Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute?
Abstract
:1. Introduction
2. Childhood Obesity and the Development of Insulin Resistance
2.1. Childhood Obesity
2.2. Adipose Tissue in Obesity: The Importance of Age at Onset
2.3. Adipokines in Childhood Obesity
2.4. Carbohydrate Metabolism Impairment in Childhood Obesity: Insulin Resistance
3. Adipokine Modelling
4. Metabolomics
4.1. Untargeted Metabolomics
4.2. Untargeted Metabolomics Applied to Obesity and Insulin Resistance in Children and Adolescents
4.3. Semi-Targeted Metabolomics
4.4. Semi-Targeted Metabolomics Applied to Obesity and Insulin Resistance in Children and Adolescents
4.5. Targeted Metabolomics
4.6. Targeted Metabolomics Applied to Obesity and Insulin Resistance in Children and Adolescents
4.7. Combining Metabolomics Information in Obesity and Insulin Resistance
Methodology | Instrumental Analysis | Disease | Study Design | Sample | Findings | Ref. |
---|---|---|---|---|---|---|
Untargeted | LC-MS, CE-MS, GC-MS | Obesity and IR | Fingerprinting study: 60 prepubertal obese children. Boys (n = 30, 50% IR and 50% non-IR) Girls (n = 30, 50% IR and 50% non-IR) Validation study: 100 prepubertal obese children. Boys (n = 50, 50% IR and 50% non-IR) Girls (n = 50, 50% IR and 50% non-IR) | Serum | IR vs non-IR: | [51] |
| ||||||
Untargeted | LC-MS/MS | Metabolic Risk | Boys (n = 113) Girls (n = 125) (8–14 years) | Serum | Metabolic Risk: In girls: | [54] |
| ||||||
In boys:: | ||||||
| ||||||
Untargeted | NMR | IR | Cross sectional study: 78 non diabetic adolescents (8–18 years) Longitudinal study: 16 subjects after a mean follow-up of 2.3 years | Plasma | Higher baseline 2-hydroxybutyrate and BCAA levels in insulin resistant youth and predict worsening of glycemic control Alterations of 2-hydroxybutyrate metabolism predict incipient deterioration of β-cell function and longitudinal worsening of glycemic tolerance. | [63] |
Untargeted | NMR | IR | 170 healthy normal weight children (5, 14 and 16 years) | Serum | IR higher in girls than in boys. In healthy normal weight children IR was associated with reduced concentrations of BCAA, 2-ketobutyrate, citrate and 3-hydroxybutyrate, and higher concentrations of lactate and alanine. | [64] |
Semi-targeted | LC-MS/MS, GC-MS | Obesity | Obese (n = 84) Overweight (n = 28) Normal-weight (n = 150) Median age 7.7 years 50% boys 50% girls | Plasma | OB vs NW: | [53] |
| ||||||
Semi-targeted | LC-MS/MS, GC-MS | Obesity and IR | Hispanic children Obese (n = 450) Non-obese (n = 353) Boys (n= 405) Girls (n = 398). (4–19 years). Mean age 11.1 years | Plasma | OB vs NOB: | [56] |
| ||||||
Semi-targeted | LC-MS/MS, GC-MS | Obesity | Longitudinal study for 5 years: Obese (n = 68) Overweight (n = 23) Normal weight (n = 122) 48.8% boys Median age 7.7 years | Plasma | BCAA is not associated with worsening metabolic health during early adolescence. Inverse association of the BCAA pattern with a change in fasting glucose in boys. Direct relation of BCAA pattern with a change in serum triglycerides in girls. Higher score for androgen hormone pattern at baseline corresponds with a decrease in leptin an increase in CRP in girls. | [55] |
Targeted | LC-MS/MS, GC-MS | Obesity and IR | 100 prepubertal obese children. Boys (n = 50, 50% IR and 50% non-IR) Girls (n = 50, 50% IR and 50% non-IR) 5–10 years | Serum | IR vs non-IR: | [62] |
| ||||||
