Association between Breastfeeding and DNA Methylation over the Life Course: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC)
Abstract
:1. Background
2. Methods
2.1. Study Setting and Participants
2.2. Study Variables
2.2.1. DNA Methylation
2.2.2. Breastfeeding
- A binary indicator of whether the individual was ever breasted (regardless of duration).
- Breastfeeding duration groups, defined as follows: 0 = never breastfed; 1 = 1 day to 3 months of duration; 2 = 3.01 to 6 months; 3 = 6.01 to 12 months; and 4 = more than 12 months.
- Same as the above but coding each category as a number and treating this as a continuous variable, thus assuming a linear trend per unit increase in duration category.
- Breastfeeding duration in months, as a continuous variable, thus assuming a linear trend per month increase in breastfeeding duration.
2.2.3. Covariates
- Sociodemographic: an indicator of whether the participant had white ethnic background (informed by mothers at 32 weeks of gestation), and the top two ancestry-informative principal components estimated using the participant’s genome-wide genotyping data [36].
- Family socioeconomic position: to avoid collinearity issues, we used only the mother’s highest educational qualification (informed by the mothers themselves at 32 weeks of gestation).
- Maternal characteristics: parity (informed by the mothers at 18 weeks of gestation), height, pre-pregnancy weight (informed by the mothers themselves at 12 weeks of gestation), age at birth (calculated from mother’s date of birth and date of delivery) and folic acid supplementation (informed by the mothers at 18 and 32 weeks of gestation).
- Gestational characteristics: maternal smoking during pregnancy (informed by the mothers at 18 weeks of gestation), type of delivery (informed by the mothers when their offspring were eight weeks old), gestational age (calculated from the date of the mother’s last menstrual period reported at enrolment; when the mother was uncertain of this or when it conflicted with clinical assessment, the ultrasound assessment was used; where maternal report and ultrasound assessment conflicted, an experienced obstetrician reviewed clinical records and provided an estimate) and birthweight (from obstetric data, measures from the ALSPAC team and notifications or clinical records).
2.2.4. Statistical Analyses
3. Results
3.1. Description of Study Participants
3.2. Association of Breastfeeding with Single CpG Sites
3.3. Association between Breastfeeding and Methylation Regions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Victora, C.G.; Bahl, R.; Barros, A.J.D.; França, G.V.A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C.; et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Horta, B.L.; Loret De Mola, C.; Victora, C.G. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: A systematic review and meta-analysis. Acta Paediatr. Int. J. Paediatr. 2015, 104, 30–37. [Google Scholar]
- Brion, M.J.A.; Lawlor, D.A.; Matijasevich, A.; Horta, B.; Anselmi, L.; Araújo, C.L.; Menezes, A.M.B.; Victora, C.G.; Davey Smith, G. What are the causal effects of breastfeeding on IQ, obesity and blood pressure? Evidence from comparing high-income with middle-income cohorts. Int. J. Epidemiol. 2011, 40, 670–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, M.S.; Aboud, F.; Mironova, E.; Vanilovich, I.; Platt, R.W.; Matush, L.; Igumnov, S.; Fombonne, E.; Bogdanovich, N.; Ducruet, T.; et al. Breastfeeding and child cognitive development: New evidence from a large randomized trial. Arch. Gen. Psychiatry 2008, 65, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.L.; Loret De Mola, C.; Victora, C.G. Breastfeeding and intelligence: A systematic review and meta-analysis. Acta Paediatr. Int. J. Paediatr. 