The Effects of Long-Term Magnesium Creatine Chelate Supplementation on Repeated Sprint Ability (RAST) in Elite Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Diet and Supplementation Protocol
2.3. Study Protocol
2.4. Anaerobic Performance Test
2.5. Biochemical Assays
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zajac, A.; Waskiewicz, Z.; Poprzecki, S.; Cholewa, J. Effects of creatine and HMß supplementation on anaerobic power and body composition in basketball players. J. Hum. Kinet 2003, 10, 95–108. [Google Scholar]
- Kreider, R.; Kalman, D.; Antonio, J.; Ziegenfuss, T.M.; Wildman, R.; Collins, C.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Jung, Y.P. Creatine supplementation in exercise, sport, and medicine. J. Exerc. Nutr. Biochem. 2011, 15, 53–69. [Google Scholar] [CrossRef]
- Butts, J.; Jacobs, B.J.; Silvis, M. Creatine Use in Sports. Sports Health 2018, 10, 31–34. [Google Scholar] [CrossRef]
- Baker, J.S.; McCormick, M.C.; Robergs, R.A. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. J. Nutr. Metab. 2010, 210. [Google Scholar] [CrossRef] [Green Version]
- Almonacid Fierro, M.A.; Urzua Alul, L.A. The impact of the supply of creatine monohydrate in canoeing athletes. Rev. Iberoam. Cienc. Act. Física Deporte 2013, 1, 1–19. [Google Scholar]
- Burke, D.G.; Chilibeck, P.D.; Parise, G.; Candow, D.G.; Mahoney, D.; Tarnopolsky, M. Effect of Creatine and Weight Training on Muscle Creatine and Performance in Vegetarians. Med. Sci. Sports Exerc. 2003, 35, 1946–1955. [Google Scholar] [CrossRef]
- Kreider, R.B.; Melton, C.; Rasmussen, C.J.; Greenwood, M.; Lancaster, S.; Cantler, E.C.; Milnor, P.; Almada, A.L. Long-term Creatine Supplementation Does Not Significantly Affect Clinical Markers of Health in Athletes. Mol. Cell Biochem. 2003, 244, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Bemben, M.G.; Lamont, H.S. Creatine Supplementation and Exercise Performance: Recent Findings. Sports Med. 2005, 35, 107–125. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, L.J.; Murphy, R.; Oosterlaar, A.M.; Cameron-Smith, D.; Hargreaves, M.; Wagenmakers, A.J.; Snow, R. Creatine Supplementation Increases Glycogen Storage but Not GLUT-4 Expression in Human Skeletal Muscle. Clin. Sci. (Lond.) 2004, 106, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Marqués-Jiménez, D.M.; Caballero-García, A.; Córdova, A.; Fernández-Lázaro, D. Effects of Creatine Supplementation on Athletic Performance in Soccer Players: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yáñez-Silva, A.; Buzzachera, C.F.; Piçarro, I.D.; Januario, R.S.; Herreira, L.H.; McAnulty, S.R.; Utter, A.C.; Souza-Junior, T.P. Effect of Low Dose, Short-Term Creatine Supplementation on Muscle Power Output in Elite Youth Soccer Players. J. Int. Soc. Sports Nutr. 2017, 14, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalczyk, M.M.; Gołaś, A.; Maszczyk, A.; Kaczka, P.; Zając, A. Influence of Sunlight and Oral D3 Supplementation on Serum 25(OH)D Concentration and Exercise Performance in Elite Soccer Players. Nutrients 2020, 12, 1311. [Google Scholar] [CrossRef] [PubMed]
- Rebolé, M.; Castillo, D.; Cámara, J.; Yanci, J. Relationship between the cardiovascular capacity and repeated sprints ability in high-standard soccer referees. Rev. Iberoam. Cienc. Act. Física Deporte 2016, 5, 49–64. [Google Scholar]
