Associations of Erythrocyte Polyunsaturated Fatty Acids with Inflammation and Quality of Life in Post-Menopausal Women with Obesity Completing a Pilot Dietary Intervention
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Self-Reported Dietary Intake
3.2. Erythrocyte PUFA Content
3.3. Association of Dietary Variables and Erythrocyte PUFA Content
3.4. Association of Erythrocyte PUFAs and Inflammatory Markers
3.5. Association of Erythrocyte PUFAs and Quality of Life
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nakamura, K.; Fuster, J.J.; Walsh, K. Adipokines: A link between obesity and cardiovascular disease. J. Cardiol. 2014, 63, 250–259. [Google Scholar] [CrossRef]
- Heydari, B.; Abdullah, S.; Pottala, J.V.; Shah, R.; Abbasi, S.; Mandry, D.; Francis, S.A.; Lumish, H.; Ghoshhajra, B.B.; Hoffmann, U.; et al. Effect of Omega-3 Acid Ethyl Esters on Left Ventricular Remodeling After Acute Myocardial Infarction: The OMEGA-REMODEL Randomized Clinical Trial. Circulation 2016, 134, 378–391. [Google Scholar] [CrossRef]
- Gebauer, S.K.; Psota, T.L.; Harris, W.S.; Kris-Etherton, P.M. n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am. J. Clin. Nutr. 2006, 83, 1526S–1535S. [Google Scholar] [CrossRef]
- Flock, M.R.; Skulas-Ray, A.C.; Harris, W.S.; Gaugler, T.L.; Fleming, J.A.; Kris-Etherton, P.M. Effects of supplemental long-chain omega-3 fatty acids and erythrocyte membrane fatty acid content on circulating inflammatory markers in a randomized controlled trial of healthy adults. Prostaglandins Leukot. Essent. Fat. Acids 2014, 91, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Garcia, E.; Schulze, M.B.; Manson, J.E.; Meigs, J.B.; Albert, C.M.; Rifai, N.; Willett, W.C.; Hu, F.B. Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J. Nutr. 2004, 134, 1806–1811. [Google Scholar] [CrossRef]
- He, K.; Liu, K.; Daviglus, M.L.; Jenny, N.S.; Mayer-Davis, E.; Jiang, R.; Steffen, L.; Siscovick, D.; Tsai, M.; Herrington, D. Associations of dietary long-chain n-3 polyunsaturated fatty acids and fish with biomarkers of inflammation and endothelial activation (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am. J. Cardiol. 2009, 103, 1238–1243. [Google Scholar] [CrossRef]
- Poreba, M.; Mostowik, M.; Siniarski, A.; Golebiowska-Wiatrak, R.; Malinowski, K.P.; Haberka, M.; Konduracka, E.; Nessler, J.; Undas, A.; Gajos, G. Treatment with high-dose n-3 PUFAs has no effect on platelet function, coagulation, metabolic status or inflammation in patients with atherosclerosis and type 2 diabetes. Cardiovasc. Diabetol. 2017, 16, 50. [Google Scholar] [CrossRef]
- Hames, K.C.; Morgan-Bathke, M.; Harteneck, D.A.; Zhou, L.; Port, J.D.; Lanza, I.R.; Jensen, M.D. Very-long-chain ω-3 fatty acid supplements and adipose tissue functions: a randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 1552–1558. [Google Scholar] [CrossRef]
- Von Schacky, C.; Fischer, S.; Weber, P.C. Long-term effects of dietary marine omega-3 fatty acids upon plasma and cellular lipids, platelet function, and eicosanoid formation in humans. J. Clin. Investig. 1985, 76, 1626–1631. [Google Scholar] [CrossRef]
- Novak, T.E.; Babcock, T.A.; Jho, D.H.; Helton, W.S.; Espat, N.J. NF-kappa B inhibition by omega -3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2003, 284, L84–L89. [Google Scholar] [CrossRef]
