Selenium, Zinc, and Manganese Status in Pregnant Women and Its Relation to Maternal and Child Complications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Population
2.2. Sociodemographic Data and Food Frequency Questionnaire
2.3. Maternal and Child Complications
2.4. Analyses of Trace Elements
2.5. Statistical Methods
3. Results
3.1. Association of Selenium, Zinc, and Manganese Status and Risk of Maternal or Child Complications
3.2. Food Intake and Correlation of Different Foods With the Trace Element Status
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gernand, A.D.; Schulze, K.J.; Stewart, C.P.; West, K.P.; Christian, P. Micronutrient deficiencies in pregnancy worldwide: Health effects and prevention. Nat. Rev. Endocrinol. 2016, 12, 274–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darnton-Hill, I.; Mkparu, U.C. Micronutrients in pregnancy in low- and middle-income countries. Nutrients 2015, 7, 1744–1768. [Google Scholar] [CrossRef] [Green Version]
- Elind, A.-H.O. Trace elements as potential biomarkers of preeclampsia. Annu. Res. Rev. Biol. 2016, 9. [Google Scholar] [CrossRef]
- Pappas, A.C.; Zoidis, E.; Chadio, S.E. Maternal selenium and developmental programming. Antioxidants 2019, 8, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariath, A.B.; Bergamaschi, D.P.; Rondó, P.H.C.; Tanaka, A.C.D.; Hinnig, P.D.F.; Abbade, J.F.; Diniz, S.G. The possible role of selenium status in adverse pregnancy outcomes. Br. J. Nutr. 2011, 105, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Mistry, H.D.; Kurlak, L.O.; Young, S.D.; Briley, A.L.; Broughton Pipkin, F.; Baker, P.N.; Poston, L. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Matern. Child Nutr. 2014, 10, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Terrin, G.; Canani, R.B.; Di Chiara, M.; Pietravalle, A.; Aleandri, V.; Conte, F.; De Curtis, M. Zinc in early life: A key element in the fetus and preterm neonate. Nutrients 2015, 7, 10427–10446. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, C. Zinc: Physiology, deficiency, and parenteral nutrition. Nutr. Clin. Pract. 2015, 30, 371–382. [Google Scholar] [CrossRef]
- Donangelo, C.M.; King, J.C. Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation. Nutrients 2012, 4, 782–798. [Google Scholar] [CrossRef]
- Wilson, R.L.; Grieger, J.A.; Bianco-Miotto, T.; Roberts, C.T. Association between maternal zinc status, dietary zinc intake and pregnancy complications: A systematic review. Nutrients 2016, 8, 641. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hu, Y.; Hao, J.; Chen, Y.; Su, P.; Wang, Y. Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: A population-based birth cohort study. Sci. Rep. 2015, 5, 11262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschner, J.L.; Aschner, M. Nutritional aspects of manganese homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Erikson, K.M.; Syversen, T.; Aschner, J.L.; Aschner, M. Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ. Toxicol. Pharmacol. 2005, 19, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, H.M. The role of manganese superoxide dismutase in inflammation defense. Enzyme Res. 2011, 2011, 387176. [Google Scholar] [CrossRef] [Green Version]
- O’Neal, S.L.; Zheng, W. Manganese toxicity upon overexposure: A decade in review. Curr. Environ. Heal. Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.J. Manganese and birth outcome. Nutr. Rev. 2009, 67, 416–420. [Google Scholar] [CrossRef]
- Chung, S.E.; Cheong, H.-K.; Ha, E.-H.; Kim, B.-N.; Ha, M.; Kim, Y.; Hong, Y.-C.; Park, H.; Oh, S.-Y. Maternal blood manganese and early neurodevelopment: The Mothers and children’s Environmental Health (MOCEH) Study. Environ. Health Perspect. 2015, 123, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Eum, J.H.; Cheong, H.K.; Ha, E.H.; Ha, M.; Kim, Y.; Hong, Y.C.; Park, H.; Chang, N. Maternal blood manganese level and birth weight: A MOCEH birth cohort study. Environ. Health 2014, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Vigeh, M.; Yokoyama, K.; Ohtani, K.; Shahbazi, F.; Matsukawa, T. Increase in blood manganese induces gestational hypertension during pregnancy. Hypertens. Pregnancy 2013, 32, 214–224. [Google Scholar] [CrossRef]
- Ashley-Martin, J.; Dodds, L.; Arbuckle, T.E.; Ettinger, A.S.; Shapiro, G.D.; Fisher, M.; Monnier, P.; Morisset, A.S.; Fraser, W.D.; Bouchard, M.F. Maternal and cord blood manganese (Mn) levels and birth weight: The MIREC birth cohort study. Int. J. Hyg. Environ. Health 2018, 221, 876–882. [Google Scholar] [CrossRef]
- Black, R.E. Micronutrients in pregnancy. Br. J. Nutr. 2001, 85, 193–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Government of Pakistan & UNICEF National Nutrition Survey 2018: Key Finding Report. Available online: https://www.unicef.org/pakistan/media/1871/file/KeyFindings—NationalNutritionSurvey2018.pdf (accessed on 23 November 2019).
