Animal Protein Intake Is Associated with General Adiposity in Adolescents: The Teen Food and Development Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessment of Dietary Intake
Assessment of Protein and Amino Acid Groups Consumption
2.3. Assessment of Indicators of Overweight, Obesity, and Body Composition
2.4. Assessment of Other Variables
2.5. Data Analysis
3. Results
3.1. Demographic Characteristics of Participants
3.2. Dietary Caloric, Protein, and Amino Acids Intake
3.3. Protein Food Sources and Their Contribution to Total Protein
3.4. Associations between Intake of Protein and Amino Acids and Obesity and Body Composition
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity Among Adults and Youth: United States, 2015–2016; NCHS Data Brief, No. 288; Department of Health and Human Services National Center for Health Statistics: Hyattsville, MD, USA, 2017.
- National Institute of Health. Obesity and Overweight Statistics. National Institute of Diabetes and Kidney and Digestive Diseases. Available online: http://www.niddk.nih.gov/health-information/health-statistics/Pages/overweight-obesity-statistics.aspx (accessed on 22 April 2016).
- Xi, B.; Mi, J.; Zhao, M.; Zhang, T.; Jia, C.; Li, J.; Zeng, T.; Steffen, L.M. Trends in abdominal obesity among US children and adolescents. Pediatrics 2014, 134, e334–e339. [Google Scholar] [CrossRef]
- Brown, J. Nutrition Through the Life Cycle, 5th ed.; Cengage Learning: Belmont, CA, USA, 2014. [Google Scholar]
- Sommer, A.; Twig, G. The impact of childhood and adolescent obesity on cardiovascular risk in adulthood: A systematic review. Curr. Diabetes Rep. 2018, 18, 91. [Google Scholar] [CrossRef]
- Umer, A.; Kelley, G.A.; Cottrell, L.E.; Giacobbi, P., Jr.; Innes, K.E.; Lilly, C.L. Childhood obesity and adult cardiovascular disease risk factors: A systematic review with meta-analysis. BMC Public Health 2017, 17, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.; Geng, T.T. Central obesity and all-cause and cause specific mortality: A systematic review and dose-response meta-analysis of prospective studies. Circulation 2019, 139, AP219. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Beydoun, H.A.; Wang, Y. Obesity and central obesity as risk factors for incident dementia and its subtypes: A systematic review and meta-analysis. Obes. Rev. 2008, 9, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, T.; Goel, K.; de Sa, D.C.; Kragelund, C.; Kanaya, A.M.; Zeller, M.; Park, J.S.; Kober, L.; Torp-Pedersen, C.; Cottin, Y.; et al. Central obesity and survival in subjects with coronary artery disease a systematic review of the literature and collaborative analysis with individual subject data. J. Am. Coll. Cardiol. 2011, 57, 1877–1886. [Google Scholar] [CrossRef] [Green Version]
- Ladhani, M.; Craig, J.C.; Irving, M.; Clayton, P.A.; Wong, G. Obesity and the risk of cardiovascular and all-cause mortality in chronic kidney disease: A systematic review and meta-analysis. Nephrol. Dial. Transplant. 2017, 32, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Riaz, H.; Khan, M.S.; Siddiqi, T.J.; Usman, M.S.; Shah, N.; Goyal, A.; Khan, S.S.; Mookadam, F.; Krasuski, R.A.; Ahmed, H. Association between obesity and cardiovascular outcomes a systematic review and meta-analysis of mendelian randomization studies. JAMA Netw. Open 2018, 1, e183788. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, A.N.; Murad, M.H.; Buttar, N.S.; El-Serag, H.B.; Katzka, D.A.; Iyer, P.G. Central adiposity is associated with increased risk of esophageal inflammation, metaplasia, and adenocarcinoma: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2013, 11, 1399–1412. [Google Scholar] [CrossRef] [Green Version]
- Narciso, J.; Silva, A.J.; Rodrigues, V.; Monteiro, M.J.; Almeida, A.; Saavedra, R.; Costa, A.M. Behavioral, contextual and biological factors associated with obesity during adolescence: A systematic review. PLoS ONE 2019, 14, e0214941. [Google Scholar] [CrossRef]
- Arango-Angarita, A.; Shamah-Levy, T.; Rodríguez-Ramírez, S. Dietary energy density is associated with body mass index-for-age in Mexican adolescents. Matern. Child Nutr. 2019, 15, e12664. [Google Scholar] [CrossRef] [PubMed]