2015, 104, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.M.; Patel, R.; Kramer, M.S.; Guthrie, L.; Vilchuck, K.; Bogdanovich, N.; Sergeichick, N.; Gusina, N.; Foo, Y.; Palmer, T.; et al. Effects of promoting longer-term and exclusive breastfeeding on adiposity and insulin-like growth factor-I at age 11.5 years: A randomized trial. JAMA J. Am. Med. Assoc. 2013, 309, 1005–1013. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.M.; Kramer, M.S.; Patel, R.; Rifas-Shiman, S.L.; Thompson, J.; Yang, S.; Vilchuck, K.; Bogdanovich, N.; Hameza, M.; Tilling, K.; et al. Effects of promoting long-term, exclusive breastfeeding on adolescent adiposity, blood pressure, and growth trajectories: A secondary analysis of a randomized clinical trial. JAMA Pediatr. 2017, 171, e170698. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.M.; Patel, R.; Kramer, M.S.; Vilchuck, K.; Bogdanovich, N.; Sergeichick, N.; Gusina, N.; Foo, Y.; Palmer, T.; Thompson, J.; et al. Effects of promoting longer-term and exclusive breastfeeding on cardiometabolic risk factors at age 11.5 years: A cluster-randomized, controlled trial. Circulation 2014, 129, 321–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Martin, R.M.; Oken, E.; Hameza, M.; Doniger, G.; Amit, S.; Patel, R.; Thompson, J.; Rifas-Shiman, S.L.; Vilchuck, K.; et al. Breastfeeding during infancy and neurocognitive function in adolescence: 16-year follow-up of the PROBIT cluster-randomized trial. PLoS Med. 2018, 15, e1002554. [Google Scholar] [CrossRef]
- Relton, C.L.; Hartwig, F.P.; Davey Smith, G. From stem cells to the law courts: DNA methylation, the forensic epigenome and the possibility of a biosocial archive. Int. J. Epidemiol. 2015, 44, 1083–1093. [Google Scholar] [CrossRef] [Green Version]
- Richmond, R.C.; Simpkin, A.J.; Woodward, G.; Gaunt, T.R.; Lyttleton, O.; McArdle, W.L.; Ring, S.M.; Smith, A.D.A.C.; Timpson, N.J.; Tilling, K.; et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum. Mol. Genet. 2015, 24, 2201–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakyan, V.K.; Down, T.A.; Balding, D.J.; Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 2011, 12, 529–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiefer, J.C. Epigenetics in development. Dev. Dyn. 2007, 236, 1144–1156. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Fan, G. DNA methylation in cell differentiation and reprogramming: An emerging systematic view. Regen. Med. 2010, 5, 531–544. [Google Scholar] [CrossRef] [Green Version]
- Relton, C.L.; Davey Smith, G. Epigenetic epidemiology of common complex disease: Prospects for prediction, prevention, and treatment. PLoS Med. 2010, 7, e1000356. [Google Scholar] [CrossRef] [Green Version]
- Kaelin, W.G.; McKnight, S.L. Influence of metabolism on epigenetics and disease. Cell 2013, 153, 56–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobi, E.W.; Slieker, R.C.; Luijk, R.; Dekkers, K.F.; Stein, A.D.; Xu, K.M.; Slagboom, P.E.; Van Zwet, E.W.; Lumey, L.H.; Heijmans, B.T.; et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci. Adv. 2018, 4, eaao4364. [Google Scholar] [CrossRef] [Green Version]
- Birney, E.; Davey Smith, G.; Greally, J.M. Epigenome-wide Association Studies and the Interpretation of Disease -Omics. PLoS Genet. 2016, 12, e1006105. [Google Scholar] [CrossRef] [Green Version]