- Iqbal, S.; Rust, P.; Weitensfelder, L.; Ali, I.; Kundi, M.; Moshammer, H.; Ekmekcioglu, C. Iron and iodine status in pregnant women from a developing country and its relation to pregnancy outcomes. Int. J. Environ. Res. Public Health 2019, 16, 4414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesketh, K.R.; Evenson, K.R. Prevalence of U.S. Pregnant Women Meeting 2015 ACOG Physical Activity Guidelines. Am. J. Prev. Med. 2016, 51, e87–e89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haftenberger, M.; Heuer, T.; Heidemann, C.; Kube, F.; Krems, C.; Mensink, G.B.M. Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr. J. 2010, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiserud, T.; Piaggio, G.; Carroli, G.; Widmer, M.; Carvalho, J.; Neerup Jensen, L.; Giordano, D.; Cecatti, J.G.; Abdel Aleem, H.; Talegawkar, S.A.; et al. The world health organization fetal growth charts: A multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLoS Med. 2017, 14, e1002220. [Google Scholar]
- Luke, B. Nutrition and multiple gestation. Semin. Perinatol. 2005, 29, 349–354. [Google Scholar] [CrossRef]
- Choi, R.; Sun, J.; Yoo, H.; Kim, S.; Cho, Y.Y.; Kim, H.J.; Kim, S.W.; Chung, J.H.; Oh, S.Y.; Lee, S.Y. A prospective study of serum trace elements in healthy Korean pregnant women. Nutrients 2016, 8, 749. [Google Scholar] [CrossRef] [Green Version]
- Aydemir, F.; Çavdar, A.O.; Söylemez, F.; Cengiz, B. Plasma zinc levels during pregnancy and its relationship to maternal and neonatal characteristics a longitudinal study. Biol. Trace Elem. Res. 2003, 91, 193–202. [Google Scholar] [CrossRef]
- Kassu, A.; Yabutani, T.; Mulu, A.; Tessema, B.; Ota, F. Serum zinc, copper, selenium, calcium, and magnesium levels in pregnant and non-pregnant women in Gondar, Northwest Ethiopia. Biol. Trace Elem. Res. 2008, 122, 97–106. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Shi, H.; Shen, C.; Zhou, W.; Dai, Q.; Jiang, Y. Blood copper, zinc, calcium, and magnesium levels during different duration of pregnancy in Chinese. Biol. Trace Elem. Res. 2010, 135, 31–37. [Google Scholar] [CrossRef]
- Kilinc, M.; Coskun, A.; Bilge, F.; Imrek, S.S.; Atli, Y. Serum reference levels of selenium, zinc and copper in healthy pregnant women at a prenatal screening program in southeastern mediterranean region of Turkey. J. Trace Elem. Med. Biol. 2010, 24, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Freeland-Graves, J.H.; Sanjeevi, N.; Lee, J.J. Global perspectives on trace element requirements. J. Trace Elem. Med. Biol. 2015, 31, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Tinggi, U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008, 13, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Lonnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1344S–1349S. [Google Scholar] [CrossRef]
- Shah, D.; Sachdev, H.P.S. Zinc deficiency in pregnancy and fetal outcome. Nutr. Rev. 2006, 64, 15–30. [Google Scholar] [CrossRef]
- King, J.C. Determinants of maternal zinc status during pregnancy. Am. J. Clin. Nutr. 2000, 71, 1334S–1343S. [Google Scholar] [CrossRef] [Green Version]
- Roman, H.; Robillard, P.Y.; Verspyck, E.; Hulsey, T.C.; Marpeau, L.; Barau, G. Obstetric and neonatal outcomes in grand multiparity. Obstet. Gynecol. 2004, 103, 1294–1299. [Google Scholar] [CrossRef]
- Joshi, N.P.; Kulkarni, S.R.; Yajnik, C.S.; Joglekar, C.V.; Rao, S.; Coyaji, K.J.; Lubree, H.G.; Rege, S.S.; Fall, C.H.D. Increasing maternal parity predicts neonatal adiposity: Pune maternal nutrition study. Am. J. Obstet. Gynecol. 2005, 193, 783–789. [Google Scholar] [CrossRef]