- Calder, P.C.; Grimble, R.F. Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 2002, 56 (Suppl. 3), S14–S19. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Clish, C.B.; Brannon, J.; Colgan, S.P.; Chiang, N.; Gronert, K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 2000, 192, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Novgorodtseva, T.P.; Denisenko, Y.K.; Zhukova, N.V.; Antonyuk, M.V.; Knyshova, V.V.; Gvozdenko, T.A. Modification of the fatty acid composition of the erythrocyte membrane in patients with chronic respiratory diseases. Lipids Health Dis. 2013, 12, 117. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.E.; Lau, A.; Mantzioris, E.; Gibson, R.A.; Ramsden, C.E.; Muhlhausler, B.S. A low omega-6 polyunsaturated fatty acid (n-6 PUFA) diet increases omega-3 (n-3) long chain PUFA status in plasma phospholipids in humans. Prostaglandins Leukot. Essent Fat. Acids 2014, 90, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent Fat. Acids 2018, 132, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Rondanelli, M.; Giacosa, A.; Opizzi, A.; Pelucchi, C.; La Vecchia, C.; Montorfano, G.; Negroni, M.; Berra, B.; Politi, F.; Rizzo, A.M. Long chain omega 3 polyunsaturated fatty acids supplementation in the treatment of elderly depression: effects on depressive symptoms, on phospholipids fatty acids profile and on health-related quality of life. J. Nutr. Health Aging 2011, 15, 37–44. [Google Scholar] [CrossRef]
- Lucas, M.; Asselin, G.; Merette, C.; Poulin, M.J.; Dodin, S. Effects of ethyl-eicosapentaenoic acid omega-3 fatty acid supplementation on hot flashes and quality of life among middle-aged women: a double-blind, placebo-controlled, randomized clinical trial. Menopause 2009, 16, 357–366. [Google Scholar] [CrossRef]
- Andreeva, V.A.; Latarche, C.; Hercberg, S.; Briançon, S.; Galan, P.; Kesse-Guyot, E. B vitamin and/or n-3 fatty acid supplementation and health-related quality of life: ancillary findings from the SU.FOL.OM3 randomized trial. PLoS ONE 2014, 9, e84844. [Google Scholar] [CrossRef]
- Arnold, K.; Weinhold, K.R.; Andridge, R.; Johnson, K.; Orchard, T.S. Improving Diet Quality Is Associated with Decreased Inflammation: Findings from a Pilot Intervention in Postmenopausal Women with Obesity. J. Acads. Nutr. Diet. 2018, 118, 2135–2143. [Google Scholar] [CrossRef]
- Harris, W.S.; Pottala, J.V.; Sands, S.A.; Jones, P.G. Comparison of the effects of fish and fish-oil capsules on the n 3 fatty acid content of blood cells and plasma phospholipids. Am. J. Clin. Nutr. 2007, 86, 1621–1625. [Google Scholar] [CrossRef]
- Kristal, A.R.; Kolar, A.S.; Fisher, J.L.; Plascak, J.J.; Stumbo, P.J.; Weiss, R.; Paskett, E.D. Evaluation of web-based, self-administered, graphical food frequency questionnaire. J. Acads. Nutr. Diet. 2014, 114, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Ware, J., Jr.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Pottala, J.V.; Espeland, M.A.; Polreis, J.; Robinson, J.; Harris, W.S. Correcting the effects of -20 degrees C storage and aliquot size on erythrocyte fatty acid content in the Women’s Health Initiative. Lipids 2012, 47, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride--methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [PubMed]
- Harris, W.S.; Lemke, S.L.; Hansen, S.N.; Goldstein, D.A.; DiRienzo, M.A.; Su, H.; Nemeth, M.A.; Taylor, M.L.; Ahmed, G.; George, C. Stearidonic acid-enriched soybean oil increased the omega-3 index, an emerging cardiovascular risk marker. Lipids 2008, 43, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Belury, M.A.; Kempa-Steczko, A. Conjugated linoleic acid modulates hepatic lipid composition in mice. Lipids 1997, 32, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Orchard, T.S.; Ing, S.W.; Lu, B.; Belury, M.A.; Johnson, K.; Wactawski-Wende, J.; Jackson, R.D. The association of red blood cell n-3 and n-6 fatty