Lipid Profile, Lipase Bioactivity, and Lipophilic Antioxidant Content in High Pressure Processed Donor Human Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Milk Sampling
- -
- raw milk—control
- -
- temperature processed milk/holder pasteurization (HoP)—comparator
- -
- high pressure processed (HPP)—experimental
2.3. Human Milk Processing
2.3.1. High Pressure Processing (HPP)
2.3.2. Holder Pasteurization (HoP)
2.4. Lipase Activity
2.5. Lipidome Profile
2.5.1. Fat Extraction
2.5.2. The Oxidative Induction Time
2.5.3. Acid Values and Free Fatty Acids Content
2.5.4. Fatty Acid Composition
2.5.5. Positional Distribution of Fatty Acid in Tag
2.6. Carotenoids Analysis
2.7. Statistical Analysis
3. Results
3.1. Lipase Activity
3.2. FFA Content
3.3. Oxidative Stability
3.4. Fatty Acid Composition
3.5. Fatty Acid Distribution
3.6. Carotenoids
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koletzko, B. Human milk lipids. Ann. Nutr. Metab. 2016, 69, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Tsopmo, A. Phytochemicals in Human Milk and Their Potential Antioxidative Protection. Antioxidants 2018, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Rodríguez-Palmero, M.; Demmelmair, H.; Fidler, N.; Jensen, R.; Sauerwald, T.; Mis, N.F. Physiological aspects of human milk lipids. Early Hum. Dev. 2001, 65, S3–S18. [Google Scholar] [CrossRef]
- Nessel, I.; Khashu, M.; Dyall, S.C. The effects of storage conditions on long-chain polyunsaturated fatty acids, lipid mediators, and antioxidants in donor human milk—A review. Prostaglandins Leukot. Essent. Fatty Acids 2019, 149, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Fidler, N.; Sauerwald, T.U.; Demmelmair, H.; Koletzko, B. Fat Content and Fatty Acid Composition of Fresh, Pasteurized, or Sterilized Human Milk. Adv. Exp. Med. Biol. 2001, 501, 485–495. [Google Scholar] [PubMed]
- Van Zoeren-Grobben, D.; Schrijver, J.; Berg, H.V.D.; Berger, H.M. Human milk vitamin content after pasteurisation, storage, or tube feeding. Arch. Dis. Child. 1987, 62, 161–165. [Google Scholar] [CrossRef]
- Cavazos-Garduño, A.; Serrano-Niño, J.; Solís-Pacheco, J.; Gutierrez-Padilla, J.; González-Reynoso, O.; García, H.; Aguilar-Uscanga, B. Effect of pasteurization, freeze-drying and spray drying on the fat globule and lipid profile of human milk. J. Food Nutr. Res. 2016, 4, 296–302. [Google Scholar]
- Hamosh, M.; Henderson, T.R.; Ellis, L.A.; Mao, J.-I.; Hamosh, P. Digestive Enzymes in Human Milk: Stability at Suboptimal Storage Temperatures. J. Pediatr. Gastroenterol. Nutr. 1997, 24, 38–43. [Google Scholar] [CrossRef]
- Peila, C.; Emmerik, N.E.; Giribaldi, M.; Stahl, B.; Ruitenberg, J.E.; van Elburg, R.M.; Moro, G.E.; Bertino, E.; Coscia, A.; Cavallarin, L. Human Milk Processing: A Systematic Review of Innovative Techniques to Ensure the Safety and Quality of Donor Milk. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 353–361. [Google Scholar] [CrossRef]
