Association between Dietary Isoflavone Intake and Ulcerative Colitis Symptoms in Polish Caucasian Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
- 1)
- free-living patients;
- 2)
- Caucasian;
- 3)
- age 18–80 years;
- 4)
- ulcerative colitis diagnosed after endoscopic examination;
- 5)
- confirmed clinical remission lasting for at least 6 weeks, assessed based on the 6-point Mayo Score (as a method indicated as a validated marker of ulcerative colitis activity that has been recommended for use in clinical trials and clinical practice [21] and is highly correlated with the full Mayo score [22]) and the Rachmilewitz index for assessment of ulcerative colitis activity;
- 6)
- confirmed endoscopic remission (image with no changes or disappearance of the vascular network, erythema, inflammatory polyps allowed) for routine endoscopy performed over a period of last 6 weeks;
- 7)
- constant dose of drugs for at least 6 weeks;
- 8)
- written informed consent to participate in the study.
2.3. Diet Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ordás, I.; Eckmann, L.; Talamini, M.; Baumgart, D.C.; Sandborn, W.J. Ulcerative colitis. Lancet 2012, 380, 1606–1619. [Google Scholar] [CrossRef] [Green Version]
- Liverani, E.; Scaioli, E.; Digby, R.J.; Bellanova, M.; Belluzzi, A. How to predict clinical relapse in inflammatory bowel disease patients. World J. Gastroenterol. 2016, 22, 1017–1033. [Google Scholar] [CrossRef] [PubMed]
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Hendrickson, B.A.; Gokhale, R.; Cho, J.H. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin. Microbiol. Rev. 2002, 15, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Teruel, C.; Garrido, E.; Mesonero, F. Diagnosis and management of functional symptoms in inflammatory bowel disease in remission. World J. Gastrointest. Pharmacol. Ther. 2016, 7, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Habibi, F.; Habibi, M.E.; Gharavinia, A.; Mahdavi, S.B.; Akbarpour, M.J.; Baghaei, A.; Emami, M.H. Quality of life in inflammatory bowel disease patients: A cross-sectional study. J. Res. Med. Sci. 2017, 22, 104. [Google Scholar] [PubMed]
- Fries, W.; Costa, S.; Costantino, G.; Familiari, L. Clinical practice in management of ulcerative colitis—An Italian survey. Dig. Liver Dis. 2008, 40, 214–219. [Google Scholar] [CrossRef]
- Haskey, B.; Gibson, D.L. An examination of diet for the maintenance of remission in inflammatory bowel disease. Nutrients 2017, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Halmos, E.P.; Gibson, P.R. Dietary management of IBD–Insights and advice. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 133–146. [Google Scholar] [CrossRef]
- Lee, D.; Albenberg, L.; Compher, C.; Baldassano, R.; Piccoli, D.; Lewis, J.M.; Wu, G.D. Diet in pathogenesis and treatment of inflammatory bowel diseases. Gastroenterology 2015, 148, 1087–1106. [Google Scholar] [CrossRef]
- Lewis, J.D.; Abreu, M.T. Diet as a trigger or therapy for inflammatory bowel disease. Gastroenterology 2017, 152, 398–414. [Google Scholar] [CrossRef]
- Salaritabar, A.; Darvishi, B.; Hadjiakhoondi, F.; Manayi, A.; Sureda, A.; Nabavi, S.F.; Fitzpatrick, L.R.; Nabavi, S.M.; Bishayee, A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J. Gastroenterol. 2017, 23, 5097–5114. [Google Scholar] [CrossRef]
- Vezza, T.; Rodríguez-Nogales, A.; Algieri, F.; Utrilla, M.P.; Rodriguez-Cabezas, M.E.; Galvez, J. Flavonoids in inflammatory bowel disease: A review. Nutrients 2016, 8, 211. [Google Scholar] [CrossRef]
