Variation in the TAS2R38 Bitterness Receptor Gene Was Associated with Food Consumption and Obesity Risk in Koreans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. General Characteristics of the Study Subjects
2.3. Dietary Intake Analyses
2.4. Anthropometric Measurements
2.5. Genotyping
2.6. Statistical Analyses
3. Results
3.1. Distribution of the TAS2R38 Genotypes and Descriptive Data
3.2. Dietary Intake, Alcohol Consumption and TAS2R38 Genotype
3.3. Anthropometric Data and TAS2R38 Genotype
3.4. Association between Adiposity and TAS2R38 Genotype
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Rocha, V.Z.; Libby, P. Obesity, inflammation, and atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Razquin, C.; Marti, A.; Martinez, J.A. Evidences on three relevant obesogenes: MC4R, FTO and PPARgamma. Approaches for personalized nutrition. Mol. Nutr. Food Res. 2011, 55, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Garaulet, M.; Smith, C.E.; Hernandez-Gonzalez, T.; Lee, Y.C.; Ordovas, J.M. PPARgamma Pro12Ala interacts with fat intake for obesity and weight loss in a behavioural treatment based on the Mediterranean diet. Mol. Nutr. Food Res. 2011, 55, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
- Popko, K.; Gorska, E.; Demkow, U. Influence of interleukin-6 and G174C polymorphism in IL-6 gene on obesity and energy balance. Eur. J. Med. Res. 2010, 15, 123–127. [Google Scholar] [PubMed]
- Mennella, J.A.; Bobowski, N.K. The sweetness and bitterness of childhood: Insights from basic research on taste preferences. Physiol. Behav. 2015, 152, 502–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, U.K.; Jorgenson, E.; Coon, H.; Leppert, M.; Risch, N.; Drayna, D. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 2003, 299, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
- Lipchock, S.V.; Mennella, J.A.; Spielman, A.I.; Reed, D.R. Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells. Am. J. Clin. Nutr. 2013, 98, 1136–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandell, M.; Hoppu, U.; Mikkila, V.; Mononen, N.; Kahonen, M.; Mannisto, S.; Ronnemaa, T.; Viikari, J.; Lehtimaki, T.; Raitakari, O.T. Genetic variation in the hTAS2R38 taste receptor and food consumption among Finnish adults. Genes Nutr. 2014, 9, 433. [Google Scholar] [CrossRef] [PubMed]
- Perna, S.; Riva, A.; Nicosanti, G.; Carrai, M.; Barale, R.; Vigo, B.; Allegrini, P.; Rondanelli, M. Association of the bitter taste receptor gene TAS2R38 (polymorphism RS713598) with sensory responsiveness, food preferences, biochemical parameters and body-composition markers. A cross-sectional study in Italy. Int. J. Food Sci. Nutr. 2018, 69, 245–252. [Google Scholar] [CrossRef]
- Hoppu, U.; Laitinen, K.; Jaakkola, J.; Sandell, M. The hTAS2R38 genotype is associated with sugar and candy consumption in preschool boys. J. Hum. Nutr. Diet. 2015, 28, 45–51. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, J.; Yang, S.; Kim, J. Genetic variations in taste perception modify alcohol drinking behavior in Koreans. Appetite 2017, 113, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Rozengurt, E. Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and alpha-gustducin in the mammalian gut. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G171–G177. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Shin, A.; Kim, J. Variations in the bitterness perception-related genes TAS2R38 and CA6 modify the risk for colorectal cancer in Koreans. Oncotarget 2017, 8, 21253–21265. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, J.; Choi, I.J.; Kim, Y.W.; Ryu, K.W.; Kim, J. Genetic Variation in the TAS2R38 Bitter Taste Receptor and Gastric Cancer Risk in Koreans. Sci. Rep. 2016, 6, 26904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, F.J.; Aguera, Z.; Sabater, M.; Moreno-Navarrete, J.M.; Alonso-Ledesma, I.; Xifra, G.; Botas, P.; Delgado, E.; Jimenez-Murcia, S.; Fernandez-Garcia, J.C.; et al. Genetic variations of the bitter taste receptor TAS2R38 are associated with obesity and impact on single immune traits. Mol. Nutr. Food Res. 2016, 60, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, J.; Yang, S.; Lee, E.K.; Hwangbo, Y.; Kim, J. Genetic variations in TAS2R3 and TAS2R4 bitterness receptors modify papillary carcinoma risk and thyroid function in Korean females. Sci. Rep. 2018, 8, 15004. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.A.; Dotson, C.D.; Elson, A.E.; Voigt, A.; Boehm, U.; Meyerhof, W.; Steinle, N.I.; Munger, S.D. TAS2R bitter taste receptors regulate thyroid function. FASEB J. 2015, 29, 164–172. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, J. TAS2R38 Bitterness Receptor Genetic Variation and Risk of Gastrointestinal Neoplasm: A Meta-Analysis. Nutr. Cancer 2019, 71, 585–593. [Google Scholar] [CrossRef]
- Inoue, S.; Yamakawa-Kobayashi, K.; Suzuki, Y.; Nakano, T.; Hayashi, H.; Kuwano, T. A case study on the association of variation of bitter-taste receptor gene TAS2R38 with the height, weight and energy intake in Japanese female college students. J. Nutr. Sci. Vitaminol. (Tokyo) 2013, 59, 16–21. [Google Scholar] [CrossRef]
- Keller, K.L.; Reid, A.; MacDougall, M.C.; Cassano, H.; Song, J.L.; Deng, L.; Lanzano, P.; Chung, W.K.; Kissileff, H.R. Sex differences in the effects of inherited bitter thiourea sensitivity on body weight in 4-6-year-old children. Obesity (Silver Spring) 2010, 18, 1194–1200. [Google Scholar] [CrossRef]
- Deshaware, S.; Singhal, R. Genetic variation in bitter taste receptor gene TAS2R38, PROP taster status and their association with body mass index and food preferences in Indian population. Gene 2017, 627, 363–368. [Google Scholar] [CrossRef]
- Feeney, E.L.; O’Brien, S.A.; Scannell, A.G.M.; Markey, A.; Gibney, E.R. Suprathreshold measures of taste perception in children—Association with dietary quality and body weight. Appetite 2017, 113, 116–123. [Google Scholar] [CrossRef]
- Choi, S.; Jung, S.; Kim, M.K.; Shin, J.; Shin, M.H.; Shin, D.H.; Lee, Y.H.; Chun, B.Y.; Hong, K.W.; Hwang, J.Y. Gene and dietary calcium interaction effects on brachial-ankle pulse wave velocity. Clin. Nutr. 2016, 35, 1127–1134. [Google Scholar] [CrossRef]