acids with bone mineral density and hip fracture risk in the women’s health initiative. J. Bone Miner. Res. 2013, 28, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Straka, S.; Lester, J.L.; Cole, R.M.; Andridge, R.R.; Puchala, S.; Rose, A.M.; Clinton, S.K.; Belury, M.A.; Yee, L.D. Incorporation of eicosapentaenioic and docosahexaenoic acids into breast adipose tissue of women at high risk of breast cancer: a randomized clinical trial of dietary fish and n-3 fatty acid capsules. Mol. Nutr. Food Res. 2015, 59, 1780–1790. [Google Scholar] [CrossRef]
- Flock, M.R.; Skulas-Ray, A.C.; Harris, W.S.; Etherton, T.D.; Fleming, J.A.; Kris-Etherton, P.M. Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: a dose-response randomized controlled trial. J. Am. Heart Assoc. 2013, 2, e000513. [Google Scholar] [CrossRef]
- Harris, W.S. Omega-3 fatty acids and cardiovascular disease: A case for omega-3 index as a new risk factor. Pharmacol. Res. 2007, 55, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Elizondo, A.; Araya, J.; Rodrigo, R.; Poniachik, J.; Csendes, A.; Maluenda, F.; Diaz, J.C.; Signorini, C.; Sgherri, C.; Comporti, M.; et al. Polyunsaturated fatty acid pattern in liver and erythrocyte phospholipids from obese patients. Obesity (Silver Spring) 2007, 15, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Elizondo, A.; Araya, J.; Rodrigo, R.; Signorini, C.; Sgherri, C.; Comporti, M.; Poniachik, J.; Videla, L.A. Effects of weight loss on liver and erythrocyte polyunsaturated fatty acid pattern and oxidative stress status in obese patients with non-alcoholic fatty liver disease. Biol. Res. 2008, 41, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, R.; Rondanelli, M.; Trotti, R.; Cestaro, B. Effects of weight loss on erythrocyte membrane composition and fluidity in overweight and moderately obese women. J. Nutr. Biochem. 2011, 22, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Sinn, N.; Milte, C.M.; Street, S.J.; Buckley, J.D.; Coates, A.M.; Petkov, J.; Howe, P.R.C. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6 month randomised controlled trial. Br. J. Nutr. 2012, 107, 1682–1693. [Google Scholar] [CrossRef] [PubMed]
Baseline | End of Intervention | Change from Baseline to Intervention End | Follow-Up | Change from Baseline to Follow-Up | |
---|---|---|---|---|---|
Dietary PUFA 1 | Mean (SD) | Mean (SD) | p-Value 2 | Mean (SD) 3 | p-Value 2 |
EPA (g/day) | 0.05 (0.07) | 0.17 (0.13) | <0.0001 | 0.14 (0.13) | 0.001 |
EPA (% kcal) | 0.02 (0.03) | 0.09 (0.07) | <0.0001 | 0.08 (0.06) | 0.0006 |
DHA (g/day) | 0.11 (0.15) | 0.35 (0.27) | <0.0001 | 0.30 (0.26) | 0.0006 |
DHA (% kcal) | 0.05 (0.06) | 0.19 (0.13) | <0.0001 | 0.16 (0.13) | 0.0002 |
EPA+DHA (g/day) | 0.16 (0.22) | 0.52 (0.40) | <0.0001 | 0.45 (0.39) | 0.0008 |
EPA+DHA (% kcal) | 0.07 (0.10) | 0.28 (0.20) | <0.0001 | 0.24 (0.19) | 0.0003 |
LA (g/day) | 15.9 (7.3) | 11.8 (4.2) | 0.005 | 12.9 (5.7) | 0.046 |
LA (% kcal) | 6.9 (1.6) | 6.5 (1.8) | 0.48 | 6.8 (1.9) | 0.91 |
AA (g/day) | 0.09 (0.06) | 0.10 (0.05) | 0.12 | 0.09 (0.04) | 0.65 |
AA (% kcal) | 0.04 (0.02) | 0.06 (0.02) | <0.0001 | 0.05 (0.02) | 0.04 |
Baseline | End of Intervention | Change from Baseline to Intervention End | Follow-Up | Change from Baseline to Follow-Up | |
---|---|---|---|---|---|
Erythrocyte PUFA 1 | Mean (SD) | Mean (SD) | p-Value 2 | Mean (SD) 3 | p-Value 2 |
EPA (%) | 0.47 (0.27) | 0.62 (0.37) | 0.03 | 0.68 (0.36) | 0.007 |
DHA (%) | 3.1 (1.0) | 4.3 (1.1) | <0.0001 | 4.2 (1.1) | <0.0001 |
EPA+DHA (%) | 3.5 (1.3) | 4.9 (1.5) | <0.0001 | 4.9 (1.4) | 0.0001 |
LA (%) | 12.5 (2.2) | 12.4 (1.8) | 0.79 | 12.6 (1.7) | 0.92 |