Targeted | MS/MS | Obesity and T2D | Case-control: Obese (n = 64) Obese with TD2 (n = 17) Normal-weight (n = 39) 12–17 years | Plasma | T2D vs OB/NW: | [87] |
| ||||||
T2D/OB vs NW: | ||||||
| ||||||
No differences in fasting FFA levels | ||||||
Targeted | MS/MS | Obesity, IR and T2D | Case-control: Obese (n = 57) Obese prediabetes (n = 27) Obese T2D (n = 17) Normal-weight (n = 38) 13–14 years | Plasma | BCAA and BCAA intermediates correlated: positively with insulin sensitivity and DI | [79] |
Targeted | LC-MS/MS | Obesity and IR | Cross sectional study: 69 healthy children and adolescents 8-18 years Longitudinal cohort study in subset: Subgroup of 17 participants 8-13 years | Plasma | OB vs NW: | [72] |
| ||||||
Targeted | MS/MS | Obesity and IR | Cross-sectional study: Obese (n = 82) Boys (n = 41) Girls (n = 41) 12–18 years | Plasma | BCAA levels and by products of BCAA catabolism are higher in males than females with similar BMI. In males, HOMA-IR correlated: | [74] |
| ||||||
In females, HOMA-IR correlated: | ||||||
| ||||||
Adiponectin correlated inversely with BCAA and uric acid in males, but not females | ||||||
Targeted | LC-MS/MS | Obesity and IR | Identify biomarkers predictive of future disease risk- Obese (n = 46) Obese to normal weight (n = 18) Normal-weight (n = 45) 9–11 years | Plasma | Baseline BCAA concentration as a predictor of future risk of insulin resistance and metabolic syndrome OB vs NW: | [85] |
| ||||||
Targeted | MS/MS | Obesity and IR | Longitudinal study: 80 obese Caucasian children. 40 participate in one-year lifestyle interventions 8–15 years | Serum | Tyr was the only metabolite significantly associated with HOMA-IR at baseline and after 1-year intervention. No association between HOMA-IR and BCAA. | [84] |
Targeted | MS/MS | Obesity and IR | 430 control (13–15 years). 91 morbid obese (12–16 years) | Plasma | Accumulation of ADMA is associated with modulation of insulin signaling and insulin resistance. ADMA decreased after obesity intervention program | [68] |
Targeted | MS/MS, LC-MS/MS | Obesity and IR | Meta-analysis 1020 pre-pubertal children from three European studies. 8–10 years | Plasma |
| [67] |
Targeted | GC-MS | Obesity and IR | 20 obese with IR 67 obese without IR 8.5–17.9 years | Urine | The steroidal signature IR vs non-IR: | [59] |
| ||||||
The authors suggest a vicious cycle model, whereby glucocorticoids induce IR. | ||||||
Targeted | MS/MS | Obesity and Metabolic Risk | Non-OW/OB and low MetRisk (n = 335) Non-OW/OB and high MetRisk (n = 29) OW/OB and low MetRisk (n = 58) OW/OB and high MetRisk (n = 102) Girls 48.3% Boys 51.7% 11–16 years | Plasma | Lower levels of LCFA in non-OW/OB with high MetRisk and OW/OB with high MetRisk compared to mon-OW/OB with low MetRisk. Higher levels of BCAA metabolite pattern in OW/OB with high MetRisk compared to non-OW/OB with low MetRisk. Higher levels of DAG in OW/OB with high MetRisk vs non-OB/OW with low MetRisk. Higher score of androgen steroid hormones pattern in OW/OB with high MetRisk compared to Non-OW/OB with low MetRisk. Higher levels of AcylCN in non-OW/OB with high MetRisk compared to non-OW/OB with low MetRisk. Lower levels of AcylCN in OW/OB with high MetRisk compared to Non-OW/OB with low MetRisk. | [76] |
5. Conclusions
Funding
Conflicts of Interest
References
- World Health Organization. Childhood Overweight and Obesity. Available online: https://www.who.int/dietphysicalactivity/childhood/en/ (accessed on 21 October 2020).