- Kim, M.K.; Shin, J.; Kweon, S.S.; Shin, D.H.; Lee, Y.H.; Chun, B.Y.; Choi, B.Y. Harmful and beneficial relationships between alcohol consumption and subclinical atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Lee, W.Y.; Kang, J.H.; Kang, J.H.; Kim, B.T.; Kim, S.M.; Kim, E.M.; Suh, S.H.; Shin, H.J.; Lee, K.R.; et al. 2014 clinical practice guidelines for overweight and obesity in Korea. Endocrinol. Metab. (Seoul). 2014, 29, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Kim, Y.J.; Han, S.; Hwang, M.Y.; Shin, D.M.; Park, M.Y.; Lu, Y.; Yoon, K.; Jang, H.M.; Kim, Y.K.; et al. The Korea Biobank Array: Design and Identification of Coding Variants Associated with Blood Biochemical Traits. Sci. Rep. 2019, 9, 1382. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Moon, S.; Hwang, M.Y.; Kim, D.J.; Oh, J.H.; Kim, Y.J.; Han, B.G.; Lee, J.Y.; Kim, B.J. Gene-based copy number variation study reveals a microdeletion at 12q24 that influences height in the Korean population. Genomics 2013, 101, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65 (Suppl. 4), 1220S–1228S, discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Keller, M.; Liu, X.; Wohland, T.; Rohde, K.; Gast, M.T.; Stumvoll, M.; Kovacs, P.; Tonjes, A.; Bottcher, Y. TAS2R38 and its influence on smoking behavior and glucose homeostasis in the German Sorbs. PLoS ONE 2013, 8, e80512. [Google Scholar] [CrossRef]
- Melis, M.; Barbarossa, I.T. Taste perception of sweet, sour, salty, bitter, and Umami and changes due to L-arginine supplementation, as a function of genetic ability to taste 6-n-propylthiouracil. Nutrients 2017, 9, 541. [Google Scholar] [CrossRef]
- Yeomans, M.R.; Tepper, B.J.; Rietzschel, J.; Prescott, J. Human hedonic responses to sweetness: Role of taste genetics and anatomy. Physiol. Behav. 2007, 91, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Prescott, J.; Soo, J.; Campbell, H.; Roberts, C. Responses of PROP taster groups to variations in sensory qualities within foods and beverages. Physiol. Behav. 2004, 82, 459–469. [Google Scholar] [CrossRef]
- Prescott, J.; Swain-Campbell, N. Responses to repeated oral irritation by capsaicin, cinnamaldehyde and ethanol in PROP tasters and non-tasters. Chem. Senses 2000, 25, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.E.; Duffy, V.B. Revisiting sugar-fat mixtures: Sweetness and creaminess vary with phenotypic markers of oral sensation. Chem. Senses 2007, 32, 225–236. [Google Scholar] [CrossRef]
- Skrandies, W.; Zschieschang, R. Olfactory and gustatory functions and its relation to body weight. Physiol. Behav. 2015, 142, 1–4. [Google Scholar] [CrossRef]
- Tepper, B.J.; Banni, S.; Melis, M.; Crnjar, R.; Tomassini Barbarossa, I. Genetic sensitivity to the bitter taste of 6-n-propylthiouracil (PROP) and its association with physiological mechanisms controlling body mass index (BMI). Nutrients 2014, 6, 3363–3381. [Google Scholar] [CrossRef]