- Nappo, A.; Sparano, S.; Intemann, T.; Kourides, Y.A.; Lissner, L.; Molnar, D.; Moreno, L.A.; Pala, V.; Sioen, I.; Veidebaum, T.; et al. Dietary calcium intake and adiposity in children and adolescents: Cross-sectional and longitudinal results from idefics/i.Family cohort. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 440–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, W.; Berry, E.M.; Goldsmith, R. Adherence to the mediterranean diet was positively associated with micronutrient adequacy and negatively associated with dietary energy density among adolescents. J. Hum. Nutr. Die. 2019, 32, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakaki, J.R.; Melough, M.M.; Li, J.; Tamimi, R.M.; Chavarro, J.E.; Chen, M.H.; Chun, O.K. Associations between 100% orange juice consumption and dietary, lifestyle and anthropometric characteristics in a cross-sectional study of U.S. Children and adolescents. Nutrients 2019, 11, 2687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, S.; Ma, Y.; Zhao, Z.; Yang, X.; Wen, D. Dietary pattern is associated with obesity in chinese children and adolescents: Data from china health and nutrition survey (CHNS). Nutr. J. 2018, 17, 68. [Google Scholar] [CrossRef] [Green Version]
- Cureau, F.V.; Sparrenberger, K.; Bloch, K.V.; Ekelund, U.; Schaan, B.D. Associations of multiple unhealthy lifestyle behaviors with overweight/obesity and abdominal obesity among brazilian adolescents: A country-wide survey. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 765–774. [Google Scholar] [CrossRef]
- Jia, P.; Luo, M.; Li, Y.; Zheng, J.S.; Xiao, Q.; Luo, J. Fast-food restaurant, unhealthy eating, and childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2019. [Google Scholar] [CrossRef] [Green Version]
- Monzani, A.; Ricotti, R.; Caputo, M.; Solito, A.; Archero, F.; Bellone, S.; Prodam, F. A systematic review of the association of skipping breakfast with weight and cardiometabolic risk factors in children and adolescents. What should we better investigate in the future? Nutrients 2019, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Sila, S.; Ilić, A.; Mišigoj-Duraković, M.; Sorić, M.; Radman, I.; Šatalić, Z. Obesity in adolescents who skip breakfast is not associated with physical activity. Nutrients 2019, 11, 2511. [Google Scholar] [CrossRef] [Green Version]
- Tripicchio, G.L.; Kachurak, A.; Davey, A.; Bailey, R.L.; Dabritz, L.J.; Fisher, J.O. Associations between snacking and weight status among adolescents 12–19 years in the united states. Nutrients 2019, 11, 1486. [Google Scholar] [CrossRef] [Green Version]
- Stang, J.; Story, M. Nutrition needs of adolescents. In Guidelines for Adolescent Nutrition Services; Stang, J., Story, M., Eds.; University of Minnesota: Minneapolis, MN, USA, 2005; pp. 21–34. [Google Scholar]
- Institute of Medicine. Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Institute of Medicine. Available online: http://www.nal.usda.gov/fnic/DRI/DRI_Energy/energy_full (accessed on 16 January 2016).
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in dietary carbohydrate, protein, and fat intake and diet quality among us adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leme, A.C.; Baranowski, T.; Thompson, D.; Philippi, S.; O’Neil, C.; Fulgoni, V.; Nicklasz, T. Top food sources of percentage of energy, nutrients to limit and total gram amount consumed among us adolescents: National health and nutrition examination survey 2011–2014. Public Health Nutr. 2019, 22, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Bujnowski, D.; Xun, P.C.; Daviglus, M.L.; Van Horn, L.; He, K.; Stamler, J. Longitudinal association between animal and vegetable protein intake and obesity among men in the united states: The Chicago Western Electric study. J. Am. Die. Assoc. 2011, 111, 1150–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colby, S.; Sparks, A.; Thompson, D.; Overstreet, B.; Monroe, C.; Appelo, S.; Hansen-Petrik, M.; Kavanagh, K. Low protein intake among college males is associated with increased bmi. Top. Clin. Nutr. 2018, 33, 219–226. [Google Scholar] [CrossRef]
- Gilsing, A.M.J.; Weijenberg, M.P.; Hughes, L.A.E.; Ambergen, T.; Dagnelie, P.C.; Goldbohm, R.A.; van den Brandt, P.A.; Schouten, L.J. Longitudinal changes in bmi in older adults are associated with meat consumption differentially, by type of meat consumed. J. Nutr. 2012, 142, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Halkjaer, J.; Olsen, A.; Overvad, K.; Jakobsen, M.U.; Boeing, H.; Buijsse, B.; Palli, D.; Tognon, G.; Du, H.; van der A, D.L.; et al. Intake of total, animal and plant protein and subsequent changes in weight or waist circumference in European men and women: The Diogenes project. Int. J. Obes. 2011, 35, 1104–1113. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, M.H.; Salehi-Abargouei, A.; Surkan, P.J.; Azadbakht, L. Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes. Rev. 2014, 15, 740–748. [Google Scholar] [CrossRef]