- World Health Organization. Tenfold Increase in Childhood and Adolescent Obesity in Four Decades: New Study by Imperial College London and WHO. Available online: https://www.who.int/news/item/11-10-2017-tenfold-increase-in-childhood-and-adolescent-obesity-in-four-decades-new-study-by-imperial-college-london-and-who (accessed on 21 October 2020).
- Freedman, D.S.; Wang, J.; Maynard, L.M.; Thornton, J.C.; Mei, Z.; Pierson, R.N.; Dietz, W.H.; Horlick, M. Relation of BMI to fat and fat-free mass among children and adolescents. Int. J. Obes. 2005, 29, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Obesity. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 21 October 2020).
- CDC (Centers for Disease Control and prevention). Defining Adult Overweight and Obesity. Available online: https://www.cdc.gov/obesity/adult/defining.html (accessed on 21 October 2020).
- Martos-Moreno, G.A.; Argente, J. Obesidades pediátricas: De la lactancia a la adolescencia. In Anales de Pediatría; Elsevier Doyma: Barcelona, Spain, 2011; Volume 75. [Google Scholar] [CrossRef]
- De Onis, M.; Blössner, M. The World Health Organization Global Database on Child Growth and Malnutrition: Methodology and applications. Int. J. Epidemiol. 2003, 32, 518–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, N.; Wales, J. Assessment and management of severely obese children and adolescents. Arch. Dis. Child. 2016, 101, 1161–1167. [Google Scholar] [CrossRef]
- Flegal, K.M.; Wei, R.; Ogden, C.L.; Freedman, D.S.; Johnson, C.L.; Curtin, L.R. Characterizing extreme values of body mass index-for-age by using the 2000 Centers for Disease Control and Prevention growth charts. Am. J. Clin. Nutr. 2009, 90, 1314–1320. [Google Scholar] [CrossRef]
- Pacheco, L.S.; Blanco, E.; Burrows, R.; Reyes, M.; Lozoff, B.; Gahagan, S. Early onset obesity and risk of metabolic syndrome among Chilean adolescents. Prev. Chronic Dis. 2017, 14, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fève, B. Adipogenesis: Cellular and molecular aspects. Best Pract. Res. Clin. Endocrinol. Metab. 2005, 19, 483–499. [Google Scholar] [CrossRef]
- Cristancho, A.G.; Lazar, M.A. Forming Functional Fat: A Growing Understanding of Adipocyte Differentiation. Nat. Rev. Mol. Cell Biol. 2011, 12, 722–734. [Google Scholar] [CrossRef]
- Majka, S.M.; Barak, Y.; Klemm, D.J. Adipocyte Origins Weighing the Possibilities. Stem Cells. 2011, 29, 1034–1040. [Google Scholar] [CrossRef] [Green Version]
- Martos-Moreno, G.Á.; Barrios, V.; Chowen, J.A.; Argente, J. Adipokines in Childhood Obesity. In Vitamins & Hormones; Elsevier: Amsterdam, The Netherlands, 2013; Volume 91, ISBN 9780124077669. [Google Scholar]
- Coppack, S.W. Adipose tissue changes in obesity. Biochem. Soc. Trans. 2005, 33, 1049–1052. [Google Scholar] [CrossRef]
- Després, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef]
- Wellen, K.E.; Hotamisligil, G.S. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest. 2003, 112, 1785–1788. [Google Scholar] [CrossRef]
- Charo, I.F.; Ransohoff, R.M. Mechanisms of disease: The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 2006, 354, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Lumeng, C.N.; DeYoung, S.M.; Bodzin, J.L.; Saltiel, A.R. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 2007, 56, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Fain, J.N. Release of Interleukins and Other Inflammatory Cytokines by Human Adipose Tissue Is Enhanced in Obesity and Primarily due to the Nonfat Cells. Vitam. Horm. 2006, 74, 443–477. [Google Scholar] [CrossRef] [PubMed]