- Silvestri, C.; Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 2013, 17, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Tomassini Barbarossa, I.; Carta, G.; Murru, E.; Melis, M.; Zonza, A.; Vacca, C.; Muroni, P.; Di Marzo, V.; Banni, S. Taste sensitivity to 6-n-propylthiouracil is associated with endocannabinoid plasma levels in normal-weight individuals. Nutrition 2013, 29, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Latorre, R.; Huynh, J.; Mazzoni, M.; Gupta, A.; Bonora, E.; Clavenzani, P.; Chang, L.; Mayer, E.A.; de Giorgio, R.; Sternini, C. Expression of the Bitter Taste Receptor, T2R38, in Enteroendocrine Cells of the Colonic Mucosa of Overweight/Obese vs. Lean Subjects. PLoS ONE 2016, 11, e0147468. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jones, P.M.; Persaud, S.J. Role of the endocannabinoid system in food intake, energy homeostasis and regulation of the endocrine pancreas. Pharmacol. Ther. 2011, 129, 307–320. [Google Scholar] [CrossRef]
- Cameron, J.D.; Goldfield, G.S.; Doucet, E. Fasting for 24 h improves nasal chemosensory performance and food palatability in a related manner. Appetite 2012, 58, 978–981. [Google Scholar] [CrossRef]
- Griffioen-Roose, S.; Hogenkamp, P.S.; Mars, M.; Finlayson, G.; de Graaf, C. Taste of a 24-h diet and its effect on subsequent food preferences and satiety. Appetite 2012, 59, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.F.; Fielding, B.A.; Frayn, K.N. Mechanisms for the acute effect of fructose on postprandial lipemia. Am. J. Clin. Nutr. 2007, 85, 1511–1520. [Google Scholar] [CrossRef]
- Sun, S.Z.; Empie, M.W. Fructose metabolism in humans—What isotopic tracer studies tell us. Nutr. Metab. (Lond) 2012, 9, 89. [Google Scholar] [CrossRef]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef] [Green Version]
- Beckett, E.L.; Duesing, K.; Boyd, L.; Yates, Z.; Veysey, M.; Lucock, M. A potential sex dimorphism in the relationship between bitter taste and alcohol consumption. Food Funct. 2017, 8, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Joseph, P.V.; Reed, D.R.; Mennella, J.A. Individual Differences Among Children in Sucrose Detection Thresholds: Relationship With Age, Gender, and Bitter Taste Genotype. Nurs. Res. 2016, 65, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Prutkin, J.; Duffy, V.B.; Etter, L.; Fast, K.; Gardner, E.; Lucchina, L.A.; Snyder, D.J.; Tie, K.; Weiffenbach, J.; Bartoshuk, L.M. Genetic variation and inferences about perceived taste intensity in mice and men. Physiol. Behav. 2000, 69, 161–173. [Google Scholar] [CrossRef]
- Bartoshuk, L.M.; Snyder, D.J. Taste. In Neuroscience in the 21st Century; Pfaff, D., Volkow, N., Eds.; Springer: New York, NY, USA, 2016; p. 931. [Google Scholar]
- Westenhoefer, J. Age and gender dependent profile of food choice. Forum Nutr. 2005, 57, 44–51. [Google Scholar]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
Males | Females | |||||||
---|---|---|---|---|---|---|---|---|
CC (n = 489, 36.6%) | CT (n = 645, 48.2%) | TT (n = 204, 15.3%) | p-Value | CC (n = 744, 33.4%) | CT (n = 1081, 48.5%) | TT (n = 404, 18.1%) | p-Value | |
Age | 60.94 (10.16) | 61.6 (9.99) | 61.51(8.66) | 0.460 | 58.6 (9.84) | 59.23 (10.09) | 58 (10.01) | 0.099 |
Tobacco smoking | ||||||||
Never | 125 (25.56) | 139 (21.55) | 35 (14.16) | 0.064 | 712 (95.7) | 1022 (94.54) | 381 (94.31) | 0.041 |
Past | 183 (37.42) | 235 (36.43) | 89 (43.63) | 11 (1.48) | 23 (2.13) | 2 (0.5) | ||
Current | 181 (37.01) | 271 (42.02) | 79 (38.73) | 20 (2.69) | 36 (3.33) | 21 (5.2) | ||
Missing | 1 (0.49) | 1 (0.13) | ||||||
Alcohol drinking | ||||||||