- Richmond, R.; Relton, C.; Davey Smith, G. What evidence is required to suggest that DNA methylation mediates the association between prenatal famine exposure and adulthood disease? Sci. Adv. 2018, 2018, eaao4364. [Google Scholar]
- Verduci, E.; Banderali, G.; Barberi, S.; Radaelli, G.; Lops, A.; Betti, F.; Riva, E.; Giovannini, M. Epigenetic effects of human breast milk. Nutrients 2014, 6, 1711–1724. [Google Scholar] [CrossRef]
- Mischke, M.; Plösch, T. More than just a gut instinct-the potential interplay between a baby’s nutrition, its gut microbiome, and the epigenome. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R1065–R1069. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, F.P.; De Mola, C.L.; Davies, N.M.; Victora, C.G.; Relton, C.L. Breastfeeding effects on DNA methylation in the offspring: A systematic literature review. PLoS ONE 2017, 12, e0173070. [Google Scholar]
- Naumova, O.Y.; Odintsova, V.V.; Arincina, I.A.; Rychkov, S.Y.; Muhamedrahimov, R.J.; Shneider, Y.V.; Grosheva, A.N.; Zhukova, O.V.; Grigorenko, E.L. A Study of the Association between Breastfeeding and DNA Methylation in Peripheral Blood Cells of Infants. Russ. J. Genet. 2019, 55, 749–755. [Google Scholar] [CrossRef]
- Sherwood, W.B.; Bion, V.; Lockett, G.A.; Ziyab, A.H.; Soto-Ramírez, N.; Mukherjee, N.; Kurukulaaratchy, R.J.; Ewart, S.; Zhang, H.; Arshad, S.H.; et al. Duration of breastfeeding is associated with leptin (LEP) DNA methylation profiles and BMI in 10-year-old children. Clin. Epigenetics 2019. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, S.; Symons, L.; Vanautgaerden, E.-L.; Ghosh, M.; Duca, R.C.; Bekaert, B.; Freson, K.; Huybrechts, I.; Langie, S.A.S.; Koppen, G.; et al. The influence of the duration of breastfeeding on the infant’s metabolic epigenome. Nutrients 2019, 11, 1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odintsova, V.V.; Hagenbeek, F.A.; Suderman, M.; Caramaschi, D.; Van Beijsterveldt, C.E.M.; Kallsen, N.A.; Ehli, E.A.; Davies, G.E.; Sukhikh, G.T.; Fanos, V.; et al. DNA methylation signatures of breastfeeding in buccal cells collected in mid-childhood. Nutrients 2019, 11, 2804. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, W.B.; Kothalawala, D.M.; Kadalayil, K.; Ewart, S.; Zhang, H.; Karmaus, W.; Arshad, S.H.; Holloway, J.W.; Rezwan, F.I. Epigenome-Wide Association Study Reveals Duration of Breastfeeding Is Associated with Epigenetic Differences in Children. Int. J. Environ. Res. Public Health 2020, 17, 3569. [Google Scholar] [CrossRef] [PubMed]
- Relton, C.L.; Gaunt, T.; McArdle, W.; Ho, K.; Duggirala, A.; Shihab, H.; Woodward, G.; Lyttleton, O.; Evans, D.M.; Reik, W.; et al. Data resource profile: Accessible resource for integrated epigenomic studies (ARIES). Int. J. Epidemiol. 2015, 44, 1181–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golding, G.; Pembrey, P.; Jones, J. ALSPAC—The Avon Longitudinal Study of Parents and Children I. Study methodology. Paediatr. Perinat. Epidemiol. 2001, 15, 74–87. [Google Scholar] [CrossRef]
- Boyd, A.; Golding, J.; Macleod, J.; Lawlor, D.A.; Fraser, A.; Henderson, J.; Molloy, L.; Ness, A.; Ring, S.; Davey Smith, G. Cohort profile: The ’Children of the 90s’-The index offspring of the avon longitudinal study of parents and children. Int. J. Epidemiol. 2013, 42, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Fraser, A.; Macdonald-wallis, C.; Tilling, K.; Boyd, A.; Golding, J.; Davey Smith, G.; Henderson, J.; Macleod, J.; Molloy, L.; Ness, A.; et al. Cohort profile: The avon longitudinal study of parents and children: ALSPAC mothers cohort. Int. J. Epidemiol. 2013, 42, 97–110. [Google Scholar]