- Hausman, D.B.; DiGirolamo, M.; Bartness, T.J.; Hausman, G.J.; Martin, R.J. The biology of white adipocyte proliferation. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2001, 2, 239–254. [Google Scholar] [CrossRef]
- Tsuchida, A.; Yamauchi, T.; Kadowaki, T. Nuclear receptors as targets for drug development: Molecular mechanisms for regulation of obesity and insulin resistance by peroxisome proliferator-activated receptor gamma, CREB-binding protein, and adiponectin. J. Pharmacol. Sci. 2005, 97, 164–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skurk, T.; Alberti-Huber, C.; Herder, C.; Hauner, H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 2007, 92, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Spalding, K.L.; Arner, E.; Westermark, P.O.; Bernard, S.; Buchholz, B.A.; Bergmann, O.; Blomqvist, L.; Hoffstedt, J.; Näslund, E.; Britton, T.; et al. Dynamics of fat cell turnover in humans. Nature 2008, 453, 783–787. [Google Scholar] [CrossRef]
- Martos-Moreno, G.A.; Barrios, V.; Martínez, G.; Hawkins, F.; Argente, J. Effect of weight loss on high-molecular weight adiponectin in obese children. Obesity 2010, 18, 2288–2294. [Google Scholar] [CrossRef]
- Sone, M.; Osamura, R.Y. Leptin and the pituitary. Pituitary 2001, 4, 15–23. [Google Scholar] [CrossRef]
- Farooqi, I.S.; Depaoli, A.M.; Rahilly, S.O.; Farooqi, I.S.; Matarese, G.; Lord, G.M.; Keogh, J.M.; Lawrence, E.; Agwu, C.; Sanna, V.; et al. Beneficial effects of leptin on obesity. J. Clin. Investig. 2002, 110, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Mantzoros, C.S.; Magkos, F.; Brinkoetter, M.; Sienkiewicz, E.; Dardeno, T.A.; Kim, S.Y.; Hamnvik, O.P.R.; Koniaris, A. Leptin in human physiology and pathophysiology. Am. J. Physiol. Endocrinol. Metab. 2011, 301. [Google Scholar] [CrossRef] [PubMed]
- Martos-Moreno, G.Á.; Barrios, V.; De Pipaón, M.S.; Pozo, J.; Dorronsoro, I.; Martínez-Biarge, M.; Quero, J.; Argente, J. Influence of prematurity and growth restriction on the adipokine profile, IGF1, and ghrelin levels in cord blood: Relationship with glucose metabolism. Eur. J. Endocrinol. 2009, 161, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Martos-Moreno, G.Á.; Barrios, V.; Argente, J. Normative data for adiponectin, resistin, interleukin 6 and leptin/receptor ratio in a healthy Spanish pediatric population: Relationship with sex steroids. Eur. J. Endocrinol. 2006, 155, 429–434. [Google Scholar] [CrossRef]
- Meier, U.; Gressner, A.M. Endocrine regulation of energy metabolism: Review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin. Chem. 2004, 50, 1511–1525. [Google Scholar] [CrossRef]
- Matsuzawa, Y. Adiponectin: A key player in obesity related disorders. Curr. Pharm. Des. 2010, 16, 1896–1901. [Google Scholar] [CrossRef]
- Sowers, J.R. Endocrine Functions of Adipose Tissue: Focus on Adiponectin. Clin. Cornerstone 2008, 9, 32–40. [Google Scholar] [CrossRef]
- Jeffery, A.N.; Murphy, M.J.; Metcalf, B.S.; Hosking, J.; Voss, L.D.; English, P.; Sattar, N.; Wilkin, T.J. Adiponectin in childhood. Int. J. Pediatr. Obes. 2008, 3, 130–140. [Google Scholar] [CrossRef]
- Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.I.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K.; et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 2012, 425, 560–564. [Google Scholar] [CrossRef]