- Tamura, T.; Goldenberg, R.L.; Johnston, K.E.; DuBard, M. Maternal plasma zinc concentrations and pregnancy outcome. Am. J. Clin. Nutr. 2000, 71, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Bogden, J.D.; Kemp, F.W.; Chen, X.; Stagnaro-Green, A.; Stein, T.P.; Scholl, T.O. Low-normal serum selenium early in human pregnancy predicts lower birth weight. Nutr. Res. 2006, 26, 497–502. [Google Scholar] [CrossRef]
- Martínez-Galiano, J.M.; Amezcua-Prieto, C.; Salcedo-Bellido, I.; González-Mata, G.; Bueno-Cavanillas, A.; Delgado-Rodríguez, M. Maternal dietary consumption of legumes, vegetables and fruit during pregnancy, does it protect against small for gestational age? BMC Pregnancy Childbirth 2018, 18, 486. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P.; Bath, S.C.; Westaway, J.; Williams, P.; Mao, J.; Vanderlelie, J.J.; Perkins, A.V.; Redman, C.W.G. Selenium status in UK pregnant women and its relationship with hypertensive conditions of pregnancy. Br. J. Nutr. 2015, 113, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigeh, M.; Yokoyama, K.; Ramezanzadeh, F.; Dahaghin, M.; Fakhriazad, E.; Seyedaghamiri, Z.; Araki, S. Blood manganese concentrations and intrauterine growth restriction. Reprod. Toxicol. 2008, 25, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Vigeh, M.; Yokoyama, K.; Ramezanzadeh, F.; Dahaghin, M.; Sakai, T.; Morita, Y.; Kitamura, F.; Sato, H.; Kobayashi, Y. Lead and other trace metals in preeclampsia: A case-control study in Tehran, Iran. Environ. Res. 2006, 100, 268–275. [Google Scholar] [CrossRef]
- Martinez-Finley, E.J.; Gavin, C.E.; Aschner, M.; Gunter, T.E. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic. Biol. Med. 2013, 62, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.S.; Liao, K.W.; Chang, C.H.; Chien, L.C.; Mao, I.F.; Tsai, Y.A.; Chen, M.L. The critical fetal stage for maternal manganese exposure. Environ. Res. 2015, 137, 215–221. [Google Scholar] [CrossRef]
- Oulhote, Y.; Mergler, D.; Bouchard, M.F. Sex-and age-differences in blood manganese levels in the U.S. general population: National health and nutrition examination survey 2011–2012. Environ. Heal. 2014, 13, 87. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, C.; López-Jurado, M.; Aranda, P.; Llopis, J. Plasma levels of copper, manganese and selenium in an adult population in southern Spain: Influence of age, obesity and lifestyle factors. Sci. Total Environ. 2010, 408, 1014–1020. [Google Scholar] [CrossRef]
- Reddy, N.R. Occurrence, distribution, content, and dietary intake of phytate. In Food Phytates; Reddy, N.R., Sathe, S.K., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 25–51. ISBN 9781566768672. [Google Scholar]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. Landmark 2018, 23, 1655–1679. [Google Scholar] [CrossRef] [Green Version]
- Frisbie, S.H.; Ortega, R.; Maynard, D.M.; Sarkar, B. The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water. Environ. Health Perspect. 2002, 110, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO) WHO Guidelines for Drinking Water Quality. Available online: https://apps.who.int/iris/bitstream/handle/10665/42852/9241546387.pdf?sequence=1&isAllowed=y (accessed on 23 November 2019).
- Navarro-Alarcon, M.; Cabrera-Vique, C. Selenium in food and the human body: A review. Sci. Total Environ. 2008, 400, 115–141. [Google Scholar] [CrossRef] [PubMed]
- Combs, G.F. Selenium in global food systems. Br. J. Nutr. 2001, 85, 517–547. [Google Scholar] [CrossRef] [Green Version]
- Ugwuja, E.I.; Akubugwo, E.I.; Ibiam, U.A.; Obidoa, O. Maternal sociodemographic parameters: Impact on trace element status and pregnancy outcomes in Nigerian women. J. Health Popul. Nutr. 2011, 29, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Government of Pakistan & UNICEF National Nutrition Survey Pakistan. 2011. Available online: http://gilanifoundation.com/homepage/Free_Pub/HEALTH/National_Nutrition_Survey_of_Pakistan_2011.pdf (accessed on 23 July 2019).