- Limdi, J.K. Dietary practices and inflammatory bowel disease. Indian J. Gastroenterol. 2018, 37, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.A.; Bolling, B.W. A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel disease. Food Funct. 2015, 6, 1773–1786. [Google Scholar] [CrossRef]
- Park, D.K.; Park, H.J. Ethanol extract of Cordyceps militaris grown on germinated soybean attenuates dextran-sodium-sulfate- (DSS-) induced colitis by suppressing the expression of matrix metalloproteinases and inflammatory mediators. BioMed Res. Int. 2013, 102918, 1–10. [Google Scholar]
- Głąbska, D.; Guzek, D.; Grudzińska, D.; Lech, G. Influence of dietary isoflavone intake on gastrointestinal symptoms in ulcerative colitis individuals in remission. World J. Gastroenterol. 2017, 23, 5356–5363. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Bi, X.; Yu, B.; Chen, D. Isoflavones: Anti-inflammatory benefit and possible caveats. Nutrients 2016, 8, 361. [Google Scholar] [CrossRef]
- Ohfuji, S.; Fukushima, W.; Watanebe, K.; Sasaki, S.; Yamagami, H.; Nagahori, M.; Watanebe, M.; Hirota, Y. Pre-illness isoflavones consumption and disease risk of ulceartive colitis: A multicenter case-control study in Japan. PLoS ONE 2014, 9, 1–10. [Google Scholar] [CrossRef]
- Juritsch, A.F.; Moreau, R. Role of soybean-derived bioactive compoundsin inflammatory bowel disease. Nutr. Rev. 2018, 76, 618–638. [Google Scholar] [CrossRef]
- de Jong, M.J.; Huibregtse, R.; Masclee, A.A.; Jonkers, D.M.; Pierik, M.J. Patient-reported outcome measures for use in clinical trials and clinical practice in inflammatory bowel diseases: A systematic review. Clin. Gastroenterol. Hepatol. 2018, 16, 648–663. [Google Scholar] [CrossRef]
- Lewis, J.D.; Chuai, S.; Nessel, L.; Lichtenstein, G.R.; Aberra, F.N.; Ellenberg, J.H. Use of the noninvasive components of the Mayo score to assess clinical response in ulcerative colitis. Inflamm. Bowel Dis. 2008, 14, 1660–1666. [Google Scholar] [CrossRef]
- Głąbska, D.; Guzek, D.; Zakrzewska, P.; Lech, G. Intake of lutein and zeaxanthin as a possible factor influencing gastrointestinal symptoms in Caucasian individuals with ulcerative colitis in remission phase. J. Clin. Med. 2019, 8, 77. [Google Scholar] [CrossRef]
- Głąbska, D.; Guzek, D.; Zakrzewska, P.; Włodarek, D.; Lech, G. Lycopene, lutein and zeaxanthin may reduce faecal blood, mucus and pus but not abdominal pain in individuals with ulcerative colitis. Nutrients 2016, 8, 613. [Google Scholar] [CrossRef]
- Capling, L.; Beck, K.L.; Gifford, J.A.; Slater, G.; Flood, V.M.; O’Connor, H. Validity of Dietary Assessment in Athletes: A Systematic Review. Nutrients 2017, 9, 1313. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Dietary Assessment–A Resource Guide to Method Selection and Application in Low Resource Settings; FAO: Rome, Italy, 2018. [Google Scholar]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Atlas of Food Products and Dishes Portion Sizes; IŻŻ: Warsaw, Poland, 2000. (In Polish) [Google Scholar]
- Kunachowicz, H.; Nadolna, J.; Przygoda, B.; Iwanow, K. (Eds.) Food Composition Tables; PZWL Medical Publishing Group: Warsaw, Poland, 2005. (In Polish) [Google Scholar]
- USDA. USDA Database for the Isoflavone Content of Selected Foods, Release 2.0. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/usda-database-for-the-isoflavone-content-of-selected-foods-release-20/ (accessed on 4 September 2019).