- Touleimat, N.; Tost, J. Complete pipeline for Infinium® Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 2012, 4, 325–341. [Google Scholar] [PubMed] [Green Version]
- Pidsley, R.; Wong, C.C.Y.; Volta, M.; Lunnon, K.; Mill, J.; Schalkwyk, L.C. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genom. 2013, 14, 293. [Google Scholar]
- Min, J.L.; Hemani, G.; Davey Smith, G.; Relton, C.; Suderman, M. Meffil: Efficient normalization and analysis of very large DNA methylation datasets. Bioinformatics 2018, 34, 3983–3989. [Google Scholar]
- Du, P.; Zhang, X.; Huang, C.C.; Jafari, N.; Kibbe, W.A.; Hou, L.; Lin, S.M. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform. 2010, 11, 587. [Google Scholar]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar]
- Bakulski, K.M.; Feinberg, J.I.; Andrews, S.V.; Yang, J.; Brown, S.; McKenney, S.L.; Witter, F.; Walston, J.; Feinberg, A.P.; Fallin, M.D. DNA methylation of cord blood cell types: Applications for mixed cell birth studies. Epigenetics 2016, 11, 354–362. [Google Scholar] [PubMed]
- Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012, 13, 86. [Google Scholar]
- Leek, J.T.; Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 2007, 3, 1724–1735. [Google Scholar] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar]
- Würtz, P.; Kangas, A.J.; Soininen, P.; Lawlor, D.A.; Davey Smith, G.; Ala-Korpela, M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies. Am. J. Epidemiol. 2017, 186, 1084–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohlin, J.; Håberg, S.E.; Magnus, P.; Reese, S.E.; Gjessing, H.K.; Magnus, M.C.; Parr, C.L.; Page, C.M.; London, S.J.; Nystad, W. Prediction of gestational age based on genome-wide differentially methylated regions. Genome Biol. 2016, 17, 207. [Google Scholar] [CrossRef] [Green Version]
- Simpkin, A.J.; Suderman, M.; Howe, L.D. Epigenetic clocks for gestational age: Statistical and study design considerations. Clin. Epigenetics 2017, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Davey Smith, G. Assessing intrauterine influences on offspring health outcomes: Can epidemiological studies yield robust findings? Basic Clin. Pharmacol. Toxicol. 2008, 102, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.S.; Schwartz, D.A.; Yang, I.V.; Kechris, K.J. Comb-p: Software for combining, analyzing, grouping and correcting spatially correlated P-values. Bioinformatics 2012, 28, 2986–2988. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, A.E.; Murakami, P.; Lee, H.; Leek, J.T.; Fallin, M.D.; Feinberg, A.P.; Irizarry, R.A. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int. J. Epidemiol. 2012, 41, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, G.C.; Ho, K.; Davies, A.; Stergiakouli, E.; Humphries, K.; McArdle, W.; Sandy, J.; Davey Smith, G.; Lewis, S.J.; Relton, C.L. Distinct DNA methylation profiles in subtypes of orofacial cleft. Clin. Epigenetics 2017, 9, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kechris, K.J.; Biehs, B.; Kornberg, T.B. Generalizing moving averages for tiling arrays using combined P-value statistics. Stat. Appl. Genet. Mol. Biol. 2010, 9. [Google Scholar] [CrossRef] [Green Version]
- Šidák, Z. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. J. Am. Stat. Assoc. 1967, 62, 626–633. [Google Scholar] [CrossRef]
- Naeem, H.; Wong, N.C.; Chatterton, Z.; Hong, M.K.H.; Pedersen, J.S.; Corcoran, N.M.; Hovens, C.M.; Macintyre, G. Reducing the risk of false discovery enabling identification of biologically significant genome-wide methylation status using the HumanMethylation450 array. BMC Genom. 2014, 15, 51. [Google Scholar] [CrossRef] [Green Version]
