Hydroxyvitamin D Serum Levels are Negatively Associated with Platelet Number in a Cohort of Subjects Affected by Overweight and Obesity
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Pike, J.W.; Wesley Pike, J.; Christakos, S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol. Metab. Clin. N. Am. 2017, 46, 815–843. [Google Scholar] [CrossRef]
- Binkley, N.; Sempos, C.T.; Vitamin, D. Standardization Program (VDSP). Standardizing vitamin D assays: The way forward. J. Bone Miner. Res. 2014, 29, 1709–1714. [Google Scholar] [CrossRef] [Green Version]
- Cesareo, R.; Attanasio, R.; Caputo, M.; Castello, R.; Chiodini, I.; Falchetti, A.; Guglielmi, R.; Papini, E.; Santonati, A.; Scillitani, A.; et al. Italian Association of Clinical Endocrinologists (AME) and Italian Chapter of the American Association of Clinical Endocrinologists (AACE) Position Statement: Clinical Management of Vitamin D Deficiency in Adults. Nutrients 2018, 10, 546. [Google Scholar] [CrossRef] [Green Version]
- de Borst, M.H.; de Borst, M.H.; de Boer, R.A.; Stolk, R.P.; Slaets, J.P.J.; Wolffenbuttel, B.H.R.; Navis, G. Vitamin D Deficiency: Universal Risk Factor for Multifactorial Diseases? Curr. Drug Targets 2011, 12, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef] [PubMed]
- De Pergola, G.; Martino, T.; Zupo, R.; Caccavo, D.; Pecorella, C.; Paradiso, S.; Silvestris, F.; Triggiani, V. 25 Hydroxyvitamin D Levels are Negatively and Independently Associated with Fat Mass in a Cohort of Healthy Overweight and Obese Subjects. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Judd, S.E.; Tangpricha, V. Vitamin D Deficiency and Risk for Cardiovascular Disease. Am. J. Med Sci. 2009, 338, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan-Shaw, P.G.; O’Sullivan, F.; Farrington, S.M.; Theodoratou, E.; Campbell, H.; Dunlop, M.G.; Zgaga, L. The impact of vitamin D pathway genetic variation and circulating 25-hydroxyvitamin D on cancer outcome: Systematic review and meta-analysis. Br. J. Cancer 2017, 116, 1092–1110. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Agosti, P.; Lozupone, M.; Custodero, C.; Schilardi, A.; Valiani, V.; Santamato, A.; Sardone, R.; Dibello, V.; Di Lena, L.; et al. Nutritional interventions and cognitive-related outcomes in patients with late-life cognitive disorders: A systematic review. Neurosci. Biobehav. Rev. 2018, 95, 480–498. [Google Scholar] [CrossRef]
- De Pergola, G.; Triggiani, V.; Bartolomeo, N.; Giagulli, V.A.; Anelli, M.; Masiello, M.; Candita, V.; De Bellis, D.; Silvestris, F. Low 25 Hydroxyvitamin D Levels are Independently Associated with Autoimmune Thyroiditis in a Cohort of Apparently Healthy Overweight and Obese Subjects. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 646–652. [Google Scholar] [CrossRef]
- Calton, E.K.; Keane, K.N.; Newsholme, P.; Soares, M.J. The Impact of Vitamin D Levels on Inflammatory Status: A Systematic Review of Immune Cell Studies. PLoS ONE 2015, 10, e0141770. [Google Scholar] [CrossRef] [PubMed]
- Rondina, M.T.; Weyrich, A.S.; Zimmerman, G.A. Platelets as cellular effectors of inflammation in vascular diseases. Circ. Res. 2013, 112, 1506–1519. [Google Scholar] [CrossRef] [PubMed]