- Fyderek, K.; Strus, M.; Kowalska-Duplaga, K.; Gosiewski, T.; Wędrychowicz, A.; Jedynak-Wąsowicz, U.; Sładek, M.; Pieczarkowski, S.; Adamski, P.; Kochan, P.; et al. Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World J. Gastroenterol. 2009, 15, 5287–5294. [Google Scholar] [CrossRef]
- Waljee, A.K.; Joyce, J.C.; Wren, P.A.; Khan, T.; Higgins, P.D.R. Patient reported symptoms during an ulcerative colitis flare: A qualitative focus group study. Eur. J. Gastroenterol. Hepatol. 2009, 21, 558–564. [Google Scholar] [CrossRef]
- Glymenaki, M.; Singh, G.; Brass, A.; Warhurst, G.; McBain, A.J.; Else, K.J.; Cruickshank, S.M. Compositional changes in the gut mucus microbiota precede the onset of colitis-induced inflammation. Inflamm. Bowel Dis. 2017, 23, 912–922. [Google Scholar] [CrossRef]
- Ijssennagger, N.; Belzer, C.; Hooiveld, G.J.; Dekker, J.; Van Mil, S.W.C.; Müller, M.; Kleerebezem, M.; Van der Meer, R. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc. Natl. Acad. Sci. USA 2015, 112, 10038–10043. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, M.; Watanabe, T.; Yamori, M.; Takebe, M.; Wakatsuki, Y. Isoflavones regulate innate immunity and inhibit experimental colitis. J. Gastroeneterol. Hepatol. 2009, 24, 1123–1129. [Google Scholar] [CrossRef]
- Ko, J.K.; Chik, C.W. The protective action of radix Astragalus membranaceus against hapten-induced colitis through modulation of cytokines. Cytokine 2009, 47, 85–90. [Google Scholar] [CrossRef]
- Song, J.L.; Choi, J.H.; Seo, J.H.; Lim, Y.L.; Park, K.Y. Anti-colitic effects of kanjangs (fermented soy sauce and sesame sauce) in dextran sulfate sodium-induced colitis in mice. J. Med. Food 2014, 17, 1027–1035. [Google Scholar] [CrossRef]
- Jiang, H.; Przybyszewski, J.; Mitra, D.; Becker, C.; Brehm-Stecher, B.; Tentinger, A.; MacDonald, R.S. Soy protein diet, but not Lactobacillus rhamnosus GG, decreases mucin-1, trefoil factor-3, and tumor necrosis factor-α in colon of dextran sodium sulfate-treated C57BL/6 mice. J. Nutr. 2011, 141, 1239–1246. [Google Scholar] [CrossRef]
- Monk, J.M.; Wu, W.; McGillis, L.H.; Wellings, H.R.; Hutchinson, A.L.; Liddle, D.M.; Graf, D.; Robinson, L.E.; Power, K.A. Chickpea supplementation prior to colitis onset reduces inflammation in dextran sodium sulfate-treated C57BI/6 male mice. Appl. Physiol. Nutr. Metab. 2018, 43, 893–901. [Google Scholar] [CrossRef]
- Seibel, J.; Molzberger, A.F.; Hertrampf, T.; Laudenbach-Leschowski, U.; Diel, P. Oral treatment with genistein reduces the expression of molecular and biochemical markers of inflammation in a rat model of chronic TNBS-induced colitis. Eur. J. Nutr. 2009, 48, 213–220. [Google Scholar] [CrossRef]
- Lim, D.W.; Lee, C.; Kim, I.H.; Kim, Y.T. Anti-inflammatory effects of total isoflavones from Pueraria lobata on cerebral ischemia in rats. Molecules 2013, 18, 10404–10412. [Google Scholar] [CrossRef]
- González-Mauraza, H.; Martín-Cordero, C.; Alarcón-de-la-Lastra, C.; Rosillo, M.A.; León-González, A.J.; Sánchez-Hidalgo, M. Anti-inflammatory effects of Retama monosperma in acute ulcerative colitis in rats. J. Physiol. Biochem. 2014, 70, 163–172. [Google Scholar] [CrossRef]