- Leung, C.L.; Zheng, M.; Prater, S.M.; Liem, R.K.H. The BPAG1 locus: Alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J. Cell Biol. 2001, 154, 691–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, O.; Rodosthenous, R.S.; Jara, C.; Brennan, K.J.; Wright, R.O.; Baccarelli, A.A.; Wright, R.J. Detection of long non-coding RNAs in human breastmilk extracellular vesicles: Implications for early child development. Epigenetics 2016, 11, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsaweed, M.; Hartmann, P.E.; Geddes, D.T.; Kakulas, F. Micrornas in breastmilk and the lactating breast: Potential immunoprotectors and developmental regulators for the infant and the mother. Int. J. Environ. Res. Public Health 2015, 12, 13981–14020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innis, S.M. Dietary (n-3) fatty acids and brain development. J. Nutr. 2007, 137, 855–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joubert, B.R.; Felix, J.F.; Yousefi, P.; Bakulski, K.M.; Just, A.C.; Breton, C.; Reese, S.E.; Markunas, C.A.; Richmond, R.C.; Xu, C.J.; et al. DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. Am. J. Hum. Genet. 2016, 98, 680–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, A.N.; Davey Smith, G. How independent are ‘independent’ effects? relative risk estimation when correlated exposures are measured imprecisely. J. Clin. Epidemiol. 1991, 44, 1223–1231. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Tilling, K.; Smith, G.D. Triangulation in aetiological epidemiology. Int. J. Epidemiol. 2016, 45, 1866–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, M.N.; Volta, M.; Pidsley, R.; Lunnon, K.; Dixit, A.; Lovestone, S.; Coarfa, C.; Harris, R.A.; Milosavljevic, A.; Troakes, C.; et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol. 2012, 13, R43. [Google Scholar] [CrossRef] [Green Version]
- Walton, E.; Hass, J.; Liu, J.; Roffman, J.L.; Bernardoni, F.; Roessner, V.; Kirsch, M.; Schackert, G.; Calhoun, V.; Ehrlich, S. Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. Schizophr. Bull. 2016, 42, 406–414. [Google Scholar] [CrossRef] [Green Version]
- Hannon, E.; Lunnon, K.; Schalkwyk, L.; Mill, J. Interindividual methylomic variation across blood, cortex, and cerebellum: Implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics 2015, 10, 1024–1032. [Google Scholar] [CrossRef] [Green Version]
- Heijmans, B.T.; Mill, J. Commentary: The seven plagues of epigenetic epidemiology. Int. J. Epidemiol. 2012, 41, 74–78. [Google Scholar] [CrossRef]
- Wu, C.; Demerath, E.W.; Pankow, J.S.; Bressler, J.; Fornage, M.; Grove, M.L.; Chen, W.; Guan, W. Imputation of missing covariate values in epigenome-wide analysis of DNA methylation data. Epigenetics 2016, 11, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruzieva, O.; Xu, C.J.; Breton, C.V.; Annesi-Maesano, I.; Antó, J.M.; Auffray, C.; Ballereau, S.; Bellander, T.; Bousquet, J.; Bustamante, M.; et al. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ. Health Perspect. 2017, 125, 104–110. [Google Scholar] [CrossRef] [Green Version]
Variable | Statistic/Category a | All ARIES Participants (N = 995) | Participants with Methylation at Age 7 (N = 702) |
---|---|---|---|
Maternal education | CSE | 8.9% | 7.2% |
at birth | Vocational education | 7.4% | 6.0% |
GCE Ordinary level | 34.3% | 33.8% | |
GCE Advanced level | 29.1% | 29.9% | |
Degree | 20.3% | 23.1% | |