- Iverson, S.J.; Lang, S.L.C.; Cooper, M.H. Comparison of the bligh and dyer and folch methods for total lipid determination in a broad range of marine tissue. Lipids 2001, 36, 1283–1287. [Google Scholar] [CrossRef]
- Boselli, E.; Velazco, V.; Caboni, M.F.; Lercker, G. Pressurized liquid extraction of lipids for the determination of oxysterols in egg-containing food. J. Chromatogr. A 2001, 917, 239–244. [Google Scholar] [CrossRef]
- Macias, C.; Schweigert, F.J. Changes in the Concentration of Carotenoids, Vitamin A, Alpha-Tocopherol and Total Lipids in Human Milk throughout Early Lactation. Ann. Nutr. Metab. 2001, 45, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, M.A.; Hamulka, J.; Wesolowska, A. Carotenoid Content in Breastmilk in the 3rd and 6th Month of Lactation and Its Associations with Maternal Dietary Intake and Anthropometric Characteristics. Nutrients 2019, 11, 193. [Google Scholar] [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Andreas, N.J.; Kampmann, B.; Le-Doare, K.M. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Bardanzellu, F.; Fanos, V.; Strigini, F.A.L.; Artini, P.G.; Peroni, D.G. Human Breast Milk: Exploring the Linking Ring Among Emerging Components. Front. Pediatr. 2018, 6, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vázquez-Román, S.; Escuder-Vieco, D.; Martín-Pelegrina, M.; Muñoz-Amat, B.; Fernández-Álvarez, L.; Brañas-García, P.; Lora-Pablos, D.; Beceiro-Mosquera, J.; Pallás-Alonso, C. Effect of refrigerated storage on the pH and bacterial content of pasteurized human donor milk. J. Dairy Sci. 2018, 101, 10714–10719. [Google Scholar] [CrossRef] [PubMed]
- Ogundele, M.O. Effects of storage on the physicochemical and antibacterial properties of human milk. Br. J. Biomed. Sci. 2002, 59, 205–211. [Google Scholar] [CrossRef]
- Ahrabi, A.F.; Handa, D.; Codipilly, C.N.; Shah, S.; Williams, J.E.; McGuire, M.A.; Potak, D.; Aharon, G.G.; Schanler, R.J. Effects of Extended Freezer Storage on the Integrity of Human Milk. J. Pediatr. 2016, 177, 140–143. [Google Scholar] [CrossRef]
- Penn, A.H.; Altshuler, A.E.; Small, J.W.; Taylor, S.F.; Dobkins, K.R.; Schmid-Schönbein, G.W. Effect of Digestion and Storage of Human Milk on Free Fatty Acid Concentration and Cytotoxicity. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Pitino, M.A.; Alashmali, S.M.; Hopperton, K.E.; Unger, S.; Pouliot, Y.; Doyen, A.; O’Connor, D.L.; Bazinet, R.P. Oxylipin concentration, but not fatty acid composition, is altered in human donor milk pasteurised using both thermal and non-thermal techniques. Br. J. Nutr. 2019, 122, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Peila, C.; Moro, G.E.; Bertino, E.; Cavallarin, L.; Giribaldi, M.; Giuliani, F.; Cresi, F.; Coscia, A. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients 2016, 8, 477. [Google Scholar] [CrossRef]
