5.82 ± 1.26; CG, 2.35 ± 0.78 | |||||||
Koletzko et al. (2007) [30] | 21 (8 F) | 2.1 ± 0.9 weeks | Test-treatment formula (DHA, 0.23 g/100 g FA. | RCT (12 months) | Plasma phospholipid FA | DHA (weight % FA): IG, 3.08 ± 0.1; CG, 1.52 ± 0.19 | Significant less decline of DHA levels |
Omega 6: omega 3 ratio, 2:1) | |||||||
Agostoni et al. (2006) [31] | 42 (22 F) | 20 ± 6.9 weeks | Test-treatment formula (DHA, 0.3 g/100 g FA. | RCT (12 months) | Median change in LC-PUFA concentration in erythrocyte MB phospholipids | % change DHA: | Significant less decline of DHA levels |
IG, −22%; CG, −64% | |||||||
% change AA: | |||||||
Omega 6: omega 3 ratio, 2.5:1 | |||||||
IG, –5%; CG, –19% | |||||||
Cleary et al. (2006) [32] | 53 | 1–10 years | Test-treatment formula (PUFA, 2.8 g/100 g. | RCT (20 weeks) | Median change in LC-PUFA concentration in erythrocyte MB phospholipids | % change DHA: IG, +19%; CG, +0.5% | Significant increase in DHA levels |
Omega 6: omega 3 ratio, 3:1) | % change AA: IG, +0.5%; CG, +7.6% | ||||||
Agostoni et al. (2000) [34] | 20 (9 F) | 10.7 ± 2.4 years (IG) | Fish oil capsules (DHA, 15 mg/kg/day. | RCT (12 months) | LC-PUFA concentration in erythrocyte lipids | Erythrocyte PC (weight % FA): EPA: IG, 0.1 ± 0.07; CG, 0.1 ± 0.04 | Significant increase of DHA levels |
DHA: IG, 0.9 ± 0.3; CG, 0.4 ± 0.2. AA: IG, 5.39 ± 1.16; CG, 5.83 ± 0.98 | |||||||
AA:DHA ratio, 1:1 | |||||||
10.5 ± 2.8 years (CG) | |||||||
Erythrocyte PEA (weight % FA): EPA: IG, 0.3 ± 0.1; CG, 0.2 ± 0.1 DHA: IG, 3.7 ± 1.7; CG, 1.3 ± 0.9. AA: IG, 16.1 ± 5.2; CG, 14.5 ± 7.3 | |||||||
Agostoni et al. (1995) [35] | 21 | 5–10 years | Fish oil capsules (DHA, 15 mg/kg/day; EPA, 22.5 mg/kg/day) | RCT (6 months) | Plasma lipid concentration | TC (mmol/L): IG, 3.12 ± 0.67; CG, 3.41 ± 0.28 | Significant decrease in triglycerides and increase in n-3 LC-PUFA levels |
HDL (mmol/L): IG, 1.06 ± 0.18; CG, 1.18 ± 0.23 | |||||||
LDL (mmol/L): IG, 1.75 ± 0.72; CG, 1.73 ± 0.49 | |||||||
TG (mmol/L): IG, 0.68 ± 0.16; CG, 1.09 ± 0.47 | |||||||
LC-PUFA (weight % FA). EPA: IG, 1.96 ± 0.79; CG, 0.27 ± 0.06 | |||||||
DHA: IG, 2.94 ± 0.88; CG, 0.73 ± 0.08; AA: IG, 5.39 ± 1.16; CG, 5.83 ± 0.98 |
Reference | n | Age 1 | Intervention | Type and Duration of Intervention | Outcome Measure | Results 2 | Conclusion |
---|---|---|---|---|---|---|---|
Demmelmair et al. (2018) [27] | 109 | 5–13 years | DHA capsules (IG1, 0.1–1.8 mg/kg/day; IG2, 1.9–7 mg/kg/day) | RCT—6 months | Change in P100 wave latency (ms) | Pattern-reversal. 15: IG1, 0.5 ± 8.7; IG2, −0.6 ± 4.7; CG, 1.3 ± 3.5 | No significant differences |
Agostoni et al. (2006) [31] | 42 (22 F) | 20 ± 6.9 weeks | Test-treatment formula (DHA, 0.3 g/100 g FA. | RCT—12 months | P100 wave (pattern VEP) and P1 peak (flash VEP) latencies (ms) | Pattern-reversal: IG, 120 ± 24; CG, 107 ± 8 | No significant differences |
Omega 6: omega 3 ratio, 2.5:1) | Flash: IG, 108 ± 15; CG, 115 ± 24 | ||||||
Beblo et al. (2001) [33] | 66 (34 F) | 6.6 ± 1.5 years (CG) | Fish oil capsules (DHA, 15 mg/kg/day; EPA, 22.5 mg/kg/day) | CT—3 months | Change in P100 wave latency | No data | Significant decrease in P100 wave latency (5’, 15’) |
CG healthy children | |||||||