Maternal age at birth (years) | Mean (SD) | 29.5 (4.4) | 30.0 (4.4) |
Parity | 0 | 46.5% | 45.7% |
1 | 36.9% | 37.5% | |
2 | 12.7% | 13.4% | |
≥3 | 3.9% | 3.4% | |
Maternal smoking | Never | 86.3% | 87.7% |
in relation to | Before | 3.7% | 4.0% |
pregnancy | During | 10.0% | 8.3% |
Folic acid | No | 75.9% | 75.9% |
supplementation | Yes | 24.1% | 24.1% |
Caesarean section | No | 90.4% | 90.2% |
Yes | 9.6% | 9.8% | |
Birthweight (g) | Mean (SD) | 3487 (486) | 3490 (476) |
Sex | Male | 48.9% | 49.1% |
Female | 51.1% | 50.9% | |
Ethnicity | European | 97.0% | 99.9% |
Other | 3.0% | 0.1% | |
Breastfeeding duration | 0 | 11.1% | 10.4% |
(months) | 0.1–3 | 32.0% | 31.0% |
3.1–6 | 16.2% | 16.2% | |
6.1–12 | 27.6% | 28.2% | |
>12 | 13.1% | 14.2% |
Breastfeeding | Statistic | CpG | ||||||
---|---|---|---|---|---|---|---|---|
cg11414913 | cg00234095 | cg04722177 | cg03945777 | cg17052885 | cg05800082 | cg24134845 | ||
Binary (ever vs. never) | p-value | 5.2 × 10−8 | 4.9 × 10−7 | 2.7 × 10−6 | 3.2 × 10−6 | 4.9 × 10−6 | 5.8 × 10−6 | 3.3 × 10−5 |
β (SE) | −3.19 (0.59) | −1.74 (0.35) | −2.90 (0.62) | −0.84 (0.18) | 1.79 (0.39) | 1.05 (0.23) | 0.23 (0.06) | |
0 (reference) | p-value | - | - | - | - | - | - | - |
β (SE) | - | - | - | - | - | - | - | |
0.01–3 months | p-value | 1.5 × 10−6 | 1.2 × 10−7 | 5.3 × 10−4 | 2.9 × 10−5 | 8.2 × 10−6 | 1.7 × 10−6 | 6.8 × 10−5 |
β (SE) | −3.19 (0.66) | −2.02 (0.38) | −2.45 (0.71) | −0.85 (0.20) | 1.85 (0.41) | 1.19 (0.25) | 0.25 (0.06) | |
3.01–6 months | p-value | 5.4 × 10−7 | 3.3 × 10−5 | 5.8 × 10−5 | 0.005 | 6.8 × 10−5 | 6.4 × 10−4 | 0.011 |
β (SE) | −3.50 (0.70) | −1.88 (0.45) | −3.22 (0.80) | −0.66 (0.23) | 1.85 (0.47) | 0.94 (0.28) | 0.17 (0.07) | |
6.01–12 months | p-value | 2.5 × 10−5 | 3.2 × 10−4 | 5.9 × 10−5 | 7.4 × 10−5 | 6.1 × 10−6 | 0.001 | 2.2 × 10−4 |
β (SE) | −3.00 (0.71) | −1.59 (0.44) | −3.05 (0.76) | −0.90 (0.23) | 2.02 (0.45) | 0.87 (0.27) | 0.24 (0.06) | |
>12 months | p-value | 5.8 × 10−4 | 0.037 | 1.1 × 10−6 | 1.2 × 10−4 | 0.008 | 0.001 | 4.4 × 10−4 |
β (SE) | −2.96 (0.86) | −0.93 (0.44) | −3.79 (0.78) | −0.99 (0.26) | 1.29 (0.49) | 1.04 (0.31) | 0.25 (0.07) | |
Linear trend of categories | p-value | 0.036 | 0.832 | 1.7 × 10−4 | 0.007 | 0.067 | 0.230 | 0.020 |
β (SE) | −0.42 (0.20) | −0.02 (0.11) | −0.70 (0.19) | −0.16 (0.06) | 0.19 (0.10) | 0.08 (0.07) | 0.04 (0.02) | |
Continuous (in months) | p-value | 0.080 | 0.766 | 2.5 × 10−4 | 0.035 | 0.966 | 0.399 | 0.289 |
β (SE) | −0.09 (0.05) | 0.01 (0.03) | −0.18 (0.05) | −0.03 (0.02) | 0.00 (0.03) | 0.01 (0.02) | 0.00 (0.00) |
CpG | Time Point | β | SE | p-Value |
---|---|---|---|---|
cg11414913 | At birth (N = 702) | −0.44 | 0.91 | 0.631 |
7 years (N = 640) | −3.19 | 0.59 | 5.2 × 10−8 | |
15–17 years (N = 709) | −2.47 | 0.85 | 0.004 | |
cg00234095 | At birth (N = 702) | 0.59 | 0.57 | 0.296 |
7 years (N = 640) | −1.74 | 0.35 | 4.9 × 10−7 | |
15–17 years (N = 709) | 0.29 | 0.43 | 0.505 | |
cg04722177 | At birth (N = 702) | −1.50 | 0.70 | 0.032 |
7 years (N = 640) | −2.90 | 0.62 | 2.7 × 10−6 | |
15–17 years (N = 709) | −1.05 | 0.78 | 0.180 | |
cg03945777 | At birth (N = 702) | 0.42 | 0.3 | 0.158 |
7 years (N = 640) | −0.84 | 0.18 | 3.2 × 10−6 | |
15–17 years (N = 709) | 0.10 | 0.29 | 0.742 | |
cg17052885 | At birth (N = 702) | 1.32 | 0.57 | 0.022 |
7 years (N = 640) | 1.79 | 0.39 | 4.9 × 10−6 | |
15–17 years (N = 709) | −0.29 | 0.47 | 0.547 | |
cg05800082 | At birth (N = 702) | −0.53 | 0.36 | 0.144 |
7 years (N = 640) | 1.05 | 0.23 | 5.8 × 10−6 | |
15–17 years (N = 709) | 0.56 | 0.32 | 0.083 | |