- Hermanussen, M. Nutritional protein intake is associated with body mass index in young adolescents. Georgian Med. News 2008, 156, 84–88. [Google Scholar]
- Lin, Y.; Mouratidou, T.; Vereecken, C.; Kersting, M.; Bolca, S.; de Moraes, A.C.F.; Cuenca-García, M.; Moreno, L.A.; González-Gross, M.; Valtueña, J.; et al. Dietary animal and plant protein intakes and their associations with obesity and cardio-metabolic indicators in European adolescents: The HELENA cross-sectional study. Nutr. J. 2015, 14, 10. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.; Luque, V.; Escribano, J.; Closa, R.; Verduci, E.; ReDionigi, A.; Hoyos, J.; Langhendries, J.P.; Gruszfeld, D.; Socha, P.; et al. Effect of early protein supply on body fat deposition during infancy and childhood: A randomized trial. J. Ped. Gastroent Nutr. 2016, 62, 668–669. [Google Scholar]
- Wright, M.; Sotres-Alvarez, D.; Mendez, M.A.; Adair, L. The association of trajectories of protein intake and age-specific protein intakes from 2 to 22 years with BMI in early adulthood. Br. J. Nutr. 2017, 117, 750–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guevara-Aguirre, J.; Rosenbloom, A.L. Branched chain and aromatic amino acids are associated with insulin resistance during pubertal development in girls. J. Adolesc. Health 2019, 65, 313–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormack, S.E.; Shaham, O.; McCarthy, M.A.; Deik, A.A.; Wang, T.J.; Gerszten, R.E.; Clish, C.B.; Mootha, V.K.; Grinspoon, S.K.; Fleischman, A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr. Obes. 2013, 8, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, C.; Nakamura, K.; Wada, K.; Tsuji, M.; Tamai, Y.; Kawachi, T. Branched-chain amino acid intake and the risk of diabetes in a Japanese community: The Takayama study. Am. J. Epidemiol. 2013, 178, 1226–1232. [Google Scholar] [CrossRef]
- Qin, L.Q.; Xun, P.; Bujnowski, D.; Daviglus, M.L.; Van Horn, L.; Stamler, J.; He, K. Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults. J. Nutr. 2011, 141, 249–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malloy, V.L.; Krajcik, R.A.; Bailey, S.J.; Hristopoulos, G.; Plummer, J.D.; Orentreich, N. Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell 2006, 5, 305–314. [Google Scholar] [CrossRef]
- Elshorbagy, A.K.; Kozich, V.; Smith, A.D.; Refsum, H. Cysteine and obesity: Consistency of the evidence across epidemiologic, animal and cellular studies. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 49–57. [Google Scholar] [CrossRef]
- El-Khairy, L.; Ueland, P.M.; Nygård, O.; Refsum, H.; Vollset, S.E. Lifestyle and cardiovascular disease risk factors as determinants of total cysteine in plasma: The Hordaland Homocysteine Study. Am. J. Clin. Nutr. 1999, 70, 1016–1024. [Google Scholar] [CrossRef]
- Virtanen, J.K.; Voutilainen, S.; Rissanen, T.H.; Happonen, P.; Mursu, J.; Laukkanen, J.A.; Poulsen, H.; Lakka, T.A.; Salonen, J.T. High dietary methionine intake increases the risk of acute coronary events in middle-aged men. Nutr. Metab. Cardiovas. Dis. 2006, 16, 113–120. [Google Scholar] [CrossRef]
- Segovia-Siapco, G.; Pribis, P.; Messina, M.; Oda, K.; Sabaté, J. Is soy intake related to age at onset of menarche? A cross-sectional study among adolescents with a wide range of soy food consumption. Nutr. J. 2014, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Segovia-Siapco, G.; Oda, K.; Sabaté, J. Evaluation of the relative validity of a web-based food frequency questionnaire used to assess soy isoflavones and nutrient intake in adolescents. BMC Nutr. 2016, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Schakel, S.F.; Sievert, Y.A.; Buzzard, I.M. Sources of data for developing and maintaining a nutrient database. J. Am. Die. Assoc. 1988, 88, 1268–1271. [Google Scholar]
- Willett, W. Nutritional Epidemiology; Oxford University: Oxford, UK, 2013. [Google Scholar]
- Fulgoni, V.L. Current protein intake in America: Analysis of the National Health and Nutrition Examination Survey, 2003–2004. Am. J. Clin. Nutr. 2008, 87, 1554S–15577S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Growth References (5–19 Years); World Health Organization: Geneva, Switzerland, 2014; Available online: http://www.who.int/growthref/who2007_bmi_for_age/en/ (accessed on 22 October 2015).