- Jitsumura, M.; Kokelaar, R.F.; Harris, D.A. Remission endpoints in ulcerative colitis: A systematic review. World J. Gastroenterol. 2017, 5, 85–102. [Google Scholar] [CrossRef]
- Bokemeyer, B.; Hommes, D.; Gill, I.; Broberg, P.; Dignass, A. Mesalazine in left-sided ulcerative colitis: Efficacy analyses from the PODIUM trial on maintenance of remission and mucosal healing. J. Crohn’s Colitis 2012, 6, 476–482. [Google Scholar] [CrossRef]
- Schiller, L.R.; Pardi, D.S.; Sellin, J.H. Chronic diarrhea: Diagnosis and management. Clin. Gastroenterol. Hepatol. 2017, 15, 182–193. [Google Scholar] [CrossRef]
- Ellis, H. Stools, pus in. In French’s Index of Differential Diagnosis, 11th ed.; Hart, F.D., Ed.; Elsevier: Amsterdam, The Netherlands, 1979; p. 764. [Google Scholar]
- Moussa, L.; Bézirard, V.; Salvador-Cartier, C.; Bacquié, V.; Lencina, C.; Lévêque, M.; Braniste, V.; Ménard, S.; Théodorou, V.; Houdeau, E. A low dose of fermented soy germ alleviates gut barrier injury, hyperalgesia and faecal protease activity in a rat model of inflammatory bowel disease. PLoS ONE 2012, 7, 1–9. [Google Scholar] [CrossRef]
- Looijer-van Langen, M.; Hotte, N.; Dieleman, L.A.; Albert, E.; Mulder, C.; Madsen, K.L. Estrogen receptor-β signaling modulates epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, 621–626. [Google Scholar] [CrossRef]
- Sakai, T.; Furoku, S.; Nakamoto, M.; Shuto, E.; Hosaka, T.; Nishioka, Y.; Sone, S. Soy isoflavone equol perpetuates dextran sulfate sodium-induced acute colitis in mice. Biosci. Biotechnol. Biochem. 2011, 75, 593–595. [Google Scholar] [CrossRef]
- Setchell, K.D.; Clerici, C. Equol: History, chemistry, and formation. J. Nutr. 2010, 140, 1355–1362. [Google Scholar] [CrossRef]
- Rafii, F. The role of colonic bacteria in the metabolism of the natural isoflavone daidzein to equol. Metabolites 2015, 5, 56–73. [Google Scholar] [CrossRef]
- Van Erp-Baart, M.A.; Brants, H.A.; Kiely, M.; Mulligan, A.; Turrini, A.; Sermoneta, C.; Kilkkinen, A.; Valsta, L.M. Isoflavone intake in four different European countries: The VENUS approach. Br. J. Nutr. 2003, 89, 25–30. [Google Scholar] [CrossRef]
- Messina, M.; Nagata, C.; Wu, A.H. Estimated Asian adult soy protein and isoflavone intakes. Nutr. Cancer 2006, 55, 1–12. [Google Scholar] [CrossRef]
- Mulligan, A.A.; Welch, A.A.; McTaggart, A.A.; Bhaniani, A.; Bingham, S.A. Intakes and sources of soya foods and isoflavones in a UK population cohort study (EPIC-Norfolk). Eur. J. Clin. Nutr. 2007, 61, 248–254. [Google Scholar] [CrossRef]
- Winham, D.M.; Hutchins, A.M. Perceptions of flatulence from bean consumption among adults in 3 feeding studies. Nutr. J. 2011, 10, 128. [Google Scholar] [CrossRef]
- Veenstra, J.M.; Duncan, A.M.; Cryne, C.N.; Deschambault, B.R.; Boye, J.I.; Benali, M.; Marcotte, M.; Tosh, S.M.; Farnworth, E.R.; Wright, A.J. Effect of pulse consumption on perceived flatulence and gastrointestinal function in healthy males. Food Res. Int. 2010, 43, 553–559. [Google Scholar] [CrossRef]