- Castagna, C.; Manzi, V.; Impellizzeri, F.; Weston, M.; Alvarez, J.C.B. Relationship between Endurance Field Tests and Match Performance in Young Soccer Players. J. Strength Cond. Res. 2010, 24, 3227–3233. [Google Scholar] [CrossRef] [Green Version]
- Reilly, T.; Bangsbo, J.; Franks, A. Anthropometric and physiological predispositions for elite soccer. J. Sports Sci. 2000, 18, 669–683. [Google Scholar] [CrossRef]
- Crisafulli, D.L.; Harsh, H.; Buddhadev, H.H.; Brilla, L.R.; Gordon, R.; Chalmers, D.N.; Suprak, J.; San Juan, J.G. Creatine-electrolyte supplementation improves repeated sprint cycling performance: A double blind randomized control study. J. Int. Soc. Sports Nutr. 2018, 15, 21. [Google Scholar] [CrossRef] [Green Version]
- Andrzejewski, M.; Chmura, J.; Pluta, B.; Strzelczyk, R.; Kasprzak, A. Analysis of Sprinting Activities of Professional Soccer Players. J. Strength Cond. Res. 2013, 27, 2134–2140. [Google Scholar] [CrossRef]
- Gaitanos, G.C.; Williams, C.; Boobis, L.H.; Brooks, S. Human Muscle Metabolism during Intermittent Maximal Exercise. J. Appl. Physiol. 1993, 75, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Biwer, C.J.; Jensen, R.L.; Schmidt, W.D.; Watts, P.B. The Effect of Creatine on Treadmill Running with High-Intensity Intervals. J. Strength Cond. Res. 2003, 17, 439–445. [Google Scholar]
- Ostojic, S.M. Creatine Supplementation in Young Soccer Players. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 95–103. [Google Scholar] [PubMed]
- Aedma, M.; Timpmann, S.; Lätt, E.; Ööpik, V. Short-term creatine supplementation has no impact on upper-body anaerobic power in trained wrestlers. J. Int. Soc. Sports Nutr. 2015, 12, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claudino, J.G.; Mezêncio, B.; Amaral, S.; Zanetti, V.; Benatti, F.; Roschel, H.; Gualano, B.; Amadio, A.C.; Serrão, J.C. Creatine Monohydrate Supplementation on Lower-Limb Muscle Power in Brazilian Elite Soccer Players. J. Int. Soc. Sports Nutr. 2014, 11, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujika, I.; Padilla, S.; Ibañez, J.; Izquierdo, M.; Gorostiaga, E. Creatine Supplementation and Sprint Performance in Soccer Players. Med. Sci. Sports Exerc. 2000, 32, 518–525. [Google Scholar] [CrossRef]
- Cox, G.; Mujika, I.; Tumilty, D.; Burke, L. Acute creatine supplementation and performance during a field test simulating match play in elite female soccer players. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 33–46. [Google Scholar] [CrossRef]
- Jäger, R.; Purpura, M.; Shao, A.; Inoue, T.; Kreider, R.B. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids 2011, 40, 1369–1383. [Google Scholar] [CrossRef] [Green Version]
- Brilla, L.R.; Giroux, M.S.; Taylor, A.; Knutzen, K.M. Magnesium-creatine supplementation effects on body water. Met. Clin. Exper. 2003, 53, 1136–1140. [Google Scholar] [CrossRef]
- Larson-Meyer, D.E.; Hunter, G.R.; Trowbridge, C.A.; Turk, J.C.; Ernest, J.M.; Torman, S.L.; Harbin, P.A. The effect of creatine supplementation on muscle strength and body composition during off-season training in female soccer players. J. Strength Cond. Res. 2000, 14, 434–442. [Google Scholar]