- Chung, I.H.; Park, S.; Park, M.J.; Yoo, E.G. Waist-to-height ratio as an index for cardiometabolic risk in adolescents: Results from the 1998–2008 KNHANES. Yonsei Med. J. 2016, 57, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Ejtahed, H.S.; Kelishadi, R.; Qorbani, M.; Motlagh, M.E.; Hasani-Ranjbar, S.; Angoorani, P.; Beshtar, S.; Ziaodini, H.; Taheri, M.; Heshmat, R. Utility of waist circumference-to-height ratio as a screening tool for generalized and central obesity among Iranian children and adolescents: The CASPIAN-V study. Pediatr. Diabetes 2019, 20, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Garnett, S.P.; Baur, L.A.; Cowell, C.T. Waist-to-height ratio: A simple option for determining excess central adiposity in young people. Int. J. Obes. 2008, 32, 1028–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. Vienna, Austria: R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 17 April 2016).
- Del Mar Bibiloni, M.; Tur, J.A.; Morandi, A.; Tommasi, M.; Tomasselli, F.; Maffeis, C. Protein intake as a risk factor of overweight/obesity in 8- to 12-year-old children. Medicine 2015, 94, e2408. [Google Scholar] [CrossRef]
- Lin, Y.; Bolca, S.; Vandevijvere, S.; De Vriese, S.; Mouratidou, T.; De Neve, M.; Polet, A.; Van Oyen, H.; Van Camp, J.; De Backer, G.; et al. Plant and animal protein intake and its association with overweight and obesity among the Belgian population. Br. J. Nutr. 2011, 105, 1106–1116. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.; Buyken, A.; von Berg, A.; Berdel, D.; Lehmann, I.; Hoffmann, B.; Koletzko, S.; Koletzko, B.; Heinrich, J.; Standl, M. Prospective associations of meat consumption during childhood with measures of body composition during adolescence: Results from the GINIplus and LISAplus birth cohorts. Nutr. J. 2016, 15, 101. [Google Scholar] [CrossRef] [Green Version]
- Bradlee, M.L.; Singer, M.R.; Qureshi, M.M.; Moore, L.L. Food group intake and central obesity among children and adolescents in the Third National Health And Nutrition Examination Survey (NHANES III). Public Health Nutr. 2010, 13, 797–805. [Google Scholar] [CrossRef] [Green Version]
- Voortman, T.; van den Hooven, E.H.; Tielemans, M.J.; Hofman, A.; Kiefte-de Jong, J.C.; Jaddoe, V.W.; Franco, O.H. Protein intake in early childhood and cardiometabolic health at school age: The Generation R study. Eur. J. Nutr. 2016, 55, 2117–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppe, C.; Udam, T.R.; Lauritzen, L.; Molgaard, C.; Juul, A.; Michaelsen, K.F. Animal protein intake, serum insulin-like growth factor i, and growth in healthy 2.5-y-old Danish children. Am. J. Clin. Nutr. 2004, 80, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Wabitsch, M.; Hauner, H.; Heinze, E.; Teller, W.M. The role of growth hormone/insulin-like growth factors in adipocyte differentiation. Metabolism 1995, 44, 45–49. [Google Scholar] [CrossRef]
- Allen, N.E.; Appleby, P.N.; Davey, G.K.; Kaaks, R.; Rinaldi, S.; Key, T.J. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1441–1448. [Google Scholar]
