JNK/p66Shc/ITCH Signaling Pathway Mediates Angiotensin II-induced Ferritin Degradation and Labile Iron Pool Increase
Abstract
:1. Introduction
2. Experimental Section
2.1. Cell Culture
2.2. Immunoblotting
2.3. Transient Transfection
2.4. Determination of LIP
2.5. Measurement of ROS Levels
2.6. Statistical Analysis
3. Results
3.1. Angiotensin II Induces Ferritin Degradation and LIP Increase
3.2. Ferritin Degradation Induced by Ang II is Mediated by JNK
3.3. Ferritin Degradation is Mediated by ITCH
3.4. Ang II-induced Ferritin Degradation is Mediated by p66Shc
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sparks, M.A.; Crowley, S.D.; Gurley, S.B.; Mirotsou, M.; Coffman, T.M. Classical renin-angiotensin system in kidney physiology. Compr. Physiol. 2014, 4, 1201–1228. [Google Scholar]
- Bader, M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 439–465. [Google Scholar] [CrossRef]
- de Gasparo, M.; Speth, R.C.; Baltatu, O.C.; Vanderheyden, P. Brain ras: Hypertension and beyond. Int. J. Hypertens. 2013, 2013, 157180. [Google Scholar] [CrossRef] [PubMed]
- Mogi, M.; Horiuchi, M. Effect of angiotensin ii type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases. Geriatr. Gerontol. Int. 2013, 13, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Kehoe, P.G. Angiotensins and alzheimer’s disease: A bench to bedside overview. Alzheimers. Res. Ther. 2009, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Prusty, S.K.; Sahu, P.K.; Subudhi, B.B. Angiotensin mediated oxidative stress and neuroprotective potential of antioxidants and at1 receptor blockers. Mini Rev. Med. Chem. 2017, 17, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Sorescu, D.; Griendling, K.K. Reactive oxygen species, mitochondria, and nad(p)h oxidases in the development and progression of heart failure. Congest. Heart Fail. 2002, 8, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Kunsch, C.; Medford, R.M. Oxidative stress as a regulator of gene expression in the vasculature. Circ. Res. 1999, 85, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Zhang, X.; Li, S.Y.; Zhang, Z.; Ren, Q.; Culver, B.; Ren, J. Possible involvement of nadph oxidase and jnk in homocysteine-induced oxidative stress and apoptosis in human umbilical vein endothelial cells. Cardiovasc. Toxicol. 2005, 5, 9–20. [Google Scholar] [CrossRef]
- Touyz, R.M. Reactive oxygen species as mediators of calcium signaling by angiotensin ii: Implications in vascular physiology and pathophysiology. Antioxid. Redox Signal. 2005, 7, 1302–1314. [Google Scholar] [CrossRef]
- Garrido-Gil, P.; Rodriguez-Pallares, J.; Dominguez-Meijide, A.; Guerra, M.J.; Labandeira-Garcia, J.L. Brain angiotensin regulates iron homeostasis in dopaminergic neurons and microglial cells. Exp. Neurol. 2013, 250, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, N.; Saito, K.; Noiri, E.; Sata, M.; Ikeda, H.; Ohno, A.; Ando, J.; Mori, I.; Ohno, M.; Nagai, R. Administration of ang ii induces iron deposition and upregulation of tgf-beta1 mrna in the rat liver. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1063–R1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, K.; Ishizaka, N.; Aizawa, T.; Sata, M.; Iso-o, N.; Noiri, E.; Mori, I.; Ohno, M.; Nagai, R. Iron chelation and a free radical scavenger suppress angiotensin ii-induced upregulation of tgf-beta1 in the heart. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H1836–H1843. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, N.; Saito, K.; Mori, I.; Matsuzaki, G.; Ohno, M.; Nagai, R. Iron chelation suppresses ferritin upregulation and attenuates vascular dysfunction in the aorta of angiotensin ii-infused rats. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2282–2288. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, J.L. Is stored iron safe? J. Lab. Clin. Med. 2004, 144, 280–284. [Google Scholar] [CrossRef]