- Ewaschuk, J.B.; Unger, S. Human milk pasteurization: Benefits and risks. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 269–275. [Google Scholar]
- Wesolowska, A.; Sinkiewicz-Darol, E.; Barbarska, O.; Bernatowicz-Lojko, U.; Borszewska-Kornacka, M.K.; Van Goudoever, J.B. Innovative Techniques of Processing Human Milk to Preserve Key Components. Nutrients 2019, 11, 1169. [Google Scholar] [CrossRef] [PubMed]
- Pitino, M.A.; Unger, S.; Doyen, A.; Pouliot, Y.; Aufreiter, S.; Stone, D.; Kiss, A.; O’Connor, D.L. High Hydrostatic Pressure Processing Better Preserves the Nutrient and Bioactive Compound Composition of Human Donor Milk. J. Nutr. 2019, 149, 497–504. [Google Scholar] [CrossRef]
- Demazeau, G.; Plumecocq, A.; Lehours, P.; Martin, P.; Couëdelo, L.; Billeaud, C. A New High Hydrostatic Pressure Process to Assure the Microbial Safety of Human Milk While Preserving the Biological Activity of Its Main Components. Front. Public Health 2018, 6, 306. [Google Scholar] [CrossRef]
- De Oliveira, S.C.; Bourlieu, C.; Ménard, O.; Bellanger, A.; Henry, G.; Rousseau, F.; Dirson, E.; Carrière, F.; Dupont, D.; Deglaire, A. Impact of pasteurization of human milk on preterm newborn in vitro digestion: Gastrointestinal disintegration, lipolysis and proteolysis. Food Chem. 2016, 211, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Lepri, L.; Del Bubba, M.; Maggini, R.; Donzelli, G.P.; Galvan, P. Effect of pasteurization and storage on some components of pooled human milk. J. Chromatogr. B Biomed. Sci. Appl. 1997, 704, 1–10. [Google Scholar] [CrossRef]
- Henderson, T.R.; Fay, T.N.; Hamosh, M. Effect of pasteurization on long chain polyunsaturated fatty acid levels and enzyme activities of human milk. J. Pediatr. 1998, 132, 876–878. [Google Scholar] [CrossRef]
- Moltó-Puigmartí, C.; Permanyer, M.; Castellote, A.I.; López-Sabater, M.C.; Castellote-Bargalló, A.I. Effects of pasteurisation and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chem. 2011, 124, 697–702. [Google Scholar] [CrossRef]
- Romeu-Nadal, M.; Castellote, A.; Gayà, A.; López-Sabater, M.C. Effect of pasteurisation on ascorbic acid, dehydroascorbic acid, tocopherols and fatty acids in pooled mature human milk. Food Chem. 2008, 107, 434–438. [Google Scholar] [CrossRef]
- Borgo, L.A.; Araújo, W.M.C.; Conceição, M.H.; Resck, I.S.; Mendonça, M.A. Are fat acids of human milk impacted by pasteurization and freezing? Nutr. Hosp. 2015, 31, 1386–1393. [Google Scholar]
- Williamson, S.; Finucane, E.; Ellis, H.; Gamsu, H.R. Effect of heat treatment of human milk on absorption of nitrogen, fat, sodium, calcium, and phosphorus by preterm infants. Arch. Dis. Child. 1978, 53, 555–563. [Google Scholar] [CrossRef]