- Boada, L.D.; Sangil, M.; Alvarez-Leon, E.E.; Hernandez-Rodriguez, G.; Henriquez-Hernandez, L.A.; Camacho, M.; Zumbado, M.; Serra-Majem, L.; Luzardo, O.P. Consumption of foods of animal origin as determinant of contamination by organochlorine pesticides and polychlorobiphenyls: Results from a population-based study in spain. Chemosphere 2014, 114, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ojanen, X.; Zhuang, H.; Wu, N.; Cheng, S.; Wiklund, P. Branched-chain and aromatic amino acids are associated with insulin resistance during pubertal development in girls. J. Adolesc. Health 2019, 65, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Tharrey, M.; Mariotti, F.; Mashchak, A.; Barbillon, P.; Delattre, M.; Huneau, J.F.; Fraser, G.E. Patterns of amino acids intake are strongly associated with cardiovascular mortality, independently of the sources of protein. Int. J. Epid. 2019. [Google Scholar] [CrossRef]
- De la, O.V.; Zazpe, I.; Ruiz-Canela, M. Effect of branched-chain amino acid supplementation, dietary intake and circulating levels in cardiometabolic diseases: An updated review. Curr. Opin. Clin. Nutr. Metab. Care 2019, 23, 35–50. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, Y.Z.; Li, R.; Lan, L.; Li, C.L.; Huang, M.; Shi, D.; Feng, R.N.; Sun, C.H. Dietary sulfur-containing amino acids are associated with higher prevalence of overweight/obesity in northern chinese adults, an internet-based cross-sectional study. Ann. Nutr. Metab. 2018, 73, 44–53. [Google Scholar] [CrossRef]
- Smith, K.L.; Straker, L.M.; Kerr, D.A.; Smith, A.J. Overweight adolescents eat what? And when? Analysis of consumption patterns to guide dietary message development for intervention. J. Hum. Nutr. Die. 2015, 28, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Lima, R.V. Dietary supplement use by adolescents. J. Pediatr. 2009, 85, 287–294. [Google Scholar] [CrossRef]
All | Girls | Boys | p * | |
---|---|---|---|---|
n (%) | n (%) | n (%) | ||
All participants | 530 (100) | 299 (56.4) | 231 (43.6) | |
Age group (years) | 0.772 | |||
12–13 | 126 (24.3) | 69 (23.8) | 57 (24.9) | |
14–18 | 393 (75.7) | 221 (76.2) | 172 (74.1) | |
Ethnicity a | 0.598 | |||
Caucasian | 190 (37.8) | 101 (35.9) | 89 (40.3) | |
Hispanic | 72 (14.3) | 39 (13.9) | 33 (14.9) | |
African/African American | 47 (9.4) | 24 (8.5) | 23 (10.4) | |
Asian | 59 (11.7) | 33 (11.7) | 26 (11.8) | |
Other | 36 (7.2) | 22 (7.8) | 14 (6.3) | |
Mixed | 98 (19.5) | 62 (22.1) | 36 (16.3) | |
Mother’s educational level | 0.971 | |||
High School or less | 74 (14.7) | 42 (14.9) | 32 (13.5) | |
Some College or College Graduate | 240 (47.8) | 135 (48.0) | 105 (47.5) | |
Graduate level | 188 (37.5) | 104 (37.0) | 84 (38.0) | |
Father’s educational level | 0.114 | |||
High School or less | 91 (18.1) | 44 (15.7) | 47 (21.3) | |
Some College or College Graduate | 188 (37.5) | 115 (40.9) | 73 (33.0) | |
Graduate level | 223 (44.4) | 122 (43.4) | 101 (45.7) | |
Site | 0.249 | |||
California | 289 (55.7) | 155 (53.4) | 134 (58.5) | |
Michigan | 230 (44.3) | 135 (46.6) | 95 (41.5) | |