- Das, D.K.; Maulik, N.; Engelman, R.M. Redox regulation of angiotensin ii signaling in the heart. J. Cell Mol. Med. 2004, 8, 144–152. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, H.S.; Song, Y.J.; Joo, H.K.; Lee, J.Y.; Lee, K.H.; Cho, E.J.; Cho, C.H.; Park, J.B.; Jeon, B.H. Alteration of p66shc is associated with endothelial dysfunction in the abdominal aortic coarctation of rats. FEBS Lett. 2008, 582, 2561–2566. [Google Scholar] [CrossRef] [Green Version]
- Borkowska, A.; Sielicka-Dudzin, A.; Herman-Antosiewicz, A.; Halon, M.; Wozniak, M.; Antosiewicz, J. P66shc mediated ferritin degradation--a novel mechanism of ros formation. Free Radic. Biol. Med. 2011, 51, 658–663. [Google Scholar] [CrossRef]
- Antosiewicz, J.; Ziolkowski, W.; Kaczor, J.J.; Herman-Antosiewicz, A. Tumor necrosis factor-alpha-induced reactive oxygen species formation is mediated by jnk1-dependent ferritin degradation and elevation of labile iron pool. Free Radic. Biol. Med. 2007, 43, 265–270. [Google Scholar] [CrossRef]
- Antosiewicz, J.; Herman-Antosiewicz, A.; Marynowski, S.W.; Singh, S.V. C-jun nh(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells. Cancer Res. 2006, 66, 5379–5386. [Google Scholar] [CrossRef] [Green Version]
- Konijn, A.M.; Glickstein, H.; Vaisman, B.; Meyron-Holtz, E.G.; Slotki, I.N.; Cabantchik, Z.I. The cellular labile iron pool and intracellular ferritin in k562 cells. Blood 1999, 94, 2128–2134. [Google Scholar] [CrossRef] [PubMed]
- Sawada, H.; Hao, H.; Naito, Y.; Oboshi, M.; Hirotani, S.; Mitsuno, M.; Miyamoto, Y.; Hirota, S.; Masuyama, T. Aortic iron overload with oxidative stress and inflammation in human and murine abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1507–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruszewski, M. Labile iron pool: The main determinant of cellular response to oxidative stress. Mutat. Res. 2003, 531, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Kurz, T.; Brunk, U.T.; Nilsson, S.E.; Frennesson, C.I. What does the commonly used dcf test for oxidative stress really show? Biochem. J. 2010, 428, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Pourzand, C.; Watkin, R.D.; Brown, J.E.; Tyrrell, R.M. Ultraviolet a radiation induces immediate release of iron in human primary skin fibroblasts: The role of ferritin. Proc. Natl. Acad. Sci. USA 1999, 96, 6751–6756. [Google Scholar] [CrossRef] [Green Version]
- Kurz, T.; Eaton, J.W.; Brunk, U.T. The role of lysosomes in iron metabolism and recycling. Int. J. Biochem. Cell. Biol. 2011, 43, 1686–1697. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, K.; Aoki, H.; Ikeda, Y.; Fujii, K.; Akiyama, N.; Furutani, A.; Hoshii, Y.; Tanaka, N.; Ricci, R.; Ishihara, T.; et al. Regression of abdominal aortic aneurysm by inhibition of c-jun n-terminal kinase. Nat. Med. 2005, 11, 1330–1338. [Google Scholar] [CrossRef]
- Yoshimura, K.; Aoki, H.; Ikeda, Y.; Furutani, A.; Hamano, K.; Matsuzaki, M. Regression of abdominal aortic aneurysm by inhibition of c-jun n-terminal kinase in mice. Ann. N. Y. Acad. Sci. 2006, 1085, 74–81. [Google Scholar] [CrossRef]