- Farrell, D.; McCarthy, G.; Savage, E. Self-reported symptom burden in individuals with inflammatory bowel disease. J. Crohn’s Colitis 2016, 10, 315–322. [Google Scholar] [CrossRef]
- Jamieson, A.E.; Fletcher, P.C.; Schneider, M.A. Seeking control through the determination of diet: A qualitative investigation of women with irritable bowel syndrome and inflammatory bowel disease. Clin. Nurse Spec. 2007, 21, 152–160. [Google Scholar] [CrossRef]
- Cohen, A.B.; Lee, D.; Long, M.D.; Kappelman, M.D.; Martin, C.F.; Sandler, R.S.; Lewis, J.D. Dietary patterns and self-reported associations of diet with symptoms of inflammatory bowel disease. Dig. Dis. Sci. 2013, 58, 1322–1328. [Google Scholar] [CrossRef]
Variable | Individuals (n = 56) | |
---|---|---|
Duration of the ulcerative colitis | <4 years | 8 (14.2%) |
4–6 years | 24 (42.8%) | |
7–9 years | 13 (23.2%) | |
>9 years | 11 (19.8%) | |
Number of groups of applied medicines * | 1 group | 40 (71.4%) |
2 groups | 11 (19.6%) | |
3 groups | 5 (10.0%) | |
Number of bowel movements per day | 1 | 1 (1.8%) |
2 | 20 (35.7%) | |
3 | 13 (23.2%) | |
4 | 15 (26.8%) | |
>4 | 7 (12.5%) | |
Mean number of hospitalizations per year | 0 | 12 (21.4%) |
0.1–0.3 | 15 (26.9%) | |
0.31–0.49 | 17 (30.3%) | |
>0.5 | 12 (21.4%) |
Intake of Isoflavones | Individuals Declaring Lack of Fecal Blood (n = 17) | Individuals Declaring Fecal Blood (n = 39) | p-Value ** | ||
---|---|---|---|---|---|
Mean ± SD | Median (min–max) | Mean ± SD | Median (min–max) | ||
Daidzein (µg) | 175.3 ± 227.6 | 124.3 (12.0–977.7) * | 131.1 ± 108.5 | 103.3 (3.3–476.7) * | 0.682 |
Genistein (µg) | 135.2 ± 108.6 | 156.7 (5.3–359.3) | 195.9 ± 249.0 | 126.7 (2.3–1428.3) * | 0.688 |
Glicytein (µg) | 4.0 ± 13.8 | 0.0 (0.0–56.0) * | 0.9 ± 5.3 | 0.0 (0.0–33.3) * | 0.369 |
Total isoflavones (µg) | 314.6 ± 269.0 | 302.7 (27.7–1137.7) * | 328.0 ± 292.1 | 256.7 (18.0–1574.0) * | 0.880 |
Intake of Isoflavones | Individuals Declaring Lack of Fecal Blood (n = 17) | Individuals Declaring Fecal Blood (n = 39) | p-Value ** | ||
---|---|---|---|---|---|
Mean ± SD | Median (min–max) | Mean ± SD | Median (min–max) | ||
Daidzein (µg/1000 kcal) | 92.9 ± 103.6 | 65.2 (6.5–392.7) * | 71.6 ± 74.2 | 59.4 (1.3–347.7) * | 0.650 |
Genistein (µg/1000 kcal) | 75.5 ± 74.4 | 61.7 (1.6–279.5) * | 102.2 ± 137.5 | 69.1 (1.4–759.2) * | 0.670 |
Glicytein (µg/1000 kcal) | 2.7 ± 9.1 | 0.0 (0.0–37.4) * | 0.5 ± 2.8 | 0.0 (0.0–17.7) * | 0.368 |
Total isoflavones (µg/1000 kcal) | 171.1 ± 146.0 | 135.8 (8.3–503.9) * | 174.4 ± 171.5 | 128.6 (8.6–836.7) * | 0.901 |
Intake of Isoflavones | Individuals Declaring Lack of Fecal Mucus (n = 47) | Individuals Declaring Fecal Mucus (n = 9) | p-Value ** | ||
---|---|---|---|---|---|
Mean ± SD | Median (min–max) | Mean ± SD | Median (min–max) | ||
Daidzein (µg) | 155.8 ± 157.9 | 122.0 (4.3–977.7) * | 85.5 ± 120.0 | 19.0 (3.3–353.0) * | 0.035 |
Genistein (µg) | 195.6 ± 231.4 | 145.0 (2.3–1428.3) * | 82.8 ± 68.8 | 81.7 (6.7–214.3) | 0.074 |
Glicytein (µg) | 2.3 ± 9.6 | 0.0 (0.0–56.0) * | 0.0 ± 0.0 | 0.0 (0.0–0.0) * | 0.382 |