Dietary status b | 0.013 | |||
Vegetarian | 137 (26.4) | 89 (30.7) | 48 (21.0) | |
Nonvegetarian | 382 (73.6) | 201 (69.3) | 181 (79.0) | |
BMIz c | 0.001 | |||
Normal weight | 405 (78.0) | 224 (77.2) | 181 (79.1) | |
Overweight | 92 (17.7) | 59 (20.3) | 33 (14.4) | |
Obese | 22 (4.2) | 7 (2.4) | 15 (6.6) | |
Waist-to-Height Ratio d | 0.004 | |||
Normal | 412 (79.4) | 217 (74.8) | 195 (85.2) | |
Obese | 107 (20.6) | 73 (25.2) | 34 (14.8) | |
Mean (SD) | Mean (SD) | Mean (SD) | p** | |
Age | 15.0 (1.7) | 15.0 (1.8) | 15.0 (1.7) | 0.889 |
Weight, kg | 60.0 (14.1) | 57.6 (12.6) | 62.9 (15.2) | <0.0001 |
Height, cm | 165.3 (9.3) | 161.5 (7.0) | 170.2 (9.5) | <0.0001 |
Weight-for-age z | 0.33 (0.97) | 0.35 (0.91) | 0.31 (1.0) | 0.647 |
Height-for-age z | 0.11 (0.99) | 0.06 (1.0) | 0.16 (0.97) | 0.251 |
BMIz | 0.26 ± 0.99 | 0.34 (0.88) | 0.17 (1.1) | 0.052 |
Waist-to-height ratio | 0.46 ± 0.06 | 0.46 (0.06) | 0.45(0.06) | 0.002 |
Fat mass, kg | 13.1 ± 8.5 | 15.6 (7.6) | 9.9 (8.5) | <0.0001 |
Fat-free mass, kg | 47.0 ± 9.4 | 41.8 (5.1) | 53.4 (9.6) | <0.0001 |
Total energy intake, kcal/day | 2145 (748) | 2013 (677) | 2311 (799) | <0.0001 |
Total fat intake, g/day | 83.3 (32.0) | 78.8 (29.8) | 88.9 (33.8) | <0.0001 |
Total carbohydrate intake, g/day | 275.2 (103.1) | 259.2 (96.9) | 295.5 (107.3) | <0.0001 |
Total protein intake, g/day | 86.1 (34.1) | 79.4 (29.5) | 94.6 (37.5) | <0.0001 |
Physical activity (min/day) | 31.8 (25.2) | 28.1 (23.9) | 36.6 (26.0) | <0.0001 |
Sleep (h/night) | 7.7 (1.2) | 7.5 (1.2) | 8.0 (1.2) | <0.0001 |
BMI z-Score a | Waist-to-Height Ratio b | |||||||
---|---|---|---|---|---|---|---|---|
Normal (n = 405) | Overweight/Obese (n = 114) | Normal (n = 412) | Obese (n = 107) | |||||
Mean | SD/95% CI | Mean | SD/95% CI | Mean | SD/95% CI | Mean | SD/95% CI | |
Age | 15.0 | 1.8 | 14.8 | 1.6 | 15.0 | 1.8 | 15.0 | 1.7 |
Total energy intake, kcal/day | 2161 | 726 | 2085 | 821 | 2173 | 741 | 2039 | 769 |
Total fat intake, g/day c | 82.1 * | 13.8 | 85.7 * | 14.5 | 82.3 | 14.1 | 84.9 | 13.7 |
Total carbohydrate intake, g/day c | 276.7 * | 37.9 | 263.9 * | 41.5 | 275.1 | 39.9 | 269.1 | 35.5 |
Physical activity, min/day | 32.4 | 25.6 | 30.0 | 24.0 | 34.0 * | 26.0 | 24.0 * | 21.0 |
Sleep, h/night | 7.8 | 1.2 | 7.7 | 1.2 | 7.8 | 1.2 | 7.7 | 1.3 |
Fat mass, kg d | 9.7 ** | 9.2–10.3 | 23.4 ** | 22.4–24.5 | 10.2 ** | 9.6–10.8 | 23.7 ** | 22.5–25.0 |
Fat-free mass, kg d | 46.1 ** | 45.5–46.7 | 53.0 ** | 52.0–54.1 | 46.7 ** | 46.1–47.3 | 51.6 ** | 50.4–52.9 |
n | % | n | % | n | % | n | % | |
All participants | ||||||||
Gender | ||||||||
Male | 181 | 44.7 | 48 | 42.1 | 195 | 47.3 | 34 | 31.8 |
Female | 224 | 55.3 | 66 | 57.9 | 217 | 52.7 | 73 | 68.2 |
Ethnicity (child) e | ||||||||
African/African American | 32 | 8.2 | 15 | 13.5 | 35 | 8.8 | 12 | 11.5 |
Caucasian | 154 | 39.4 | 36 | 32.4 | 161 | 40.5 | 29 | 27.9 |
Hispanic | 56 | 14.3 | 16 | 14.4 | 56 | 14.1 | 16 | 15.4 |
Asian | 50 | 12.8 | 9 | 8.1 | 49 | 12.3 | 10.0 | 9.6 |
Other | 24 | 6.1 | 12 | 10.8 | 26 | 6.5 | 10.0 | 9.6 |