- Rawson, E.S.; Stec, M.J.; Frederickson, S.J.; Miles, M.P. Low-dose Creatine Supplementation Enhances Fatigue Resistance in the Absence of Weight Gain. Nutrition 2011, 27, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Baxmann, A.C.; Ahmed, M.S.; Heliberg, I.P. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystain C. Clin. J. Am. Soc. Nephrol. 2008, 3, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Velema, M.S.; Ronde, W. Elevated plasma creatinine due to creatine ethyl ester use. Neth. J. Med. 2011, 69, 79–81. [Google Scholar] [PubMed]
- Kreider, R.B.; Stout, J.R.; Greenwood, M.; Campbell, B.; Spano, M.; Ziegenfuss, T.; Lopez, H.; Landis, J.; Antonio, J. International Society of Sports Nutrition Position Stand: Creatine Supplementation and Exercise. J. Int. Soc. Sports Nutr. 2007, 4, 6. [Google Scholar]
- Michalczyk, M.M.; Klonek, G.; Maszczyk, A.; Zajac, A. The effects of a low calorie ketogenic diet on glycaemic control variables in hyperinsulinemic overweight/obese females. Nutrients 2020, 12, 1854. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Linear models and effect magnitudes for research, clinical and practical applications. Sportscience 2010, 14, 49–57. [Google Scholar]
- Kreider, R.B.; Willoughby, D.S.; Greenwood, M.; Parise, G.; Payne, E.; Tarnopolsky, M.A. Effects of serum creatine supplementation on muscle creatine content. J. Exerc. Physiol. 2003, 6, 24–33. [Google Scholar]
- De Andrade, V.L.; Santiago, P.R.; Kalva Filho, C.A.; Campos, E.Z.; Papoti, M. Reproducibility of Running Anaerobic Sprint Test for soccer players. J. Sports Med. Phys. Fit. 2016, 56, 34–38. [Google Scholar]
- Rahimi, R. Creatine Supplementation Decreases Oxidative DNA Damage and Lipid Peroxidation Induced by a Single Bout of Resistance Exercise. J. Strength Cond. Res. 2011, 25, 3448–3455. [Google Scholar] [CrossRef]
- Stone, M.H.; Sanborn, K.; Smith, L.L.; O’Bryant, H.S.; Hoke, T.; Utter, A.C.; Johnson, R.L.; Boros, R.; Hruby, J.; Pierce, K.C.; et al. Effects of In-Season (5 Weeks) Creatine and Pyruvate Supplementation on Anaerobic Performance and Body Composition in American Football Players. Int. J. Sport Nutr. 1999, 9, 146–165. [Google Scholar] [CrossRef]
- Cancela, P.; Ohanian, C.; Cuitiño, E.; Hackney, A.C. Creatine Supplementation Does Not Affect Clinical Health Markers in Football Players. Br. J. Sports Med. 2008, 42, 731–735. [Google Scholar] [CrossRef]
- Vega, J.; Huidobro, J.P.E. Effects of Creatine Supplementation on Renal Function. Rev. Med. Chil. 2019, 147, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Snow, R.J.; Murphy, R.M. Creatine and the creatine transporter: A review. Mol. Cell. Biochem. 2001, 224, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Campillo, R.; González-Jurado, J.A.; Martínez, C.; Nakamura, F.Y.; Peñailillo, L.; Meylan, C.M.; Caniuqueo, A.; Cañas-Jamet, R.; Moran, J.; Alonso-Martínez, A.M.; et al. Effects of Plyometric Training and Creatine Supplementation on Maximal-Intensity Exercise and Endurance in Female Soccer Players. J. Sci. Med. Sport 2016, 19, 682–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.; Abt, G.; Kilding, A.E. Effects of creatine monohydrate supplementation on simulated soccer performance. Int. J. Sports Physiol. Perform. 