- Yu, J.G.; Javorschi, S.; Hevener, A.L.; Kruszynska, Y.T.; Norman, R.A.; Sinha, M.; Olefsky, J.M. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 2002, 51, 2968–2974. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, R.; Sano, H.; Matsudaira, T.; Miyashita, Y.; Morimoto, A.; Shirasawa, T.; Takahashi, E.; Kawaguchi, T.; Tajima, N. Childhood obesity and its relation to serum adiponectin and leptin: A report from a population-based study. Diabetes Res. Clin. Pract. 2007, 76, 245–250. [Google Scholar] [CrossRef]
- Martos-Moreno, G.Á.; Martínez-Villanueva, J.; González-Leal, R.; Chowen, J.A.; Argente, J. Sex, puberty, and ethnicity have a strong influence on growth and metabolic comorbidities in children and adolescents with obesity: Report on 1300 patients (the Madrid Cohort). Pediatric Obes. 2019, 14, e12565. [Google Scholar] [CrossRef]
- Eyzaguirre, F.; Mericq, V. Insulin resistance markers in children. Horm. Res. 2009, 71, 65–74. [Google Scholar] [CrossRef]
- Gutt, M.; Davis, C.L.; Spitzer, S.B.; Llabre, M.M.; Kumar, M.; Czarnecki, E.M.; Schneiderman, N.; Skyler, J.S.; Marks, J.B. Validation of the insulin sensitivity index (ISI0,120): Comparison with other measures. Diabetes Res. Clin. Pract. 2000, 47, 177–184. [Google Scholar] [CrossRef]
- Reaven, G.M. Role of insulin resistance in human disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol. 2020, 8, 616–627. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatric Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Damanhoury, S.; Newton, A.S.; Rashid, M.; Hartling, L.; Byrne, J.L.S.; Ball, G.D.C. Defining metabolically healthy obesity in children: A scoping review. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2018, 19, 1476–1491. [Google Scholar] [CrossRef]
- Prince, R.L.; Kuk, J.L.; Ambler, K.A.; Dhaliwal, J.; Ball, G.D.C. Predictors of metabolically healthy obesity in children. Diabetes Care 2014, 37, 1462–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinzle, S.; Ball, G.D.C.; Kuk, J.L. Variations in the prevalence and predictors of prevalent metabolically healthy obesity in adolescents. Pediatric Obes. 2016, 11, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.W.; Niswender, K.D. Adiposity signaling and biological defense against weight gain: Absence of protection or central hormone resistance? J. Clin. Endocrinol. Metab. 2004, 89, 5889–5897. [Google Scholar] [CrossRef] [Green Version]
- Rivera, P.; Martos-Moreno, G.Á.; Barrios, V.; Suárez, J.; Pavón, F.J.; Chowen, J.A.; Rodríguez de Fonseca, F.; Argente, J. A novel approach to childhood obesity: Circulating chemokines and growth factors as biomarkers of insulin resistance. Pediatric Obes. 2019, 14, e12473. [Google Scholar] [CrossRef]
- Rivera, P.; Martos-Moreno, G.Á.; Barrios, V.; Suárez, J.; Pavón, F.J.; Chowen, J.A.; Rodríguez de Fonseca, F.; Argente, J. A combination of circulating chemokines as biomarkers of obesity-induced insulin resistance at puberty. Pediatric Obes. 2020, e12711. [Google Scholar] [CrossRef]