Mixed | 75 | 19.2 | 23 | 20.7 | 71 | 17.8 | 27 | 26.0 |
Dietary Status f | ||||||||
Vegetarian | 115 | 28.4 | 22 | 19.3 | 114 | 27.7 | 23 | 21.5 |
Nonvegetarian | 290 | 71.6 | 92 | 80.7 | 298 | 72.3 | 83 | 78.5 |
Site | ||||||||
California | 233 | 57.5 | 56 | 49.1 | 243 | 59.0 | 46 | 43.0 |
Michigan | 172 | 42.5 | 58 | 50.9 | 169 | 41.0 | 61 | 57.0 |
Total Protein (g/day) | Total Protein (g/kgBW/day) | Animal Protein (g/day) | Plant Protein (g/d) | BCAA (g/day) | SCAA (g/day) | Protein as % Energy | Animal Protein | Plant Protein | BCAA | SCAA | |
---|---|---|---|---|---|---|---|---|---|---|---|
Energy-Adjusted Mean (SD) | Intake as % (SD) of Total Protein | ||||||||||
All | 85.6 (14.7) | 1.5 (0.40) | 39.7 (20.6) | 45.9 (16.1) | 14.3 (2.8) | 2.9 (0.7) | 16.0 (2.5) | 45.1 (18.2) | 54.9 (18.2) | 16.6 (0.90) | 3.4 (0.37) |
Gender | |||||||||||
Females | 84.4 (13.4) * | 1.5 (0.37) | 37.6 (19.5) | 46.8 (15.6) | 14.1 (2.6) * | 2.0 (0.6) * | 15.8 (2.4) * | 46.6 (17.6) | 53.5 (17.6) | 16.6 (0.8) | 3.3 (0.3) |
Males | 87.3 (16.0) * | 1.5 (0.43) | 42.4 (21.8) | 44.8 (16.7) | 14.6 (3.2) * | 2.1 (0.8) * | 16.3 (2.6) * | 43.9 (18.7) | 56.1 (18.7) | 16.7 (0.9) | 3.4 (0.3) |
BMIz b | |||||||||||
Normal | 85.0 (14.0) | 1.6 (0.37) | 37.9 (20.3) ** | 47.2 (16.0) * | 14.2 (2.8) * | 2.0 (0.7) * | 15.9 (2.4) * | 43.4 (19.9) ** | 56.6 (19.9) ** | 16.6 (0.8) | 3.4 (0.3) * |
Overweight/Obese | 88.0 (16.9) | 1.2 (0.35) | 45.9 (21.5) ** | 42.0 (16.1) * | 14.8 (3.1) * | 2.2 (0.7) * | 16.5 (2.9) * | 51.2 (18.5) ** | 48.8 (18.5) ** | 16.8 (0.8) | 3.5 (0.3) * |
WHtR c | |||||||||||
Normal | 85.7 (15.0) | 1.6 (0.40) | 38.9 (21.3) | 46.8 (16.5) * | 14.3 (2.9) | 2.0 (0.7) | 16.0 (2.5) | 44.1 (18.5) * | 56.0 (18.5) * | 16.6 (0.8) | 3.4 (0.3) * |
Obese | 85.5 (13.8) | 1.2 (0.30) | 42.3 (18.4) | 43.1 (14.9) * | 14.3 (2.6) | 2.1 (0.6) | 16.0 (2.6) | 48.5 (17.4) * | 51.5 (17.4) * | 16.7 (0.8) | 3.5 (0.3) * |
Characteristic | Energy-Adjusted a Mean (SD) of Protein Foods Consumed in Grams/Day | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Red Meat | Poultry | Processed Meat | Fish | Dairy | Egg | Grains | Gluten | Soy | Non-Soy Legumes | Nuts | |
All | 6.9 (6.6) | 5.8 (8.7) | 1.0 (1.6) | 1.2 (2.2) | 17.5 (8.4) | 2.6 (2.1) | 16.7 (4.7) | 2.0 (2.7) | 10.4 (10.0) | 3.6 (3.0) | 3.4 (3.2) |
Gender | |||||||||||
Females | 6.3 (6.3) * | 5.9 (8.2) | 0.9 (1.6) | 1.1 (2.1) | 17.0 (8.1) | 2.5 (2.1) | 16.2 (4.5) * | 2.9 (0.17) | 10.8 (9.9) | 3.6 (2.7) | 3.4 (3.4) |
Male | 7.8 (7.0) * | 5.8 (7.2) | 1.2 (1.5) | 1.3 (2.4) | 18.1 (8.7) | 2.7 (2.1) | 17.2 (4.9) * | 2.4 (0.15) | 9.9 (10.1) | 3.5 (3.3) | 3.4 (3.1) |
BMIz b | |||||||||||
Normal | 6.4 (6.4) * | 5.2 (6.5) * | 1.0 (1.5) | 1.2 (2.4) | 17.3 (8.3) | 2.5 (2.1) | 16.8 (4.6) | 2.1 (2.4) | 11.1 (10.1) * | 3.8 (3.2) ** | 3.5 (3.3) |
Overweight/Obese | 8.3 (6.7) * | 8.2 (11.1) * | 1.2 (1.8) | 1.4 (1.8) | 18.4 (8.9) | 2.8 (2.3) | 16.0 (4.8) | 2.0 (3.6) | 8.3 (9.6) * | 2.9 (2.3) ** | 3.1 (3.3) |
WHtR c | |||||||||||
Normal | 6.6 (6.5) | 5.5 (7.5) | 0.99 (1.6) | 1.2 (2.4) | 17.6 (8.2) | 2.5 (2.1) | 16.7 (4.8) | 2.1 (2.5) | 11.0 (10.5) * | 3.8 (3.2) * | 3.4 (3.1) |