- Gao, C.; Miller, J.; Middleton, P.F.; Huang, Y.-C.; McPhee, A.J.; Gibson, R.A. Changes to breast milk fatty acid composition during storage, handling and processing: A systematic review. Prostaglandins Leukot. Essent. Fat. Acids 2019, 146, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Reglero, G.; Señoráns, F.J. Oxidative stability of structured lipids. Eur. Food Res. Technol. 2010, 231, 635–653. [Google Scholar] [CrossRef]
- Kowalski, B.; Gruczyńska, E.; Maciaszek, K. Kinetics of rapeseed oil oxidation by pressure differential scanning calorimetry measurements. Eur. J. Lipid Sci. Technol. 2000, 102, 337–341. [Google Scholar] [CrossRef]
- Tan, C.P.; Man, Y.C. Recent developments in differential scanning calorimetry for assessing oxidative deterioration of vegetable oils. Trends Food Sci. Technol. 2002, 13, 312–318. [Google Scholar] [CrossRef]
- Bryś, J.; Wirkowska, M.; Gorska, A.; Ostrowska-Ligeza, E.; Bryś, A. Application of the calorimetric and spectroscopic methods in analytical evaluation of the human milk fat substitutes. J. Therm. Anal. Calorim. 2014, 118, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, B.; Tarnowska, K.; Gruczynska, E.; Bekas, W. Chemical and Enzymatic Interesterification of Beef Tallow and Rapeseed Oil Blend with Low Content of Tallow. J. Oleo Sci. 2004, 53, 479–488. [Google Scholar] [CrossRef]
- Miyashita, K.; Takagi, T. Study on the oxidative rate and prooxidant activity of free fatty acids. J. Am. Oil Chem. Soc. 1986, 63, 1380–1384. [Google Scholar] [CrossRef]
- Hamam, F.; Shahidi, F. Enzymatic acidolysis of an arachidonic acid single-cell oil with capric acid. J. Am. Oil Chem. Soc. 2004, 81, 887–892. [Google Scholar] [CrossRef]
- Mu, H. Production and nutritional aspects of human milk fat substitutes. Lipid Technol. 2010, 22, 126–129. [Google Scholar] [CrossRef]
- Visentainer, J.V.; Santos, O.O.; Maldaner, L.; Zappielo, C.; Neia, V.; Visentainer, L.; Pelissari, L.; Pizzo, J.; Rydlewski, A.; Silveira, R.; et al. Lipids and Fatty Acids in Human Milk: Benefits and Analysis. In Biochemistry and Health Benefits of Fatty Acids; IntechOpen: London, UK, 2018. [Google Scholar] [Green Version]
- Bryś, J.; Flores, L.F.V.; Górska, A.; Wirkowska-Wojdyła, M.; Ostrowska-Ligęza, E.; Bryś, A. Use of GC and PDSC methods to characterize human milk fat substitutes obtained from lard and milk thistle oil mixtures. J. Therm. Anal. Calorim. 2017, 130, 319–327. [Google Scholar] [CrossRef]
- Lien, E.L. The role of fatty acid composition and positional distribution in fat absorption in infants. J. Pediatr. 1994, 125, S62–S68. [Google Scholar] [CrossRef]
- Salamon, S.; Csapó, J. Composition of the mother’s milk II. Fat contents, fatty acid composition. A review. Acta Univ. Sapientiae Aliment. 2009, 2, 196–234. [Google Scholar]
- Delgado, F.J.; Cava, R.; Delgado, J.; Ramírez, R. Tocopherols, fatty acids and cytokines content of holder pasteurised and high-pressure processed human milk. Dairy Sci. Technol. 2014, 94, 145–156. [Google Scholar] [CrossRef]