- Chang, L.; Kamata, H.; Solinas, G.; Luo, J.L.; Maeda, S.; Venuprasad, K.; Liu, Y.C.; Karin, M. The e3 ubiquitin ligase itch couples jnk activation to tnfalpha-induced cell death by inducing c-flip(l) turnover. Cell 2006, 124, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Khalid, S.; Drasche, A.; Thurner, M.; Hermann, M.; Ashraf, M.I.; Fresser, F.; Baier, G.; Kremser, L.; Lindner, H.; Troppmair, J. Cjun n-terminal kinase (jnk) phosphorylation of serine 36 is critical for p66shc activation. Sci. Rep. 2016, 6, 20930. [Google Scholar] [CrossRef] [Green Version]
- Borkowska, A.; Sielicka-Dudzin, A.; Herman-Antosiewicz, A.; Wozniak, M.; Fedeli, D.; Falcioni, G.; Antosiewicz, J. Diallyl trisulfide-induced prostate cancer cell death is associated with akt/pkb dephosphorylation mediated by p-p66shc. Eur. J. Nutr. 2012, 51, 817–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemoto, S.; Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 2002, 295, 2450–2452. [Google Scholar] [CrossRef] [PubMed]
- Camici, G.G.; Schiavoni, M.; Francia, P.; Bachschmid, M.; Martin-Padura, I.; Hersberger, M.; Tanner, F.C.; Pelicci, P.; Volpe, M.; Anversa, P.; et al. Genetic deletion of p66(shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc. Natl. Acad. Sci. USA 2007, 104, 5217–5222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francia, P.; delli Gatti, C.; Bachschmid, M.; Martin-Padura, I.; Savoia, C.; Migliaccio, E.; Pelicci, P.G.; Schiavoni, M.; Luscher, T.F.; Volpe, M.; et al. Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 2004, 110, 2889–2895. [Google Scholar] [CrossRef] [Green Version]
- Kang, G.; Lee, Y.R.; Joo, H.K.; Park, M.S.; Kim, C.S.; Choi, S.; Jeon, B.H. Trichostatin a modulates angiotensin ii-induced vasoconstriction and blood pressure via inhibition of p66shc activation. Korean J. Physiol. Pharmacol. 2015, 19, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Toledo, J.C., Jr.; Bosworth, C.A.; Hennon, S.W.; Mahtani, H.A.; Bergonia, H.A.; Lancaster, J.R., Jr. Nitric oxide-induced conversion of cellular chelatable iron into macromolecule-bound paramagnetic dinitrosyliron complexes. J. Biol. Chem. 2008, 283, 28926–28933. [Google Scholar] [CrossRef] [Green Version]
- Bosworth, C.A.; Toledo, J.C., Jr.; Zmijewski, J.W.; Li, Q.; Lancaster, J.R., Jr. Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide. Proc. Natl. Acad. Sci. USA 2009, 106, 4671–4676. [Google Scholar] [CrossRef] [Green Version]
- Fidelis, H.G.; Mageski, J.G.A.; Goes, S.C.E.; Botelho, T.; Marques, V.B.; Avila, R.A.; Dos Santos, L. Angiotensin ii receptor type 1 blockade prevents arterial remodeling and stiffening in iron overloaded rats. Br. J. Pharmacol. 2019. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkowska, A.; Popowska, U.; Spodnik, J.; Herman-Antosiewicz, A.; Woźniak, M.; Antosiewicz, J. JNK/p66Shc/ITCH Signaling Pathway Mediates Angiotensin II-induced Ferritin Degradation and Labile Iron Pool Increase. Nutrients 2020, 12, 668. https://doi.org/10.3390/nu12030668
Borkowska A, Popowska U, Spodnik J, Herman-Antosiewicz A, Woźniak M, Antosiewicz J. JNK/p66Shc/ITCH Signaling Pathway Mediates Angiotensin II-induced Ferritin Degradation and Labile Iron Pool Increase. Nutrients. 2020; 12(3):668. https://doi.org/10.3390/nu12030668
Chicago/Turabian StyleBorkowska, Andżelika, Urszula Popowska, Jan Spodnik, Anna Herman-Antosiewicz, Michał Woźniak, and Jędrzej Antosiewicz. 2020. "JNK/p66Shc/ITCH Signaling Pathway Mediates Angiotensin II-induced Ferritin Degradation and Labile Iron Pool Increase" Nutrients 12, no. 3: 668. https://doi.org/10.3390/nu12030668
APA StyleBorkowska, A., Popowska, U., Spodnik, J., Herman-Antosiewicz, A., Woźniak, M., & Antosiewicz, J. (2020). JNK/p66Shc/ITCH Signaling Pathway Mediates Angiotensin II-induced Ferritin Degradation and Labile Iron Pool Increase. Nutrients, 12(3), 668. https://doi.org/10.3390/nu12030668