- De Pergola, G.; Zupo, R.; Cecere, A.; Bartolomeo, N.; Triggiani, V.; Paradiso, S.; Lampignano, L.; Silvestris, F.; Ciccone, M.M. Platelet number is negatively and independently associated with carotid intima-media thickness in apparently healthy overweight/obese subjects. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.B.; Eaton, K.A.; Princiotta, S.M.; Rushin, C.A.; Valeri, C.R. Size dependent platelet subpopulations: Relationship of platelet volume to ultrastructure, enzymatic activity, and function. Br. J. Haematol. 1982, 50, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.; Twito, O.; Tohami, T.; Ramati, E.; Neumark, E.; Rashid, G. Vitamin D diminishes the high platelet aggregation of type 2 diabetes mellitus patients. Platelets 2019, 30, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Gur, E.B.; Karadeniz, M.; Genc, M.; Eskicioglu, F.; Yalcin, M.; Hepyilmaz, I.; Guclu, S. Relationship between mean platelet volume and vitamin D deficiency in gestational diabetes mellitus. Arch. Endocrinol. Metab. 2015, 59, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korzonek-Szlacheta, I.; Hudzik, B.; Nowak, J.; Szkodzinski, J.; Nowak, J.; Gąsior, M.; Zubelewicz-Szkodzinska, B. Mean platelet volume is associated with serum 25-hydroxyvitamin D concentrations in patients with stable coronary artery disease. Heart Vessel. 2018, 33, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Günay, N.E.; Buğday, İ.; Akalın, T. Relationships of the Vitamin D and Platelet Indices in Sjögren’s Syndrome. Korean J. Clin. Lab. Sci. 2018, 50, 484–491. [Google Scholar] [CrossRef]
- Park, Y.C.; Kim, J.; Seo, M.S.; Hong, S.W.; Cho, E.S.; Kim, J.-K. Inverse relationship between vitamin D levels and platelet indices in Korean adults. Hematology 2017, 22, 623–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Medrano, M.; Carrillo-Cruz, E.; Montero, I.; Perez-Simon, J.A. Vitamin D: Effect on Haematopoiesis and Immune System and Clinical Applications. Int. J. Mol. Sci. 2018, 19, 2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvagno, F.; De Vivo, E.; Attanasio, A.; Gallo, V.; Mazzucco, G.; Pescarmona, G. Mitochondrial localization of vitamin D receptor in human platelets and differentiated megakaryocytes. PLoS ONE 2010, 5, e8670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aihara, K.; Azuma, H.; Matsumoto, T. Vitamin D-vitamin D receptor system regulates antithrombogenicity in vivo. Clin. Calcium 2006, 16, 1173–1179. [Google Scholar] [PubMed]
- Aihara, K.-I.; Azuma, H.; Akaike, M.; Ikeda, Y.; Yamashita, M.; Sudo, T.; Hayashi, H.; Yamada, Y.; Endoh, F.; Fujimura, M.; et al. Disruption of Nuclear Vitamin D Receptor Gene Causes Enhanced Thrombogenicity in Mice. J. Biol. Chem. 2004, 279, 35798–35802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aksu, K.; Donmez, A.; Keser, G. Inflammation-induced thrombosis: Mechanisms, disease associations and management. Curr. Pharm. Des. 2012, 18, 1478–1493. [Google Scholar] [PubMed]
- Stevens, R.F.; Alexander, M.K. A sex difference in the platelet count. Br. J. Haematol. 1977, 37, 295–300. [Google Scholar] [CrossRef]
- Ranucci, M.; Aloisio, T.; Di Dedda, U.; Menicanti, L.; de Vincentiis, C.; Baryshnikova, E. Surgical and Clinical Outcome REsearch (SCORE) group Gender-based differences in platelet function and platelet reactivity to P2Y12 inhibitors. PLoS ONE 2019, 14, e0225771. [Google Scholar] [CrossRef]