Total isoflavones (µg) | 353.7 ± 293.0 | 302.3 (27.7–1574.0) * | 168.4 ± 156.6 | 123.7 (18.0–441.7) | 0.034 |
Intake of Isoflavones | Individuals Declaring Lack of Fecal Mucus (n = 47) | Individuals Declaring Fecal Mucus (n = 9) | p-Value ** | ||
---|---|---|---|---|---|
Mean ± SD | Median (min–max) | Mean ± SD | Median (min–max) | ||
Daidzein (µg/1000 kcal) | 81.4 ± 78.5 | 62.3 (1.3–392.7) * | 60.8 ± 111.6 | 12.1 (2.1–347.7) * | 0.032 |
Genistein (µg/1000 kcal) | 102.3 ± 130.0 | 69.1 (1.4–759.2) * | 51.1 ± 40.9 | 52.2 (3.2–115.1) | 0.220 |
Glicytein (µg/1000 kcal) | 1.4 ± 6.1 | 0.0 (0.0–37.4) * | 0.0 ± 0.0 | 0.0 (0.0–0.0) * | 0.382 |
Total isoflavones (µg/1000 kcal) | 185.1 ± 166.7 | 137.2 (8.3–836.7) * | 111.9 ± 132.6 | 68.4 (8.6–435.0) * | 0.078 |
Intake of Isoflavones | Individuals Declaring Lack of Fecal Pus (n = 53) | Individuals Declaring Fecal Pus (n = 3) | p-Value ** | ||
---|---|---|---|---|---|
Mean ± SD | Median (min–max) | Mean ± SD | Median (min–max) | ||
Daidzein (µg) | 138.3 ± 155.0 | 103.3 (3.3–977.7) * | 255.1 ± 84.8 | 206.7 (205.7–353.0) * | 0.049 |
Genistein (µg) | 178.7 ± 223.0 | 135.0 (2.3–1428.3) * | 156.3 ± 86.4 | 126.7 (88.7–253.7) | 0.771 |
Glicytein (µg) | 2.0 ± 9.0 | 0.0 (0.0–56.0) * | 0.0 ± 0.0 | 0.0 (0.0–0.0) * | 0.654 |
Total isoflavones (µg) | 319.0 ± 289.9 | 256.0 (18.0–1574.0) * | 411.4 ± 68.2 | 441.7 (333.3–459.3) | 0.167 |
Intake of Isoflavones | Individuals Declaring Lack of Fecal Pus (n = 53) | Individuals Declaring Fecal Pus (n = 3) | p-Value ** | ||
---|---|---|---|---|---|
Mean ± SD | Median (min–max) | Mean ± SD | Median (min–max) | ||
Daidzein (µg/1000 kcal) | 72.4 ± 77.4 | 52.6 (1.3–392.7) * | 178.8 ± 146.3 | 95.1 (93.6–347.7) * | 0.081 |
Genistein (µg/1000 kcal) | 94.5 ± 125.1 | 61.7 (1.4–759.2) * | 87.3 ± 30.0 | 87.3 (57.4–117.4) | 0.560 |
Glicytein (µg/1000 kcal) | 1.2 ± 6.0 | 0.0 (0.0–37.4) * | 0.0 ± 0.0 | 0.0 (0.0–0.0) * | 0.654 |
Total isoflavones (µg/1000 kcal) | 168.1 ± 163.3 | 129.7 (8.3–836.7) * | 266.2 ± 149.4 | 212.5 (149.4–151.0) | 0.136 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skolmowska, D.; Głąbska, D.; Guzek, D.; Lech, G. Association between Dietary Isoflavone Intake and Ulcerative Colitis Symptoms in Polish Caucasian Individuals. Nutrients 2019, 11, 1936. https://doi.org/10.3390/nu11081936
Skolmowska D, Głąbska D, Guzek D, Lech G. Association between Dietary Isoflavone Intake and Ulcerative Colitis Symptoms in Polish Caucasian Individuals. Nutrients. 2019; 11(8):1936. https://doi.org/10.3390/nu11081936
Chicago/Turabian StyleSkolmowska, Dominika, Dominika Głąbska, Dominika Guzek, and Gustaw Lech. 2019. "Association between Dietary Isoflavone Intake and Ulcerative Colitis Symptoms in Polish Caucasian Individuals" Nutrients 11, no. 8: 1936. https://doi.org/10.3390/nu11081936
APA StyleSkolmowska, D., Głąbska, D., Guzek, D., & Lech, G. (2019). Association between Dietary Isoflavone Intake and Ulcerative Colitis Symptoms in Polish Caucasian Individuals. Nutrients, 11(8), 1936. https://doi.org/10.3390/nu11081936