2014, 9, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Ferreira, M.; Wilson, M.; Grindstaff, P.; Plisk, S.; Reinardy, J.; Cantler, E.; Almada, A.L. Effects of Creatine Supplementation on Body Composition, Strength, and Sprint Performance. Med. Sci. Sports Exerc. 1998, 30, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Zagatto, A.M.; Beck, W.R.; Claudio, A.; Gobatto, C.A. Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J. Strength Cond. Res. 2009, 23, 1820–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ates, O.; Keskin, B.; Bayraktar, B. The Effect of Acute Creatine Supplementation on Fatigue and Anaerobic Performance. Cell. Eur. J. Sport Sci. Med. 2017, 19, 85–92. [Google Scholar] [CrossRef]
- Spillane, M.; Schoch, R.; Cooke, M.; Harvey, T.; Greenwood, M.; Kreider, R.; Willoughby, D.S. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J. Int. Soc. Sports Nutr. 2009, 6, 6. [Google Scholar] [CrossRef] [Green Version]
Variables | Values |
---|---|
Age, years | 25.6 ± 3.7 |
Hight, cm | 181.2 ± 4.5 |
Weight, kg | 78.3 ± 5.3 |
Body Fat,% | 9.6 ± 2.4 |
Variables | SG, Before | SG, After | PG, Before | PG, After |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
LA rest, mmol/L | 1.14 ± 0.21 | 1.35 ± 0.12 | 1.16 ± 0.17 | 1.38 ± 0.12 |
LA post-exercise mmol/L | 7.11 ± 0.33 | 9.03 ± 0.82 * | 6.45 ± 0.37 | 7.54 ± 0.28 |
pH rest (-log(H+)) | 7.34 ± 0.01 | 7.41 ± 0.01 * | 7.34 ± 0.02 | 7.36 ± 0.05 |
pH post-exercise (-log(H+)) | 7.31 ± 0.03 | 7.20 ± 0.02 * | 7.34 ± 0.02 | 7.26 ± 0.02 |
HCO3− rest, mmol/L | 23.44 ± 0.31 | 24.83 ± 0.34 * | 23.30 ± 0.33 | 23.93 ± 0.20 |
HCO3− post-exercise, mmol/L | 15.11 ± 0.62 | 17.04 ± 0.60 * | 14.64 ± 0.47 | 15.70 ± 0.49 |
Creatinine, mg/dL | 0.83 ± 0.16 | 1.34 ± 0.23 * | 0.92 ± 0.11 | 0.85 ± 0.16 |
Variables | SG, Before | SG, After | PG, Before | PG, After |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
TT, (s) | 33.37 ± 0.54 | 31.21 ± 0.63 * | 33.65 ± 1.13 | 33.42 ± 0.94 |
First 35 m sprint length, (s) | 5.17 ± 0.14 | 4.91 ± 0.09 * | 5.18 ± 0.14 | 5.18 ± 0.13 |
Sixth 35 m sprint length, (s) | 5.93 ± 0.13 | 5.43 ± 0.08 * | 5.89 ± 0.23 | 5.81 ± 0.07 |
MP, (W) | 681.92 ± 87.07 | 786.74 ± 79.81 * | 691.12 ± 88.09 | 695.27 ± 95.92 |
AP, (W) | 561.28 ± 66.75 | 678.50 ± 65.77 * | 568.50 ± 88.07 | 577.07 ± 79.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zajac, A.; Golas, A.; Chycki, J.; Halz, M.; Michalczyk, M.M. The Effects of Long-Term Magnesium Creatine Chelate Supplementation on Repeated Sprint Ability (RAST) in Elite Soccer Players. Nutrients 2020, 12, 2961. https://doi.org/10.3390/nu12102961
Zajac A, Golas A, Chycki J, Halz M, Michalczyk MM. The Effects of Long-Term Magnesium Creatine Chelate Supplementation on Repeated Sprint Ability (RAST) in Elite Soccer Players. Nutrients. 2020; 12(10):2961. https://doi.org/10.3390/nu12102961
Chicago/Turabian StyleZajac, Adam, Artur Golas, Jakub Chycki, Mateusz Halz, and Małgorzata Magdalena Michalczyk. 2020. "The Effects of Long-Term Magnesium Creatine Chelate Supplementation on Repeated Sprint Ability (RAST) in Elite Soccer Players" Nutrients 12, no. 10: 2961. https://doi.org/10.3390/nu12102961
APA StyleZajac, A., Golas, A., Chycki, J., Halz, M., & Michalczyk, M. M. (2020). The Effects of Long-Term Magnesium Creatine Chelate Supplementation on Repeated Sprint Ability (RAST) in Elite Soccer Players. Nutrients, 12(10), 2961. https://doi.org/10.3390/nu12102961