- Dupuis, M.; Severin, S.; Noirrit-Esclassan, E.; Arnal, J.F.; Payrastre, B.; Valéra, M.C. Effects of Estrogens on Platelets and Megakaryocytes. Int. J. Mol. Sci. 2019, 20, 3111. [Google Scholar] [CrossRef] [Green Version]
- Manno, C.; Campobasso, N.; Nardecchia, A.; Triggiani, V.; Zupo, R.; Gesualdo, L.; Silvestris, F.; De Pergola, G. Relationship of para- and perirenal fat and epicardial fat with metabolic parameters in overweight and obese subjects. Eat Weight Disord. 2019, 24, 67–72. [Google Scholar] [CrossRef]
- Sansanayudh, N.; Muntham, D.; Yamwong, S.; Sritara, P.; Akrawichien, T.; Thakkinstian, A. The association between mean platelet volume and cardiovascular risk factors. Eur. J. Intern. Med. 2016, 30, 37–42. [Google Scholar] [CrossRef]
- Santimone, I.; Di Castelnuovo, A.; De Curtis, A.; Spinelli, M.; Cugino, D.; Gianfagna, F.; Zito, F.; Donati, M.B.; Cerletti, C.; de Gaetano, G.; et al. White blood cell count, sex and age are major determinants of heterogeneity of platelet indices in an adult general population: Results from the MOLI-SANI project. Haematologica 2011, 96, 1180–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karolczak, K.; Soltysik, B.; Kostka, T.; Witas, P.J.; Watala, C. Platelet and Red Blood Cell Counts, as well as the Concentrations of Uric Acid, but Not Homocysteinaemia or Oxidative Stress, Contribute Mostly to Platelet Reactivity in Older Adults. Oxid. Med. Cell. Longev. 2019, 2019, 9467562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muiesan, M.L.; Agabiti-Rosei, C.; Paini, A.; Salvetti, M. Uric acid and cardiovascular disease: An update. Eur. Cardiol. Rev. 2016, 11, 54. [Google Scholar] [CrossRef]
Variables | Mean ± SD (%) * | Range |
---|---|---|
Age (years) | 41.26 ± 12.85 | 18 to 71 |
Gender (male) | 93 (27.3) | -- |
BMI** (kg/m2) | 33.2 ± 5.49 | 24 to 49.3 |
WC** (cm) | 107.42 ± 12.91 | 79 to 150 |
SBP** (mmHg) | 128.71 ± 15.7 | 90 to 180 |
DBP** (mmHg) | 83.57 ± 11.29 | 56 to 120 |
FBG** (mg/dL) | 89.46 ± 11.51 | 66 to 143 |
Insulin (mg/dL) | 14.45 ± 9.08 | 2.4 to 67 |
HOMA-IR ** | 3.24 ± 2.16 | 0.52 to 14.5 |
Triglycerides (mg/dL) | 102.68 ± 59.36 | 26 to 541 |
HDL Cholesterol (mg/dL) | 51.78 ± 13.65 | 23 to 102 |
Total Cholesterol (mg/dL) | 193.19 ± 40.25 | 51 to 330 |
LDL Cholesterol (mg/dL) | 122.23 ± 34.41 | 32 to 262 |
TSH (mU/L) | 1.97 ± 1.23 | 0.29 to 12.6 |
FT3 (pg/mL) | 3.03 ± 0.41 | 2.01 to 4.6 |
FT4 (pg/mL) | 10.41 ± 1.36 | 6.8 to 14.7 |
Vitamin D (ng/mL) | 20.22 ± 7.98 | 4 to 50.4 |
Uric Acid (mg/dL) | 4.62 ± 1.53 | 1.4 to 12.3 |
Creatinine (µmol/L) | 65.64 ± 29.36 | 1 to 131 |
GOT** (U/L) | 21.3 ± 8.87 | 5.2 to 76 |
GPT** (U/L) | 32.87 ± 16.85 | 9 to 123 |
GGT** (U/L) | 29.7 ± 28.24 | 5 to 290 |
Sideremia (mcg/dL) | 80.15 ± 29.33 | 20 to 171 |
Sodium (mmol/L) | 140.47 ± 2.17 | 135 to 146 |
Potassium (mmol/L) | 4.27 ± 0.32 | 3.5 to 5.6 |
RBC** (1012/L) | 4.93 ± 0.55 | 3.81 to 10.8 |
WBC** (103/µL) | 7.13 ± 1.74 | 3.26 to 12.7 |
Platelets (103/µL) | 262.94 ± 64.31 | 101 to 568 |
Variables | Vitamin D (p-Value) | Direction (Rho) | Platelet (p-Value) | Direction (Rho) |
---|---|---|---|---|
Age (years) | 0.692 | POSITIVE | 0.032 | NEGATIVE |
BMI (kg/m2) | <0.01 | NEGATIVE | 0.087 | POSITIVE |
WC (cm) | 0.001 | NEGATIVE | 0.338 | POSITIVE |
SBP (mm Hg) | 0.280 | NEGATIVE | 0.411 | NEGATIVE |
DBP (mm Hg) | 0.004 | NEGATIVE | 0.479 | POSITIVE |
FBG (mg/dL) | 0.394 | NEGATIVE | 0.605 | POSITIVE |