cg24134845 | At birth (N = 702) | 0.04 | 0.07 | 0.535 |
7 years (N = 640) | 0.23 | 0.06 | 3.3 × 10−5 | |
15–17 years (N = 709) | 0.00 | 0.08 | 0.991 |
DMR a | At birth | 7 Years | 15–17 Years | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chr | Start | End | β | SE | p-Value | β | SE | p-Value | β | SE | p-Value |
5 | 97,867 | 98,797 | 0.30 | 0.21 | 0.146 | 0.43 | 0.21 | 0.043 | 0.30 | 0.21 | 0.158 |
19 | 365,914 | 366,989 | −0.01 | 0.34 | 0.975 | 0.05 | 0.34 | 0.881 | −0.04 | 0.35 | 0.897 |
18 | 106,178 | 106,850 | −0.08 | 0.77 | 0.913 | 0.14 | 0.75 | 0.855 | 0.23 | 0.77 | 0.767 |
1 | 425,524 | 426,297 | 0.26 | 0.62 | 0.673 | 0.33 | 0.61 | 0.590 | 0.16 | 0.62 | 0.800 |
9 | 91,296 | 92,146 | −0.10 | 0.33 | 0.759 | −0.18 | 0.33 | 0.578 | −0.10 | 0.34 | 0.755 |
17 | 222,498 | 222,991 | −0.01 | 0.37 | 0.983 | 0.00 | 0.36 | 0.994 | −0.04 | 0.36 | 0.913 |
4 | 136,643 | 137,027 | −0.03 | 0.41 | 0.951 | −0.37 | 0.38 | 0.324 | −0.31 | 0.41 | 0.448 |
22 | 255,590 | 256,045 | 0.40 | 0.71 | 0.577 | 1.18 | 0.70 | 0.095 | 1.06 | 0.71 | 0.136 |
4 | 33,482 | 33,808 | 0.13 | 2.05 | 0.950 | 0.06 | 2.00 | 0.978 | 0.08 | 2.04 | 0.967 |
8 | 409,905 | 410,098 | 0.82 | 1.31 | 0.530 | 1.05 | 1.32 | 0.425 | 1.04 | 1.32 | 0.433 |
1 | 224,191 | 225,190 | 0.03 | 0.45 | 0.940 | −0.03 | 0.44 | 0.951 | −0.03 | 0.45 | 0.948 |
9 | 61,093 | 61,964 | −0.39 | 0.50 | 0.432 | −0.44 | 0.49 | 0.369 | −0.39 | 0.50 | 0.435 |
DMR a | Number | At Birth and 7 Years | 7 Years and 15–17 Years | ||||
---|---|---|---|---|---|---|---|
Chr | Start | End | of CpGs | Concordance | p-Value | Concordance | p-Value |
5 | 97,867 | 98,797 | 275 | 66.2 | 8.7 × 10−8 | 69.1 | 2.2 × 10−10 |
19 | 365,914 | 366,989 | 205 | 47.8 | 0.576 | 54.1 | 0.264 |
18 | 106,178 | 106,850 | 18 | 72.2 | 0.096 | 83.3 | 0.008 |
1 | 425,524 | 426,297 | 64 | 68.8 | 0.004 | 56.3 | 0.382 |
9 | 91,296 | 92,146 | 185 | 54.1 | 0.303 | 58.4 | 0.027 |
17 | 222,498 | 222,991 | 140 | 55.7 | 0.205 | 49.3 | 0.933 |
4 | 136,643 | 137,027 | 13 | 69.2 | 0.267 | 61.5 | 0.581 |
22 | 255,590 | 256,045 | 30 | 63.3 | 0.200 | 83.3 | 3.3 × 10−4 |
4 | 33,482 | 33,808 | 5 | 60.0 | 0.999 | 60.0 | 0.999 |
8 | 409,905 | 410,098 | 7 | 85.7 | 0.125 | 100.0 | 0.016 |
1 | 224,191 | 225,190 | 129 | 57.4 | 0.113 | 47.3 | 0.597 |
9 | 61,093 | 61,964 | 91 | 57.1 | 0.208 | 56.0 | 0.294 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartwig, F.P.; Davey Smith, G.; Simpkin, A.J.; Victora, C.G.; Relton, C.L.; Caramaschi, D. Association between Breastfeeding and DNA Methylation over the Life Course: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Nutrients 2020, 12, 3309. https://doi.org/10.3390/nu12113309
Hartwig FP, Davey Smith G, Simpkin AJ, Victora CG, Relton CL, Caramaschi D. Association between Breastfeeding and DNA Methylation over the Life Course: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Nutrients. 2020; 12(11):3309. https://doi.org/10.3390/nu12113309
Chicago/Turabian StyleHartwig, Fernando Pires, George Davey Smith, Andrew J. Simpkin, Cesar Gomes Victora, Caroline L. Relton, and Doretta Caramaschi. 2020. "Association between Breastfeeding and DNA Methylation over the Life Course: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC)" Nutrients 12, no. 11: 3309. https://doi.org/10.3390/nu12113309
APA StyleHartwig, F. P., Davey Smith, G., Simpkin, A. J., Victora, C. G., Relton, C. L., & Caramaschi, D. (2020). Association between Breastfeeding and DNA Methylation over the Life Course: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Nutrients, 12(11), 3309. https://doi.org/10.3390/nu12113309