- Nielsen, N.S.; Yang, T.; Xu, X.; Jacobsen, C. Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor. Food Chem. 2006, 94, 53–60. [Google Scholar] [CrossRef]
- Baack, M.L.; Norris, A.W.; Yao, J.; Colaizy, T. Long Chain Polyunsaturated Fatty Acid Levels in U.S. Donor Human Milk: Meeting the Needs of Premature Infants? J. Perinatol. 2012, 32, 598–603. [Google Scholar] [CrossRef]
- Giampietri, M.; Lorenzoni, F.; Moscuzza, F.; Boldrini, A.; Ghirri, P. Lutein and Neurodevelopment in Preterm Infants. Front. Mol. Neurosci. 2016, 10, 4034. [Google Scholar] [CrossRef]
- Zielińska, M.A.; Wesołowska, A.; Pawlus, B.; Hamułka, J. Health Effects of Carotenoids during Pregnancy and Lactation. Nutrients 2017, 9, 838. [Google Scholar] [CrossRef]
- Manzoni, P.; Guardione, R.; Bonetti, P.; Priolo, C.; Maestri, A.; Mansoldo, C.; Mostert, M.; Anselmetti, G.; Sardei, D.; Bellettato, M. Lutein and zeaxanthin supplementation in preterm very low-birth-weight neonates in neonatal intensive care units: A multicenter randomized controlled trial. Am. J. Perinatol. 2013, 30, 25–32. [Google Scholar] [CrossRef]
- Rubin, L.P.; Chan, G.M.; Barrett-Reis, B.M.; Fulton, A.B.; Hansen, R.; Ashmeade, T.; Oliver, J.; Mackey, A.; Dimmit, R.; Hartmann, E. Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants. J. Perinatol. 2012, 32, 418–424. [Google Scholar] [CrossRef]
- Costa, S.; Giannantonio, C.; Romagnoli, C.; Vento, G.; Gervasoni, J.; Persichilli, S.; Zuppi, C.; Cota, F. Effects of lutein supplementation on biological antioxidant status in preterm infants: A randomized clinical trial. J. Matern. Neonatal Med. 2013, 26, 1311–1315. [Google Scholar] [CrossRef]
- Hanson, C.; Lyden, E.; Furtado, J.; Van Ormer, M.; Anderson-Berry, A. A Comparison of Nutritional Antioxidant Content in Breast Milk, Donor Milk, and Infant Formulas. Nutrients 2016, 8, 681. [Google Scholar] [CrossRef]
- Oey, I.; Van Der Plancken, I.; Van Loey, A.; Hendrickx, M. Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci. Technol. 2008, 19, 300–308. [Google Scholar] [CrossRef]
- Tacken, K.J.M.; Vogelsang, A.; Dikkeschei, B.D.; Van Lingen, R.A.; Slootstra, J.; Van Zoeren-Grobben, D. Loss of triglycerides and carotenoids in human milk after processing. Arch. Dis. Child. Fetal Neonatal Ed. 2009, 94, 447–450. [Google Scholar] [CrossRef]
- Bellanger, A.; Ménard, O.; Pladys, P.; Dirson, E.; Kroell, F.; De Oliveira, S.C.; Le Gouar, Y.; Dupont, D.; Deglaire, A.; Bourlieu, C. Impact of human milk pasteurization on gastric digestion in preterm infants: A randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 379–390. [Google Scholar]
