Differences in Serum Magnesium Levels in Diabetic and Non-Diabetic Patients Following One-Anastomosis Gastric Bypass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Assessment of Variables
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Associations between Diabetic Patients and Serum Magnesium, Blood Glucose and Serum Lipid Parameters in the First Postoperative Year
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seo, J.W.; Park, T.J. Magnesium metabolism. Electrolyte Blood Press. 2008, 6, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, R. Magnesium metabolism and its disorders. Clin. Biochem. Rev. 2003, 24, 47–66. [Google Scholar] [PubMed]
- Veronese, N.; Zanforlini, B.M.; Manzato, E.; Sergi, G. Magnesium and healthy aging. Magnes. Res. 2015, 28, 112–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chutia, H.; Lynrah, K.G. Association of Serum Magnesium Deficiency with Insulin Resistance in Type 2 Diabetes Mellitus. J. Lab. Physicians 2015, 7, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Lecube, A.; Baena-Fustegueras, J.A.; Fort, J.M.; Pelegri, D.; Hernandez, C.; Simo, R. Diabetes is the main factor accounting for hypomagnesemia in obese subjects. PLoS ONE 2012, 7, e30599. [Google Scholar] [CrossRef] [PubMed]
- Galan, P.; Preziosi, P.; Durlach, V.; Valeix, P.; Ribas, L.; Bouzid, D.; Favier, A.; Hercberg, S. Dietary magnesium intake in a French adult population. Magnes. Res. 1997, 10, 321–328. [Google Scholar]
- Moshfegh, A.; Goldman, J.; Ahuja, J.; Rhodes, D.; LaComb, R. What We Eat in America, NHANES 2005–2006: Usual Nutrient Intake from Food and Water Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magnesium. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/0506/usual_nutrient_intake_vitD_ca_phos_mg_2005-06.pdf (accessed on 7 April 2019).
- Jackson, S.E.; Smith, L.; Grabovac, I.; Haider, S.; Demurtas, J.; Lopez-Sanchez, G.F.; Soysal, P.; Redsell, S.; Isik, A.T.; Yang, L. Ethnic Differences in Magnesium Intake in U.S. Older Adults: Findings from NHANES 2005–2016. Nutrients 2018, 10, 1901. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Rodriguez-Moran, M. Low serum magnesium levels and metabolic syndrome. Acta Diabetol. 2002, 39, 209–213. [Google Scholar] [CrossRef]
- Nielsen, F.H. Magnesium, inflammation, and obesity in chronic disease. Nutr. Rev. 2010, 68, 333–340. [Google Scholar] [CrossRef]
- Barbagallo, M.; Dominguez, L.J. Magnesium metabolism in type 2 diabetes mellitus, metabolic syndrome and insulin resistance. Arch. Biochem. Biophys. 2007, 458, 40–47. [Google Scholar] [CrossRef]
- Van Orten-Luiten, A.C.B.; Janse, A.; Verspoor, E.; Brouwer-Brolsma, E.M.; Witkamp, R.F. Drug use is associated with lower plasma magnesium levels in geriatric outpatients; possible clinical relevance. Clin. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- James, W.P. WHO recognition of the global obesity epidemic. Int. J. Obes. (2005) 2008, 32, S120–S126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klimont, J.; Baldaszti, E. Austrian Health Interview Survey. Oesterreichische Gesundheitsbefragung 2014. Hauptergebnisse des Austrian Health Interview Survey (AT-HIS) und Medizinische Dokumentation; Austrian Statistics Agency: Vienna, Austria, 2015. [Google Scholar]