Agostoni et al. (2000) [34] | 20 (9 F) | 10.7 ± 2.4 years (IG) | Fish oil capsules (DHA, 15 mg/kg/day) | RCT—12 months | P100 wave latency (ms) | Pattern-reversal. 60’: IG, 104 ± 4; CG, 109 ± 9. 15’: IG, 107 ± 6; CG, 118 ± 11. | Significant decrease in P100 wave latency (15’, 2 Hz-1 J) |
Flash. 1 Hz-2 J: IG, 113 ± 10; CG, 114 ± 8. | |||||||
10.5 ± 2.8 years (CG) | |||||||
AA:DHA ratio, 1:1 | |||||||
2 Hz-1 J: IG, 111 ± 12; CG, 121 ± 8 |
Reference | n | Age 1 | Intervention | Type and Time of Intervention | Outcome Measure | Results 2 | Conclusion |
---|---|---|---|---|---|---|---|
Demmelmair et al. (2018) [27] | 109 | 5–13 years | DHA capsules (IG1, 0.1–1.8 mg/kg/day; IG2, 1.9–7 mg/kg/day) | RCT—6 months | Changes in motometric Rostock–Oseretzky scale and Raven´s progressive matrices | Rostock–Oseretzky scale: IG1, 4.2 ± 6.3; IG2, 0.8 ± 9.1; CG, 2.9 ± 7.0 | No significant differences |
Raven’s progressive matrices: IG1, 2.2 ± 15.8; IG2, 1.6 ± 13.8; CG, 9.5 ± 13.5 | |||||||
Yi et al. (2011) [28] | 33 (33 F) | 12–47 years | DHA capsules (10 mg/kg/day) | RCT—4.5 months | Verbal ability (Peabody picture vocabulary test, third edition), executive function (Delis-Kaplan executive function system), and cognitive processing speed (Woodcock–Johnson III tests of cognitive ability and achievement) | Cognitive processing speed, factor score: IG, 98.8 ± 5.3; CG, 101 ± 5.4 | No significant differences |
Cognitive inhibition: IG, 11.3 ± 1.5; CG, 11.4 ± 1.5 | |||||||
Cognitive flexibility: IG, 11.1 ± 1.4; CG, 10.8 ± 1.4 | |||||||
Koletzko et al. (2009) [29] | 54 | 6.3 ± 0.6 years | Fish oil capsules (DHA, 15 mg/kg/day; EPA, 22.5 mg/kg/day) | CT—3 months | Changes in motometric Rostock–Oseretzky scale | No data | Significant improvement in fine motor skills (especially coin sorting), dynamic balance, and total score in intervention group |
CG, healthy children | |||||||
Agostoni et al. (2006) [31] | 42 (22 F) | 20 ± 6.9 weeks | Test-treatment formula (DHA, 0.3 g/100 g FA. | RCT—12 months | Mental and psychomotor development (Bailey test, second edition) | Mental development: IG, 92.67 ± 16.02; CG, 93.19 ± 16.60 | No significant differences |
Physical development: IG, 92 ± 13.32; CG, 97.69 ± 15.57 | |||||||
Omega 6: omega 3 ratio, 2.5:1) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couce, M.L.; de Castro, M.J.; de Lamas, C.; Leis, R. Effects of LC-PUFA Supplementation in Patients with Phenylketonuria: A Systematic Review of Controlled Trials. Nutrients 2019, 11, 1537. https://doi.org/10.3390/nu11071537
Couce ML, de Castro MJ, de Lamas C, Leis R. Effects of LC-PUFA Supplementation in Patients with Phenylketonuria: A Systematic Review of Controlled Trials. Nutrients. 2019; 11(7):1537. https://doi.org/10.3390/nu11071537
Chicago/Turabian StyleCouce, María Luz, María José de Castro, Carmela de Lamas, and Rosaura Leis. 2019. "Effects of LC-PUFA Supplementation in Patients with Phenylketonuria: A Systematic Review of Controlled Trials" Nutrients 11, no. 7: 1537. https://doi.org/10.3390/nu11071537
APA StyleCouce, M. L., de Castro, M. J., de Lamas, C., & Leis, R. (2019). Effects of LC-PUFA Supplementation in Patients with Phenylketonuria: A Systematic Review of Controlled Trials. Nutrients, 11(7), 1537. https://doi.org/10.3390/nu11071537