- Perrella, S.L.; Hepworth, A.R.; Gridneva, Z.; Simmer, K.N.; Hartmann, P.E.; Geddes, D.T. Gastric emptying and curding of pasteurized donor human milk and mother’s own milk in preterm infants. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 125–129. [Google Scholar]
- Andersson, Y.; Sävman, K.; Bläckberg, L.; Hernell, O. Pasteurization of mother’s own milk reduces fat absorption and growth in preterm infants. Acta Paediatr. 2007, 96, 1445–1449. [Google Scholar] [CrossRef]
- Alexandre-Gouabau, M.-C.; Moyon, T.; Cariou, V.; Antignac, J.-P.; Qannari, E.M.; Croyal, M.; Soumah, M.; Guitton, Y.; David-Sochard, A.; Billard, H.; et al. Breast Milk Lipidome Is Associated with Early Growth Trajectory in Preterm Infants. Nutrients 2018, 10, 164. [Google Scholar] [CrossRef]
Human Milk Fatty Acid Composition (%) | Raw Milk | Holder | 600 MPa | 200 + 400 MPa | 100 + 600 MPa | 200 + 600 MPa | 450 MPa |
---|---|---|---|---|---|---|---|
Saturated fatty acids (SFA) | 48.53 ± 0.94 | 49.77 ± 3.39 | 47.94 ± 0.83 | 47.70 ± 0.25 | 47.32 ± 0.08 | 47.72 ± 0.18 | 43.17 ± 0.62 |
C8:0 | 0.06 ± 0.04 | 0.11 ± 0.02 | 0.08 ± 0.04 | 0.04 ± 0.01 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.00 |
C10:0 | 0.89 ± 0.09 | 1.07 ± 0.23 | 0.83 ± 0.10 | 0.77 ± 0.01 | 0.88 ± 0.02 | 0.85 ± 0.02 | 0.73 ± 0.09 |
C12:0 | 5.77 ± 0.14 | 6.58 ± 1.26 | 5.72 ± 0.36 | 5.28 ± 0.05 | 5.76 ± 0.11 | 5.63 ± 0.08 | 3.96 ± 0.51 |
C14:0 | 8.47 ± 0.40 | 8.89 ± 1.48 | 8.27 ± 0.35 | 8.08 ± 0.13 | 8.10 ± 0.07 | 8.15 ± 0.08 | 6.11 ± 0.39 |
C15:0 | 0.36 ± 0.02 | 0.38 ± 0.05 | 0.35 ± 0.02 | 0.35 ± 0.01 | 0.35 ± 0.01 | 0.35 ± 0.00 | 0.36 ± 0.01 |
C16:0 | 24.59 ± 0.49 | 25.13 ± 1.30 | 24.22 ± 0.08 | 24.45 ± 0.23 | 23.80 ± 0.01 | 24.14 ± 0.02 | 23.93 ± 0.16 |
C17:0 | 0.36 ± 0.03 | 0.33 ± 0.00 | 0.33 ± 0.01 | 0.34 ± 0.01 | 0.33 ± 0.01 | 0.34 ± 0.00 | 0.34 ± 0.01 |
C18:0 | 7.57 ± 0.03 | 6.94 ± 0.83 | 7.73 ± 0.05 | 7.95 ± 0.14 | 7.64 ± 0.09 | 7.81 ± 0.01 | 7.26 ± 0.20 |
C20:0 | 0.47 ± 0.03 | 0.36 ± 0.11 | 0.43 ± 0.01 | 0.46 ± 0.01 | 0.42 ± 0.01 | 0.43 ± 0.01 | 0.45 ± 0.01 |
Polyunsaturated fatty acids (PUFA) | 39.07 ± 0.15 | 37.715 ± 2.34 | 39.04 ± 0.70 | 39.24 ± 0.42 | 39.46 ± 0.15 | 39.25 ± 0.08 | 43.13 ± 0.45 |
C20:1 | 0.52 ± 0.01 | 0.43 ± 0.13 | 0.52 ± 0.01 | 0.55 ± 0.04 | 0.50 ± 0.01 | 0.52 ± 0.01 | 0.72 ± 0.01 |
C14:1 | 0.25 ± 0.04 | 0.32 ± 0.04 | 0.29 ± 0.00 | 0.27 ± 0.01 | 0.28 ± 0.00 | 0.28 ± 0.00 | 0.23 ± 0.01 |
C15:1 | 0.10 ± 001 | 0.11 ± 0.02 | 0.09 ± 0.00 | 0.10 ± 0.01 | 0.09 ± 0.01 | 0.09 ± 0.00 | 0.08 ± 0.00 |
C16:1 | 2.63 ± 0.35 | 2.69 ± 0.25 | 2.44 ± 0.04 | 2.45 ± 0.11 | 2.46 ± 0.01 | 2.46 ± 0.01 | 2.49 ± 0.02 |
C17:1 | 0.20 ± 0.01 | 0.21 ± 0.03 | 0.21 ± 0.01 | 0.20 ± 0.01 | 0.23 ± 0.01 | 0.22 ± 0.01 | 0.20 ± 0.00 |
C18:1 | 35.39 ± 0.46 | 33.97 ± 2.50 | 35.49 ± 0.74 | 35.68 ± 0.25 | 35.91 ± 0.13 | 35.69 ± 0.09 | 39.41 ± 0.47 |
Polyunsaturated fatty acids (PUFA) | 10.73 ± 1.00 | 11.04 ± 1.05 | 11.4 ± 0.12 | 11.53 ± 0.08 | 11.67 ± 0.07 | 11.57 ± 0.00 | 12.24 ± 0.30 |