AA (%) | 15.0 (2.0) | 16.27 (1.42) | 0.0007 | 16.50 (1.65) | 0.0002 |
Baseline | End of Intervention | Follow-Up 1 | |||||
---|---|---|---|---|---|---|---|
Dietary PUFA 2 | Erythrocyte PUFA 3 | r | p-Value 4 | r | p-Value | r | p-Value |
EPA | EPA | 0.72 | 0.004 | 0.61 | 0.02 | 0.72 | 0.009 |
DHA | DHA | 0.71 | 0.005 | 0.71 | 0.005 | 0.78 | 0.003 |
EPA+DHA | EPA+DHA | 0.72 | 0.004 | 0.70 | 0.005 | 0.78 | 0.003 |
LA | LA | −0.22 | 0.44 | 0.16 | 0.59 | −0.03 | 0.93 |
AA | AA | −0.18 | 0.53 | −0.07 | 0.81 | −0.24 | 0.45 |
End of Intervention | Follow-Up | ||||
---|---|---|---|---|---|
Inflammatory Marker | Erythrocyte PUFA 1 | r 2 | p-Value | r 3,4 | p-Value |
TNFaR-2 | EPA | 0.13 | 0.68 | 0.34 | 0.27 |
DHA | 0.40 | 0.18 | 0.31 | 0.33 | |
EPA+DHA | 0.34 | 0.25 | 0.33 | 0.30 | |
LA | −0.41 | 0.16 | −0.32 | 0.31 | |
AA | 0.24 | 0.44 | 0.02 | 0.95 | |
IL-6 | EPA | −0.24 | 0.43 | 0.22 | 0.49 |
DHA | −0.10 | 0.75 | 0.24 | 0.46 | |
EPA+DHA | −0.13 | 0.66 | 0.24 | 0.46 | |
LA | 0.03 | 0.93 | −0.52 | 0.08 | |
AA | 0.29 | 0.34 | 0.20 | 0.54 | |
CRP 5 | EPA | −0.43 | 0.15 | −0.30 | 0.35 |
DHA | −0.42 | 0.15 | −0.33 | 0.29 | |
EPA+DHA | −0.43 | 0.30 | −0.33 | 0.48 | |
LA | 0.04 | 0.89 | 0.00 | 1.00 | |
AA | −0.11 | 0.72 | 0.59 | 0.04 |
Baseline | End of Intervention | Change from Baseline to Intervention End | Follow-Up | Change from Baseline to Follow-Up | |
---|---|---|---|---|---|
Quality of Life Outcome 1 | Mean (SD) | Mean (SD) | p-Value 2 | Mean (SD) | p-Value 2 |
Physical function score | 51.26 (6.59) | 52.72 (5.98) | 0.59 | 49.41 (8.49) | 0.49 |
Mental function score | 47.93 (12.33) | 50.70 (6.93) | 0.46 | 52.39 (9.74) | 0.24 |
End of Intervention | Follow-Up | ||||
---|---|---|---|---|---|
Quality of Life Outcome 1 | Erythrocyte PUFA 2 | r 3 | p-Value | r 4 | p-Value |
Physical function score | EPA | 0.55 | 0.05 | 0.09 | 0.76 |
DHA | 0.46 | 0.11 | 0.24 | 0.45 | |
EPA+DHA | 0.50 | 0.08 | 0.20 | 0.51 | |
LA | 0.58 | 0.04 | 0.03 | 0.93 | |
AA | −0.34 | 0.26 | −0.02 | 0.94 | |
Mental function score | EPA | 0.21 | 0.49 | 0.19 | 0.60 |
DHA | 0.23 | 0.46 | 0.08 | 0.83 | |
EPA+DHA | 0.23 | 0.45 | 0.11 | 0.77 | |
LA | −0.28 | 0.34 | 0.03 | 0.93 | |
AA | 0.03 | 0.91 | −0.23 | 0.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, K.M.; Weinhold, K.R.; Andridge, R.; Arnold, K.; Chu, P.P.; Orchard, T.S. Associations of Erythrocyte Polyunsaturated Fatty Acids with Inflammation and Quality of Life in Post-Menopausal Women with Obesity Completing a Pilot Dietary Intervention. Nutrients 2019, 11, 1589. https://doi.org/10.3390/nu11071589
Johnson KM, Weinhold KR, Andridge R, Arnold K, Chu PP, Orchard TS. Associations of Erythrocyte Polyunsaturated Fatty Acids with Inflammation and Quality of Life in Post-Menopausal Women with Obesity Completing a Pilot Dietary Intervention. Nutrients. 2019; 11(7):1589. https://doi.org/10.3390/nu11071589
Chicago/Turabian StyleJohnson, Kylie M., Kellie R. Weinhold, Rebecca Andridge, Kristen Arnold, Panchita P. Chu, and Tonya S. Orchard. 2019. "Associations of Erythrocyte Polyunsaturated Fatty Acids with Inflammation and Quality of Life in Post-Menopausal Women with Obesity Completing a Pilot Dietary Intervention" Nutrients 11, no. 7: 1589. https://doi.org/10.3390/nu11071589
APA StyleJohnson, K. M., Weinhold, K. R., Andridge, R., Arnold, K., Chu, P. P., & Orchard, T. S. (2019). Associations of Erythrocyte Polyunsaturated Fatty Acids with Inflammation and Quality of Life in Post-Menopausal Women with Obesity Completing a Pilot Dietary Intervention. Nutrients, 11(7), 1589. https://doi.org/10.3390/nu11071589