- Blair, S.N.; Horton, E.; Leon, A.S.; Lee, I.M.; Drinkwater, B.L.; Dishman, R.K.; Mackey, M.; Kienholz, M.L. Physical activity, nutrition, and chronic disease. Med. Sci. Sports Exerc. 1996, 28, 335–349. [Google Scholar]
- Magkos, F.; Fraterrigo, G.; Yoshino, J.; Luecking, C.; Kirbach, K.; Kelly, S.C.; de Las Fuentes, L.; He, S.; Okunade, A.L.; Patterson, B.W.; et al. Effects of Moderate and Subsequent Progressive Weight Loss on Metabolic Function and Adipose Tissue Biology in Humans with Obesity. Cell Metab. 2016, 23, 591–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchwald, H.; Oien, D.M. Metabolic/bariatric surgery Worldwide 2008. Obes. Surg. 2009, 19, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Himpens, J.; Ramons, A.; Welbourn, R.; Dixon, J.; Kinsman, R.; Walton, P. Fourth IFSO Global Registry Report; Dendrite Clinical Systems Ltd.: Reading, UK, 2018. [Google Scholar]
- Mikalsen, S.M.; Bjorke-Monsen, A.L.; Whist, J.E.; Aaseth, J. Improved Magnesium Levels in Morbidly Obese Diabetic and Non-diabetic Patients After Modest Weight Loss. Biol. Trace Elem. Res. 2019, 188, 45–51. [Google Scholar] [CrossRef]
- Wei, J.; Zeng, C.; Li, X.X.; Gong, Q.Y.; Lei, G.H.; Yang, T.B. Association among dietary magnesium, serum magnesium, and diabetes: A cross-sectional study in middle-aged and older adults. J. Health Popul. Nutr. 2016, 35, 33. [Google Scholar] [CrossRef]
- Veronese, N.; Demurtas, J.; Pesolillo, G.; Celotto, S.; Barnini, T.; Calusi, G.; Caruso, M.G.; Notarnicola, M.; Reddavide, R.; Stubbs, B.; et al. Magnesium and health outcomes: An umbrella review of systematic reviews and meta-analyses of observational and intervention studies. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef]
- Luger, M.; Kruschitz, R.; Kienbacher, C.; Traussnigg, S.; Langer, F.B.; Prager, G.; Schindler, K.; Kallay, E.; Hoppichler, F.; Trauner, M.; et al. Vitamin D3 Loading Is Superior to Conventional Supplementation After Weight Loss Surgery in Vitamin D-Deficient Morbidly Obese Patients: A Double-Blind Randomized Placebo-Controlled Trial. Obes. Surg. 2017, 27, 1196–1207. [Google Scholar] [CrossRef]
- Luger, M.; Kruschitz, R.; Marculescu, R.; Haslacher, H.; Hoppichler, F.; Kallay, E.; Kienbacher, C.; Klammer, C.; Kral, M.; Langer, F.; et al. The link between obesity and vitamin D in bariatric patients with omega-loop gastric bypass surgery—A vitamin D supplementation trial to compare the efficacy of postoperative cholecalciferol loading (LOAD): Study protocol for a randomized controlled trial. Trials 2015, 16, 328. [Google Scholar] [CrossRef]
- Rutledge, R. The mini-gastric bypass: Experience with the first 1,274 cases. Obes. Surg. 2001, 11, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.F.; Altman, D.G.; Moher, D.; Group, C. CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. Trials 2010, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Dale, O.; Salo, M. The Helsinki Declaration, research guidelines and regulations: Present and future editorial aspects. Acta Anaesthesiol. Scand. 1996, 40, 771–772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Paul, J.; Nantha-Aree, M.; Buckley, N.; Shahzad, U.; Cheng, J.; DeBeer, J.; Winemaker, M.; Wismer, D.; Punthakee, D.; et al. Empirical comparison of four baseline covariate adjustment methods in analysis of continuous outcomes in randomized controlled trials. Clin. Epidemiol. 2014, 6, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Sales, C.H.; Pedrosa, L. Magnesium and diabetes mellitus: Their relation. Clin. Nutr. 2006, 25, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Dominguez, L.J.; Galioto, A.; Ferlisi, A.; Cani, C.; Malfa, L.; Pineo, A.; Busardo, A.; Paolisso, G. Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol. Asp. Med. 2003, 24, 39–52. [Google Scholar] [CrossRef]