Obese | 7.5 (6.6) | 7.0 (8.9) | 1.2 (1.7) | 1.2 (1.7) | 17.2 (9.1) | 2.8 (2.0) | 16.3 (4.1) | 1.9 (3.5) | 8.4 (8.0) * | 2.9 (2.3) * | 3.5 (3.8) |
Nutrient | BMIz | Waist-to-Height Ratio b | Fat Mass c | Fat-Free Mass c | Htz | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | β | 95% CI | β | 95% CI | β | 95% CI | β | 95% CI | β | 95% CI | |
Total Protein d (per 10g/day) | Base | 0.105 *** | (0.047, 0.164) | 0.015 | (−0.001, 0.031) | 0.048 * | (0.011, 0.084) | 0.009 * | (0.001, 0.017) | 0.001 | (−0.056, 0.059) |
Full | 0.101 ** | (0.041, 0.161) | 0.013 | (−0.003, 0.029) | 0.044 * | (0.007, 0.081) | 0.008 | (−0.0004, 0.016) | −0.005 | (−0.064, 0.054) | |
Animal Protein d (per 10g/day) | Base | 0.117 *** | (0.058, 0.175) | 0.017 * | (0.002, 0.033) | 0.051 ** | (0.015, 0.087) | 0.010 * | (0.002, 0.018) | 0.002 | (−0.056, 0.061) |
Full | 0.118 *** | (0.057, 0.178) | 0.017 * | (0.001, 0.033) | 0.049 * | (0.011, 0.087) | 0.008 | (−0.0001, 0.016) | −0.01 | (−0.070, 0.050) | |
Plant Protein d (per 10g/day) | Base | 0.018 | (−0.056, 0.093) | −0.003 | (−0.023, 0.017) | 0.016 | (−0.031, 0.062) | 0.003 | (−0.008, 0.013) | −0.004 | (−0.079, 0.070) |
Full | 0.027 | (−0.049, 0.103) | −0.003 | (−0.023, 0.018) | 0.021 | (−0.026, 0.069) | 0.006 | (−0.005, 0.016) | 0.019 | (−0.056, 0.094) | |
BCAAs d (per 1g/day) | Base | 0.058 *** | (0.028, 0.088) | 0.008 | (−0.000, 0.016) | 0.025 ** | (0.006, 0.043) | 0.005 * | (0.001, 0.009) | 0.003 | (−0.027, 0.033) |
Full | 0.056 *** | (0.025, 0.087) | 0.008 | (−0.001, 0.015) | 0.023 * | (0.003, 0.042) | 0.004 | (−0.000, 0.008) | −0.002 | (−0.030, 0.028) | |
SCAAs d (per 1g/day) | Base | 0.026 *** | (0.001, 0.004) | 0.005 ** | (0.001, 0.008) | 0.011 ** | (0.004, 0.019) | 0.002 * | (0.000, 0.004) | 0.000 | (−0.012, 0.013) |
Full | 0.025 *** | (0.012, 0.038) | 0.004 * | (0.000, 0.008) | 0.010 ** | (0.002, 0.018) | 0.002 | (−0.000, 0.003) | −0.003 | (−0.015, 0.010) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segovia-Siapco, G.; Khayef, G.; Pribis, P.; Oda, K.; Haddad, E.; Sabaté, J. Animal Protein Intake Is Associated with General Adiposity in Adolescents: The Teen Food and Development Study. Nutrients 2020, 12, 110. https://doi.org/10.3390/nu12010110
Segovia-Siapco G, Khayef G, Pribis P, Oda K, Haddad E, Sabaté J. Animal Protein Intake Is Associated with General Adiposity in Adolescents: The Teen Food and Development Study. Nutrients. 2020; 12(1):110. https://doi.org/10.3390/nu12010110
Chicago/Turabian StyleSegovia-Siapco, Gina, Golandam Khayef, Peter Pribis, Keiji Oda, Ella Haddad, and Joan Sabaté. 2020. "Animal Protein Intake Is Associated with General Adiposity in Adolescents: The Teen Food and Development Study" Nutrients 12, no. 1: 110. https://doi.org/10.3390/nu12010110
APA StyleSegovia-Siapco, G., Khayef, G., Pribis, P., Oda, K., Haddad, E., & Sabaté, J. (2020). Animal Protein Intake Is Associated with General Adiposity in Adolescents: The Teen Food and Development Study. Nutrients, 12(1), 110. https://doi.org/10.3390/nu12010110