Insulin (mg/dL) | 0.006 | NEGATIVE | 0.001 | POSITIVE |
HOMA-IR | 0.005 | NEGATIVE | 0.001 | POSITIVE |
Triglycerides (mg/dL) | 0.163 | NEGATIVE | 0.747 | POSITIVE |
HDL Cholesterol (mg/dL) | 0.720 | POSITIVE | 0.806 | POSITIVE |
Total Cholesterol (mg/dL) | 0.613 | NEGATIVE | 0.253 | POSITIVE |
LDL Cholesterol (mg/dL) | 0.613 | NEGATIVE | 0.074 | POSITIVE |
TSH (mU/L) | 0.456 | NEGATIVE | 0.039 | POSITIVE |
FT3 (pg/mL) | 0.396 | NEGATIVE | 0.442 | POSITIVE |
FT4 (pg/mL) | 0.394 | NEGATIVE | 0.561 | POSITIVE |
Vitamin D (ng/mL) | NA | NA | 0.045 | NEGATIVE |
Uric Acid (mg/dl) | 0.218 | NEGATIVE | 0.031 | NEGATIVE |
Creatinine (µmol/L) | 0.105 | POSITIVE | 0.176 | NEGATIVE |
GOT (U/L) | 0.759 | NEGATIVE | 0.106 | NEGATIVE |
GPT (U/L) | 0.346 | NEGATIVE | 0.635 | NEGATIVE |
GGT (U/L) | 0.153 | NEGATIVE | 0.865 | POSITIVE |
Sideremia (mcg/dL) | 0.704 | NEGATIVE | 0.084 | NEGATIVE |
Sodium (mmol/L) | 0.600 | POSITIVE | 0.118 | NEGATIVE |
Potassium (mmol/L) | 0.565 | POSITIVE | 0.322 | POSITIVE |
RBC (1012/L) | 0.085 | NEGATIVE | 0.530 | NEGATIVE |
WBC (103/µL) | 0.077 | NEGATIVE | <0.01 | POSITIVE |
Platelets (103/µL) | 0.045 | NEGATIVE | NA | NA |
Coefficient | p-Value | Confidence Interval 95% | |
---|---|---|---|
Vitamin D (ng/mL) | −0.78 | 0.07 | −1.64 to 0.08 |
Age (years) | −0.21 | 0.42 | −0.74 to 0.31 |
HOMA index | 1.39 | 0.41 | −1.96 to 4.76 |
TSH (mU/L) | 4.2 | 0.13 | −1.34 to 9.74 |
Uric acid (mg/dL) | −5.12 | 0.03 | −9.87 to −0.37 |
WBC (103/µL) | 12.29 | <0.01 | 8.26 to 16.31 |
Coefficients | p-Value | Confidence Interval 95% | |
---|---|---|---|
Vitamin D (ng/mL) | −0.65 | 0.13 | −1.51 to 0.2 |
Gender (male) | −31.95 | <0.01 | −49.77 to −14.13 |
BMI (kg/m2) | −0.42 | 0.52 | −1.72 to 0.88 |
Age (years) | −0.1 | 0.68 | −0.63 to 0.42 |
HOMA index | 2.34 | 0.17 | −1.08 to 5.78 |
TSH (mU/L) | 3.26 | 0.24 | −2.21 to 8.74 |
Uric acid (mg/dL) | −0.25 | 0.92 | −5.65 to 5.14 |
WBC (103/µL) | 12.68 | <0.01 | 8.67 to 16.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zupo, R.; Castellana, F.; Sardone, R.; Lampignano, L.; Di Noia, C.; Savastano, S.; Giannelli, G.; De Pergola, G. Hydroxyvitamin D Serum Levels are Negatively Associated with Platelet Number in a Cohort of Subjects Affected by Overweight and Obesity. Nutrients 2020, 12, 474. https://doi.org/10.3390/nu12020474
Zupo R, Castellana F, Sardone R, Lampignano L, Di Noia C, Savastano S, Giannelli G, De Pergola G. Hydroxyvitamin D Serum Levels are Negatively Associated with Platelet Number in a Cohort of Subjects Affected by Overweight and Obesity. Nutrients. 2020; 12(2):474. https://doi.org/10.3390/nu12020474
Chicago/Turabian StyleZupo, Roberta, Fabio Castellana, Rodolfo Sardone, Luisa Lampignano, Carmen Di Noia, Silvia Savastano, Gianluigi Giannelli, and Giovanni De Pergola. 2020. "Hydroxyvitamin D Serum Levels are Negatively Associated with Platelet Number in a Cohort of Subjects Affected by Overweight and Obesity" Nutrients 12, no. 2: 474. https://doi.org/10.3390/nu12020474
APA StyleZupo, R., Castellana, F., Sardone, R., Lampignano, L., Di Noia, C., Savastano, S., Giannelli, G., & De Pergola, G. (2020). Hydroxyvitamin D Serum Levels are Negatively Associated with Platelet Number in a Cohort of Subjects Affected by Overweight and Obesity. Nutrients, 12(2), 474. https://doi.org/10.3390/nu12020474