- González-Riano, C.; Dudzik, D.; Garcia, A.; Gil-De-La-Fuente, A.; Gradillas, A.; Godzien, J.; López-Gonzálvez, Á.; Rey-Stolle, F.; Rojo, D.; Ruperez, F.J.; et al. Recent Developments along the Analytical Process for Metabolomics Workflows. Anal. Chem. 2019, 92, 203–226. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.; Martos-Moreno, G.; García, A.; Barrios, V.; Rupérez, F.J.; Chowen, J.A.; Barbas, C.; Argente, J. Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations. Int. J. Obes. 2016, 40, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Alonso, A.; Marsal, S.; Julià, A. Analytical methods in untargeted metabolomics: State of the art in 2015. Front. Bioeng. Biotechnol. 2015, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Perng, W.; Gillman, M.W.; Fleisch, A.F.; Michalek, R.D.; Watkins, S.M.; Isganaitis, E.; Patti, M.E.; Oken, E. Metabolomic profiles and childhood obesity. Obesity 2014, 22, 2570–2578. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Hector, E.C.; Song, P.X.K.; Tellez Rojo, M.M.; Raskind, S.; Kachman, M.; Cantoral, A.; Burant, C.F.; Peterson, K.E. Metabolomic Determinants of Metabolic Risk in Mexican Adolescents. Obesity 2017, 25, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Rifas-Shiman, S.L.; Hivert, M.F.; Chavarro, J.E.; Oken, E. Branched Chain Amino Acids, Androgen Hormones, and Metabolic Risk Across Early Adolescence: A Prospective Study in Project Viva. Obesity 2018, 26, 916–926. [Google Scholar] [CrossRef]
- Butte, N.F.; Liu, Y.; Zakeri, I.F.; Mohney, R.P.; Mehta, N.; Voruganti, V.S.; Göring, H.; Cole, S.A.; Comuzzie, A.G. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am. J. Clin. Nutr. 2015, 102, 256–267. [Google Scholar] [CrossRef]
- Naz, S.; García, A.; Barbas, C. Multiplatform Analytical Methodology for Metabolic Fingerprinting of Lung Tissue. Anal. Chem. 2013, 85, 10941–10948. [Google Scholar] [CrossRef] [PubMed]
- Zeki, Ö.C.; Eylem, C.C.; Reçber, T.; Kır, S.; Nemutlu, E. Integration of GC–MS and LC–MS for untargeted metabolomics profiling. J. Pharm. Biomed. Anal. 2020, 190, 113509. [Google Scholar] [CrossRef]
- Gawlik, A.M.; Shmoish, M.; Hartmann, M.F.; Wudy, S.A.; Hochberg, Z. Steroid metabolomic signature of insulin resistance in childhood obesity. Diabetes Care 2020, 43, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Ramautar, R.; Somsen, G.W.; de Jong, G.J. CE-MS for metabolomics: Developments and applications in the period 2016–2018. Electrophoresis 2019, 40, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Gil-de-la-Fuente, A.; Godzien, J.; Saugar, S.; Garcia-Carmona, R.; Badran, H.; Wishart, D.S.; Barbas, C.; Otero, A. CEU Mass Mediator 3.0: A Metabolite Annotation Tool. J. Proteome Res. 2019, 18, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Martos-Moreno, G.; Mastrangelo, A.; Barrios, V.; Garciá, A.; Chowen, J.A.; Rupérez, F.J.; Barbas, C.; Argente, J. Metabolomics allows the discrimination of the pathophysiological relevance of hyperinsulinism in obese prepubertal children. Int. J. Obes. 2017, 41, 1473–1480. [Google Scholar] [CrossRef]
- Tricò, D.; Prinsen, H.; Giannini, C.; De Graaf, R.; Juchem, C.; Li, F.; Caprio, S.; Santoro, N.; Herzog, R.I. Elevated a-hydroxybutyrate and branched-chain amino acid levels predict deterioration of glycemic control in adolescents. J. Clin. Endocrinol. Metab. 2017, 102, 2473–2481. [Google Scholar] [CrossRef] [Green Version]
- Hosking, J.; Pinkney, J.; Jeffery, A.; Cominetti, O.; Da Silva, L.; Collino, S.; Kussmann, M.; Hager, J.; Martin, F.P. Insulin Resistance during normal child growth and development is associated with a distinct blood metabolic phenotype (Earlybird 72). Pediatric Diabetes 2019, 20, 832–841. [Google Scholar] [CrossRef]