- Hata, A.; Doi, Y.; Ninomiya, T.; Mukai, N.; Hirakawa, Y.; Hata, J.; Ozawa, M.; Uchida, K.; Shirota, T.; Kitazono, T.; et al. Magnesium intake decreases Type 2 diabetes risk through the improvement of insulin resistance and inflammation: The Hisayama Study. Diabet. Med. 2013, 30, 1487–1494. [Google Scholar] [CrossRef]
- Hruby, A.; Meigs, J.B.; O’Donnell, C.J.; Jacques, P.F.; McKeown, N.M. Higher magnesium intake reduces risk of impaired glucose and insulin metabolism and progression from prediabetes to diabetes in middle-aged americans. Diabetes Care 2014, 37, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.C.; Lee, N.J.; Yeh, W.T.; Ho, L.T.; Pan, W.H. Lower intake of magnesium and dietary fiber increases the incidence of type 2 diabetes in Taiwanese. J. Formos. Med. Assoc. 2012, 111, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Nanri, A.; Mizoue, T.; Noda, M.; Takahashi, Y.; Kirii, K.; Inoue, M.; Tsugane, S. Magnesium intake and type II diabetes in Japanese men and women: The Japan Public Health Center-based Prospective Study. Eur. J. Clin. Nutr. 2010, 64, 1244–1247. [Google Scholar] [CrossRef]
- Barbagallo, M.; Dominguez, L.J. Magnesium and type 2 diabetes. World J. Diabetes 2015, 6, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.E.; Zethelius, B.; Ohrvall, M.; Sundbom, M.; Haenni, A. Serum magnesium status after gastric bypass surgery in obesity. Obes. Surg. 2009, 19, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Dalcanale, L.; Oliveira, C.P.; Faintuch, J.; Nogueira, M.A.; Rondo, P.; Lima, V.M.; Mendonca, S.; Pajecki, D.; Mancini, M.; Carrilho, F.J. Long-term nutritional outcome after gastric bypass. Obes. Surg. 2010, 20, 181–187. [Google Scholar] [CrossRef] [PubMed]
Parameters | Total | Type 2 Diabetes Mellitus | p-Value + | |
---|---|---|---|---|
no (n = 25) | yes (n = 25) | |||
Mean ± SD Number (%) | Mean ± SD Number (%) | Mean ± SD Number (%) | ||
Female | 40 (80) | 19 (76) | 21 (84) | 0.480 |
Age (years) | 42.2 ± 12.5 | 35.6 ± 11.9 | 48.8 ± 9.3 | <0.001 |
BMI (kg/m2) | 43.8 ± 4.3 | 43.7 ± 4.9 | 43.9 ± 3.7 | 0.835 |
Supplementation | ||||
Vitamin D | 8 (16) | 3 (12) | 5 (20) | 0.440 |
Iron | 1 (2) | 0 (0) | 1 (4) | 0.312 |
Diuretics use | 12 (24) | 2 (8) | 10 (40) | 0.008 |
Magnesium (mmol/L) | 0.81 ± 0.07 | 0.83 ± 0.05 | 0.78 ± 0.07 | 0.006 |
Deficient (<0.8 mmol/L) | 21 (42) | 5 (20) | 16 (64) | 0.002 |
Glucose (mg/dL) | 108.7 ± 36.4 | 87.6 ± 8.1 | 129.9 ± 41.3 | <0.001 |
HbA1c (%) | 6.0 ± 1.3 | 5.3 ± 0.5 | 6.7 ± 1.4 | <0.001 |
OAD use | 9 (18) | 0 (0) | 9 (36) | 0.001 |
Insulin use | 6 (12) | 0 (0) | 6 (24) | 0.009 |
Triglycerides (mg/dL) | 155.8 ± 79.8 | 164.5 ± 89.4 | 147.2 ± 69.6 | 0.447 |
Total cholesterol (mg/dL) | 198.2 ± 46.9 | 197.6 ± 31.9 | 198.9 ± 59 | 0.920 |
HDL cholesterol (mg/dL) | 47.3 ± 12.3 | 46.3 ± 10.3 | 48.2 ± 14.1 | 0.578 |
Cholesterol/HDL ratio | 4.4 ± 1.2 | 4.5 ± 1.3 | 4.3 ± 1.2 | 0.573 |