Never | 130 (26.58) | 162 (24.12) | 46 (22.55) | 0.879 | 457 (61.42) | 715 (66.14) | 263 (65.1) | 0.343 |
Past | 51 (10.43) | 69 (10.7) | 22 (10.78) | 20 (2.69) | 23 (2.13) | 10 (2.48) | ||
Current | 308 (62.99) | 41 (64.19) | 135 (66.18) | 266 (35.75) | 342 (31.64) | 131 (32.43) | ||
Missing | 1 (0.49) | 1 (0.13) | 1 (0.09) | |||||
Education level | ||||||||
Elementary | 347 (50.51) | 347 (53.8) | 102 (50.0) | 0.293 | 526 (70.7) | 738 (68.27) | 285 (70.54) | 0.186 |
High school | 192 (39.26) | 241 (37.36) | 75 (36.76) | 179 (24.06) | 302 (27.94) | 99 (24.5) | ||
College/more | 47 (9.61) | 54 (8.37) | 27 (13.24) | 37 (4.97) | 38 (3.52) | 20 (4.95) | ||
Missing | 3 (0.61) | 3 (0.61) | - | 2 (0.27) | 3 (0.28) | - | ||
Regular exercise | ||||||||
No | 353 (72.19) | 484 (75.04) | 150 (73.53) | 0.555 | 534 (71.77) | 795 (73.54) | 303 (75.0) | 0.465 |
Yes | 136 (27.81) | 161 (24.96) | 54 (26.47) | 210 (28.23) | 285 (26.36) | 101 (25.0) | ||
Missing | - | - | - | - | 1 (0.09) | - |
CC | CT | TT | p-Value * | p-Value ** | |
---|---|---|---|---|---|
Males | n = 489 | n = 645 | n = 204 | ||
Vegetables (g/day) | 252.9 (6.87) | 250.4 (5.75) | 242.6 (10.7) | 0.321 | 0.317 |
Cruciferous (g/day) | 188.8 (5.88) | 186.1 (4.92) | 182.1 (9.25) | 0.553 | 0.600 |
Dark green (g/day) | 22.8 (1.25) | 22.1 (0.81) | 21.5 (1.25) | 0.919 | 0.957 |
Fruits (g/day) | 116.3 (4.01) | 120.0 (4.28) | 123.9 (7.29) | 0.870 | 0.825 |
Citrus (g/day) | 22.9 (1.22) | 22.7 (1.18) | 21.2 (2.0) | 0.227 | 0.239 |
Fiber (g/day) | 4.90 (0.99) | 4.79 (0.07) | 4.66 (0.12) | 0.343 | 0.518 |
Sweets (g/day) | 28.0 (1.93) | 27.5 (1.53) | 26.3 (2.93) | 0.336 | 0.342 |
Alcohol (g/day) | 35.9 (3.07) | 33.3 (2.17) | 37.9 (4.33) | 0.652 | 0.628 |
Total energy (kcal/day) | 1699.7 (23.9) | 1761.9 (20.7) | 1722.2 (37.5) | 0.135 | 0.024 |
Percent of energy from | |||||
Carbohydrate | 75.9 (0.28) | 75.7 (0.25) | 75.5 (0.42) | 0.671 | 0.736 |
Protein | 12.3 (0.09) | 12.4 (0.09) | 12.4 (0.17) | 0.444 | 0.465 |
Fat | 11.7 (0.21) | 11.9 (0.19) | 11.9 (0.31) | 0.538 | 0.657 |
Females | n = 744 | n = 1081 | n = 404 | ||
Vegetables (g/day) | 249.5 (5.69) | 247.1 (4.70) | 242.3 (6.74) | 0.978 | 0.809 |
Cruciferous (g/day) | 174.1 (4.79) | 168.4 (3.78) | 166.9 (5.56) | 0.829 | 0.987 |
Dark green (g/day) | 24.8 (0.85) | 25.1 (0.81) | 24.9 (1.28) | 0.796 | 0.980 |
Fruits (g/day) | 163.6 (5.44) | 169.8 (4.48) | 184.3 (7.46) | 0.031 | 0.025 |
Citrus (g/day) | 33.8 (1.74) | 34.6 (1.38) | 37.1 (2.18) | 0.286 | 0.280 |
Fiber (g/day) | 5.13 (0.08) | 5.12 (0.06) | 5.10 (0.10) | 0.294 | 0.990 |
Sweets (g/day) | 24.1 (1.74) | 26.5 (1.34) | 29.5 (2.74) | 0.282 | 0.214 |
Alcohol (g/day) | 6.92 (1.38) | 7.11 (0.74) | 6.41 (1.03) | 0.548 | 0.566 |
Total energy (kcal/day) | 1548.7 (18.1) | 1494.6 (13.2) | 1534.3 (23.2) | 0.089 | 0.161 |
Percent of energy from | |||||
Carbohydrate | 77.8 (0.23) | 77.4 (0.20) | 77.5 (0.35) | 0.819 | 0.741 |
Protein | 12.0 (0.08) | 12.1 (0.07) | 11.9 (0.10) | 0.733 | 0.710 |
Fat | 10.1 (0.18) | 10.5 (0.15) | 10.5 (0.27) | 0.275 | 0.326 |
CC | CT | TT | p-Value * | p-Value ** | |
---|---|---|---|---|---|
Males | n = 489 | n = 645 | n = 204 | ||
Height (cm) | 165.2 (0.30) | 165.2 (0.25) | 164.9 (0.46) | 0.783 | 0.845 |