- Evans, A.M.; DeHaven, C.D.; Barrett, T.; Mitchell, M.; Milgram, E. Integrated, Nontargeted Ultrahigh Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry Platform for the Identification and Relative Quantification of the Small-Molecule Complement of Biological Systems. Anal. Chem. 2009, 81, 6656–6667. [Google Scholar] [CrossRef]
- Shin, S.-Y.; Fauman, E.B.; Petersen, A.-K.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.; Yang, T.-P.; et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014, 46, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Hellmuth, C.; Kirchberg, F.F.; Brandt, S.; Moß, A.; Walter, V.; Rothenbacher, D.; Brenner, H.; Grote, V.; Gruszfeld, D.; Socha, P.; et al. An individual participant data meta-analysis on metabolomics profiles for obesity and insulin resistance in European children. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.; Lee, H.J.; Jang, H.B.; Kim, H.J.; Ban, H.J.; Kim, K.Y.; Nam, M.S.; Choi, J.S.; Lee, K.T.; Cho, S.B.; et al. Asymmetric dimethylarginine (ADMA) is identified as a potential biomarker of insulin resistance in skeletal muscle. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A BCAA Related Metabolic Signature that differentiates obese and lean. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [Green Version]
- Newgard, C.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012, 15, 606–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balikcioglu, P.G.; Newgard, C.B. Metabolomic signatures and metabolic complications in childhood obesity. Contemp. Endocrinol. 2018, 343–361. [Google Scholar] [CrossRef]
- Mccormack, S.E.; Shaham, O.; Mccarthy, M.A.; Deik, A.A.; Wang, T.J.; Gerszten, R.E.; Clish, C.B.; Mootha, V.K.; Grinspoon, S.K.; Fleischman, A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obes. 2013, 8, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Gkourogianni, A.; Kosteria, I.; Telonis, A.G.; Margeli, A.; Mantzou, E.; Konsta, M.; Loutradis, D.; Mastorakos, G.; Papassotiriou, I.; Klapa, M.I.; et al. Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI. PLoS ONE 2014, 9, e94001. [Google Scholar] [CrossRef] [Green Version]
- Newbern, D.; Balikcioglu, P.G.; Balikcioglu, M.; Bain, J.; Muehlbauer, M.; Stevens, R.; Ilkayeva, O.; Dolinsky, D.; Armstrong, S.; Irizarry, K.; et al. Sex differences in biomarkers associated with insulin resistance in obese adolescents: Metabolomic profiling and principal components analysis. J. Clin. Endocrinol. Metab. 2014, 99, 4730–4739. [Google Scholar] [CrossRef]
- Zhao, X.; Gang, X.; Liu, Y.; Sun, C.; Han, Q.; Wang, G. Using Metabolomic Profiles as Biomarkers for Insulin Resistance in Childhood Obesity: A Systematic Review. J. Diabetes Res. 2016, 2016. [Google Scholar] [CrossRef]
- Perng, W.; Rifas-Shiman, S.L.; Sordillo, J.; Hivert, M.F.; Oken, E. Metabolomic Profiles of Overweight/Obesity Phenotypes During Adolescence: A Cross-Sectional Study in Project Viva. Obesity 2020, 28, 379–387. [Google Scholar] [CrossRef]
- Bagheri, M.; Djazayery, A.; Qi, L.; Yekaninejad, M.S.; Chamari, M.; Naderi, M.; Ebrahimi, Z.; Koletzko, B.; Uhl, O.; Farzadfar, F. Effectiveness of vitamin D therapy in improving metabolomic biomarkers in obesity phenotypes: Two randomized clinical trials. Int. J. Obes. 2018, 42, 1782–1796. [Google Scholar] [CrossRef] [PubMed]