C18:2 n-6 | 8.17 ± 1.15 | 8.75 ± 0.64 | 8.90 ± 0.06 | 8.99 ± 0.01 | 9.08 ± 0.04 | 9.05 ± 0.01 | 9.40 ± 0.18 |
C18:3 n-3 | 1.36 ± 0.12 | 1.28 ± 0.12 | 1.27 ± 0.01 | 1.30 ± 0.03 | 1.36 ± 0.05 | 1.30 ± 0.00 | 1.33 ± 0.06 |
C20:2 n-6 | 0.20 ± 0.01 | 0.18 ± 0.04 | 0.22 ± 0.01 | 0.22 ± 0.01 | 0.22 ± 0.01 | 0.22 ± 0.00 | 0.32 ± 0.00 |
C20:3 n-6 | 0.20 ± 0.01 | 0.21 ± 0.07 | 0.27 ± 0.03 | 0.25 ± 0.01 | 0.26 ± 0.00 | 0.25 ± 0.00 | 0.35 ± 0.01 |
C20:4 n-6 | 0.38 ± 0.01 | 0.34 ± 0.08 | 0.38 ± 0.01 | 0.39 ± 0.00 | 0.39 ± 0.00 | 0.38 ± 0.00 | 0.44 ± 0.01 |
C20:5 n-3 | 0.14 ± 0.01 | 0.07 ± 0.01 | 0.11 ± 0.04 | 0.11 ± 0.02 | 0.09 ± 0.01 | 0.10 ± 0.00 | 0.09 ± 0.03 |
C22:6 n-3 | 0.31 ± 0.01 | 0.22 ± 0.08 | 0.28 ± 001 | 0.27 ± 0.03 | 0.29 ± 0.01 | 0.28 ± 0.01 | 0.31 ± 0.00 |
Fatty Acid (%) in sn-2 Position of TAG | Raw Milk | Holder | 600 MPa | 200 + 400 MPa | 100 + 600 MPa | 200 + 600 MPa | 450 MPa |
---|---|---|---|---|---|---|---|
C14:0 (myristic acid) | 14.00 ± 0.71 | 12.50 ± 0.50 | 14.40 ± 0.47 | 14.90 ± 1.12 | 14.52 ± 0.62 | 13.90 ± 0.63 | 9.50 ± 0.54 |
C16:0 (palmitic acid) | 47.70 ± 0.81 | 50.10 ± 1.34 | 53.50 ± 1.85 | 53.20 ± 0.59 | 51.50 ± 0.45 | 51.00 ± 1.22 | 52.20 ± 0.02 |
C18:1 (oleic acid) | 16.40 ± 0.35 | 16.00 ± 0.18 | 13.40 ± 0.04 | 13.10 ± 1.07 | 13.20 ± 0.07 | 15.10 ± 1.65 | 15.40 ± 0.25 |
C18:2 (linoleic acid) | 6.50 ± 0.28 | 6.20 ± 0.10 | 5.70 ± 0.11 | 5.40 ± 0.57 | 5.67 ± 0.28 | 5.90 ± 0.28 | 5.40 ± 0.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wesolowska, A.; Brys, J.; Barbarska, O.; Strom, K.; Szymanska-Majchrzak, J.; Karzel, K.; Pawlikowska, E.; Zielinska, M.A.; Hamulka, J.; Oledzka, G. Lipid Profile, Lipase Bioactivity, and Lipophilic Antioxidant Content in High Pressure Processed Donor Human Milk. Nutrients 2019, 11, 1972. https://doi.org/10.3390/nu11091972
Wesolowska A, Brys J, Barbarska O, Strom K, Szymanska-Majchrzak J, Karzel K, Pawlikowska E, Zielinska MA, Hamulka J, Oledzka G. Lipid Profile, Lipase Bioactivity, and Lipophilic Antioxidant Content in High Pressure Processed Donor Human Milk. Nutrients. 2019; 11(9):1972. https://doi.org/10.3390/nu11091972
Chicago/Turabian StyleWesolowska, Aleksandra, Joanna Brys, Olga Barbarska, Kamila Strom, Jolanta Szymanska-Majchrzak, Katarzyna Karzel, Emilia Pawlikowska, Monika A. Zielinska, Jadwiga Hamulka, and Gabriela Oledzka. 2019. "Lipid Profile, Lipase Bioactivity, and Lipophilic Antioxidant Content in High Pressure Processed Donor Human Milk" Nutrients 11, no. 9: 1972. https://doi.org/10.3390/nu11091972
APA StyleWesolowska, A., Brys, J., Barbarska, O., Strom, K., Szymanska-Majchrzak, J., Karzel, K., Pawlikowska, E., Zielinska, M. A., Hamulka, J., & Oledzka, G. (2019). Lipid Profile, Lipase Bioactivity, and Lipophilic Antioxidant Content in High Pressure Processed Donor Human Milk. Nutrients, 11(9), 1972. https://doi.org/10.3390/nu11091972