Weight (kg) | 64.1 (0.46) | 64.2 (0.39) | 64.2 (0.70) | 0.926 | 0.575 |
Waist (cm) | 84.1 (0.38) | 84.4 (0.33) | 84.3 (0.59) | 0.874 | 0.829 |
Hip (cm) | 92.6 (0.30) | 92.6 (0.25) | 92.3 (0.45) | 0.748 | 0.914 |
Body mass index (kg/m2) | 23.4 (0.13) | 23.5 (0.12) | 23.5 (0.21) | 0.760 | 0.364 |
Ideal body weight (kg) | 58.7 (0.27) | 58.7 (0.22) | 58.4 (0.41) | 0.788 | 0.836 |
Females | n = 744 | n = 1081 | n = 404 | ||
Height (cm) | 153.0 (0.21) | 152.9 (0.19) | 152.9 (0.29) | 0.880 | 0.524 |
Weight (kg) | 55.9 (0.30) | 56.0 (0.26) | 57.3 (0.43) | 0.019 | 0.046 |
Waist (cm) | 81.8 (0.33) | 82.2 (0.27) | 82.6 (0.46) | 0.389 | 0.218 |
Hip (cm) | 92.4 (0.24) | 92.6 (0.20) | 93.4 (0.33) | 0.048 | 0.045 |
Body mass index (kg/m2) | 23.8 (0.11) | 23.9 (0.10) | 24.5 (0.16) | 0.002 | 0.003 |
Ideal body weight (kg) | 47.7 (0.19) | 47.6 (0.17) | 47.6 (0.26) | 0.833 | 0.542 |
Underweight | Normal | Overweight | Obesity | p-Value | |
---|---|---|---|---|---|
Males | |||||
CC | 23 (41.82) | 205 (37.55) | 107 (36.15) | 151 (35.53) | 0.803 |
CT | 25 (45.45) | 265 (48.53) | 141 (47.64) | 203 (47.76) | |
TT | 7 (12.73) | 76 (13.92) | 48 (16.22) | 71 (16.71) | |
Females | |||||
CC | 11 (17.46) | 304 (37.53) | 194 (34.28) | 229 (29.93) | 0.005 |
CT | 41 (65.08) | 378 (46.67) | 279 (49.29) | 368 (48.10) | |
TT | 11 (17.46) | 128 (15.8) | 93 (16.43) | 168 (21.96) |
Overweight | Obesity | |||||
---|---|---|---|---|---|---|
OR (95% CI) | OR (95% CI) | p-Value * | OR (95% CI) | OR (95% CI) | p-Value * | |
Model I | Model II | Model I | Model II | |||
Males | ||||||
CC | reference | reference | reference | reference | ||
CT | 1.02 (0.74–1.39) | 1.01 (0.73–1.39) | 0.961 | 1.04 (0.78–1.37) | 1.09 (0.81–1.47) | 0.541 |
TT | 1.21 (0.78–1.86) | 1.23 (0.78–1.95) | 0.362 | 1.26 (0.86–1.86) | 1.45 (0.95–2.22) | 0.081 |
Females | ||||||
CC | reference | reference | reference | reference | ||
CT | 1.15 (0.91–1.46) | 1.24 (0.97–1.58) | 0.084 | 1.29 (1.03–1.61) | 1.33 (1.06–1.67) | 0.014 |
TT | 1.13 (0.82–1.57) | 1.19 (0.85–1.66) | 0.309 | 1.74 (1.31–2.32) | 1.75 (1.31–2.36) | 0.0002 |
All | ||||||
CC | reference | reference | reference | reference | ||
CT | 1.11 (0.92–1.33) | 1.15 (0.95–1.39) | 0.151 | 1.19 (0.99–1.42) | 1.23 (1.02–1.47) | 0.027 |
TT | 1.17 (0.90–1.51) | 1.21 (0.93–1.57) | 0.163 | 1.57 (1.25–1.97) | 1.61 (1.27–2.04) | <0.0001 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-H. Variation in the TAS2R38 Bitterness Receptor Gene Was Associated with Food Consumption and Obesity Risk in Koreans. Nutrients 2019, 11, 1973. https://doi.org/10.3390/nu11091973
Choi J-H. Variation in the TAS2R38 Bitterness Receptor Gene Was Associated with Food Consumption and Obesity Risk in Koreans. Nutrients. 2019; 11(9):1973. https://doi.org/10.3390/nu11091973
Chicago/Turabian StyleChoi, Jeong-Hwa. 2019. "Variation in the TAS2R38 Bitterness Receptor Gene Was Associated with Food Consumption and Obesity Risk in Koreans" Nutrients 11, no. 9: 1973. https://doi.org/10.3390/nu11091973
APA StyleChoi, J. -H. (2019). Variation in the TAS2R38 Bitterness Receptor Gene Was Associated with Food Consumption and Obesity Risk in Koreans. Nutrients, 11(9), 1973. https://doi.org/10.3390/nu11091973