LDL cholesterol (mg/dL) | 120.6 ± 40.3 | 120 ± 29.9 | 121.2 ± 48.9 | 0.916 |
Parameters | Baseline | p-Value + | 6 Months | p-Value + | 12 Months | p-Value + | p-Value Group + | p-Value Time + | p-Value Group * Time + | |
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||||||||
BMI (kg/m2) | Non-diabetics | 43.7 ± 4.9 | 0.504 | 32.0 ± 3.8 | 0.020 | 28.0 ± 4.2 | 0.001 | 0.004 | <0.001 | 0.001 |
Diabetics | 43.9 ± 3.7 | 32.4 ± 3.9 | 29.0 ± 2.5 | |||||||
Magnesium (mmol/L) | Non-diabetics | 0.83 ± 0.05 | 0.006 | 0.84 ± 0.04 | 0.350 | 0.84 ± 0.05 | 0.248 | 0.033 | 0.286 | 0.474 |
Diabetics | 0.78 ± 0.07 | 0.78 ± 0.05 | 0.78 ± 0.09 | |||||||
Glucose (mg/dL) | Non-diabetics | 87.6 ± 8.1 | <0.001 | 83.5 ± 5.5 | 0.029 | 82.2 ± 5.8 | 0.019 | <0.001 | 0.001 | 0.733 |
Diabetics | 129.9 ± 41.3 | 134.6 ± 26.5 | 131 ± 25.7 | |||||||
HbA1c (%) | Non-diabetics | 5.3 ± 0.5 | 0.001 | 5.1 ± 0.3 | 0.006 | 5.1 ± 0.4 | 0.057 | 0.264 | <0.001 | <0.001 |
Diabetics | 6.7 ± 1.4 | 6.2 ± 0.7 | 6.4 ± 0.8 | |||||||
Triglycerides (mg/dL) | Non-diabetics | 164.5 ± 89.4 | 0.072 | 91.3 ± 29.8 | 0.018 | 85.3 ± 34.9 | 0.643 | 0.453 | <0.001 | 0.007 |
Diabetics | 147.2 ± 69.6 | 144.2 ± 30.6 | 104.6 ± 23.2 | |||||||
Total cholesterol (mg/dL) | Non-diabetics | 197.6 ± 31.9 | 0.707 | 165.5 ± 38.7 | 0.507 | 163.7 ± 29.6 | 0.474 | 0.547 | <0.001 | 0.604 |
Diabetics | 198.9 ± 59 | 170.5 ± 38.9 | 169.5 ± 56.1 | |||||||
HDL cholesterol (mg/dL) | Non-diabetics | 46.3 ± 10.3 | 0.324 | 47.4 ± 10.2 | 0.995 | 53.8 ± 9.4 | 0.303 | 0.301 | <0.001 | 0.681 |
Diabetics | 48.2 ± 14.1 | 45.1 ± 8.9 | 55.1 ± 11.2 | |||||||
Cholesterol/HDL ratio | Non-diabetics | 4.5 ± 1.3 | 0.272 | 3.6 ± 0.8 | 0.761 | 3.1 ± 0.8 | 0.900 | 0.582 | <0.001 | 0.726 |
Diabetics | 4.3 ± 1.2 | 3.7 ± 0.7 | 3.1 ± 1.0 | |||||||
LDL cholesterol (mg/dL) | Non-diabetics | 120 ± 29.9 | 0.849 | 99.8 ± 32.3 | 0.971 | 92.9 ± 24.9 | 0.735 | 0.924 | <0.001 | 0.916 |
Diabetics | 121.2 ± 48.9 | 96.5 ± 35.8 | 93.5 ± 52.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winzer, E.; Grabovac, I.; Ludvik, B.; Kruschitz, R.; Schindler, K.; Prager, G.; Klammer, C.; Smith, L.; Hoppichler, F.; Marculescu, R.; et al. Differences in Serum Magnesium Levels in Diabetic and Non-Diabetic Patients Following One-Anastomosis Gastric Bypass. Nutrients 2019, 11, 1984. https://doi.org/10.3390/nu11091984
Winzer E, Grabovac I, Ludvik B, Kruschitz R, Schindler K, Prager G, Klammer C, Smith L, Hoppichler F, Marculescu R, et al. Differences in Serum Magnesium Levels in Diabetic and Non-Diabetic Patients Following One-Anastomosis Gastric Bypass. Nutrients. 2019; 11(9):1984. https://doi.org/10.3390/nu11091984
Chicago/Turabian StyleWinzer, Eva, Igor Grabovac, Bernhard Ludvik, Renate Kruschitz, Karin Schindler, Gerhard Prager, Carmen Klammer, Lee Smith, Friedrich Hoppichler, Rodrig Marculescu, and et al. 2019. "Differences in Serum Magnesium Levels in Diabetic and Non-Diabetic Patients Following One-Anastomosis Gastric Bypass" Nutrients 11, no. 9: 1984. https://doi.org/10.3390/nu11091984
APA StyleWinzer, E., Grabovac, I., Ludvik, B., Kruschitz, R., Schindler, K., Prager, G., Klammer, C., Smith, L., Hoppichler, F., Marculescu, R., & Wakolbinger, M. (2019). Differences in Serum Magnesium Levels in Diabetic and Non-Diabetic Patients Following One-Anastomosis Gastric Bypass. Nutrients, 11(9), 1984. https://doi.org/10.3390/nu11091984