- Menni, C.; Zhai, G.; MacGregor, A.; Prehn, C.; Römisch-Margl, W.; Suhre, K.; Adamski, J.; Cassidy, A.; Illig, T.; Spector, T.D.; et al. Targeted metabolomics profiles are strongly correlated with nutritional patterns in women. Metabolomics 2013, 9, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaliszyn, S.F.; Sjaarda, L.A.; Mihalik, S.J.; Lee, S.J.; Bacha, F.; Chace, D.H.; De Jesus, V.R.; Vockley, J.; Arslanian, S.A. Metabolomic profiling of amino acids and β-cell function relative to insulin sensitivity in youth. J. Clin. Endocrinol. Metab. 2012, 97, 2119–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benítez-Páez, A.; Gómez del Pugar, E.M.; López-Almela, I.; Moya-Pérez, Á.; Codoñer-Franch, P.; Sanz, Y. Depletion of Blautia Species in the Microbiota of Obese Children Relates to Intestinal Inflammation and Metabolic Phenotype Worsening. Msystems 2020, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.; Murthy, V.; Pacold, M.; Danielson, K.; Tanriverdi, K.; Larson, M.G.; Hanspers, K.; Pico, A.; Mick, E.; Reis, J.; et al. Extracellular RNAs are associated with insulin resistance and metabolic phenotypes. Diabetes Care 2017, 40, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Park, S.E.; Park, C.Y.; Sweeney, G. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future. Crit. Rev. Clin. Lab. Sci. 2015, 52, 180–190. [Google Scholar] [CrossRef]
- Rauschert, S.; Uhl, O.; Koletzko, B.; Hellmuth, C. Metabolomic biomarkers for obesity in humans: A short review. Ann. Nutr. Metab. 2014, 64, 314–324. [Google Scholar] [CrossRef] [Green Version]
- Hellmuth, C.; Kirchberg, F.F.; Lass, N.; Harder, U.; Peissner, W.; Koletzko, B.; Reinehr, T. Tyrosine Is Associated with Insulin Resistance in Longitudinal Metabolomic Profiling of Obese Children. J. Diabetes Res. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Jang, H.B.; Ra, M.; Choi, Y.; Lee, H.J.; Park, J.Y.; Kang, J.H.; Park, K.H.; Park, S.I.; Song, J. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy’s metabolite profiling. Obes. Res. Clin. Pract. 2015, 9, 336–345. [Google Scholar] [CrossRef]
- Syme, C.; Czajkowski, S.; Shin, J.; Abrahamowicz, M.; Leonard, G.; Perron, M.; Richer, L.; Veillette, S.; Gaudet, D.; Strug, L.; et al. Glycerophosphocholine Metabolites and Cardiovascular Disease Risk Factors in Adolescents: A Cohort Study. Circulation 2016, 134, 1629–1636. [Google Scholar] [CrossRef]
- Mihalik, S.J.; Michaliszyn, S.F.; De Las Heras, J.; Bacha, F.; Lee, S.J.; Chace, D.H.; DeJesus, V.R.; Vockley, J.; Arslanian, S.A. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: Evidence for enhanced mitochondrial oxidation. Diabetes Care 2012, 35, 605–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupérez, F.J.; Martos-Moreno, G.Á.; Chamoso-Sánchez, D.; Barbas, C.; Argente, J. Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute? Nutrients 2020, 12, 3310. https://doi.org/10.3390/nu12113310
Rupérez FJ, Martos-Moreno GÁ, Chamoso-Sánchez D, Barbas C, Argente J. Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute? Nutrients. 2020; 12(11):3310. https://doi.org/10.3390/nu12113310
Chicago/Turabian StyleRupérez, Francisco J., Gabriel Á. Martos-Moreno, David Chamoso-Sánchez, Coral Barbas, and Jesús Argente. 2020. "Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute?" Nutrients 12, no. 11: 3310. https://doi.org/10.3390/nu12113310
APA StyleRupérez, F. J., Martos-Moreno, G. Á., Chamoso-Sánchez, D., Barbas, C., & Argente, J. (2020). Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute? Nutrients, 12(11), 3310. https://doi.org/10.3390/nu12113310