- Blumfield, M.L.; Hure, A.J.; MacDonald-Wicks, L.; Smith, R.; Collins, C.E. Micronutrient intakes during pregnancy in developed countries:systematic review and meta-analysis. Nutr. Rev. 2013, 71, 118–132. [Google Scholar] [CrossRef]
Control Group | Pregnant Women | ||
---|---|---|---|
Characteristic | Category/Unit | n = 40 | n = 80 |
Age | Years | 25 ± 4 | 26 ± 4 |
Marital status | Married | 22 (55.0%) | 80 (100.0%) * |
Not married | 18 (45.0%) | 0 (0.0%) | |
Education | No education | 19 (47.5%) | 45 (56.3%) |
Primary or high school education | 21 (52.5%) | 35 (43.7%) | |
Occupation | Housewife | 22 (55.0%) | 78 (97.5%) * |
Working | 18 (45.0%) | 2 (2.5%) | |
Family type | Single family | 25 (62.5%) | 21 (26.3%) * |
Joint family | 15 (37.5%) | 59 (73.8%) | |
Children | Number | 1.7 ± 2.0 | 1.6 ± 2.1 |
Pregnancy complications | Yes | 0 (0.0%) | 26 (32.5%) N.A |
No | 0 (0.0%) | 54 (67.5%) | |
Previous miscarriages | Yes | 5 (12.5%) | 27 (33.8%) * |
Physical activity | Low | 18 (45.0%) | 14 (17.5%) * |
Moderate/high | 22 (55.0%) | 66 (82.5%) | |
Income | $/month | 599 ± 692 | 183 ± 157 * |
BMI a | kg/m2 | 25.6 ± 4.0 | 27.0 ± 2.9 * |
Trace Element | Control Group (Mean ± SD) b | Pregnant Group (Mean ± SD) b | 95% Confidence Interval of Difference | p-Value a |
---|---|---|---|---|
Selenium (µmol/L) | 2.76 ± 1.15 | 2.26 ± 1.09 | [0.05; 0.97] | 0.031 |
Zinc (µmol/L) | 29.54 ± 7.62 | 21.86 ± 7.21 | [4.63; 10.71] | <0.001 |
Manganese (log10 nmol/L) | 1.38 ± 0.09 | 1.40 ± 0.09 | [-0.05; 0.02] | 0.365 |
Trace Element | Primipara (Mean ± SD) b | Multipara (Mean ± SD) b | 95% Confidence Interval of Difference | p-Value a |
---|---|---|---|---|
Selenium (µmol/L) | 2.48 ± 1.18 | 2.25 ± 1.18 | [−0.33; 0.79] | 0.427 |
Zinc (µmol/L) | 21.61 ± 8.03 | 22.48 ± 8.03 | [−4.69; 2.95] | 0.656 |
Manganese (log10 nmol/L) | 1.43 ± 0.10 | 1.38 ± 0.10 | [0.01; 0.10] | 0.025 |
Odds Ratio | 95 % Confidence Interval | p-Value | |
---|---|---|---|
Selenium | |||
Maternal Complications | 1.006 | [0.605; 1.673] | 0.981 |
Child Complications | 0.728 | [0.351; 1.509] | 0.393 |
Zinc | |||
Maternal Complications | 0.921 | [0.842; 1.007] | 0.071 |
Child Complications | 0.997 | [0.902; 1.102] | 0.954 |
log10-Manganese c | |||
Maternal Complications | 3.175 | [1.631; 6.181] | 0.038 |
Child Complications | 1.420 | [−1.999; 4.820] | 0.413 |
Trace Element | Food Item | β-Coefficient | p-Value |
---|---|---|---|
Selenium | |||
Dairy Products | −0.057 | 0.025 | |
Zinc | |||
Fruits | −0.462 | 0.030 | |
Cold Drinks | 0.969 | 0.002 | |
Manganese (log10) | |||
Grains | 0.508 | 0.002 | |
Vegetables | −1.045 | 0.001 | |
Dairy Products | −0.638 | <0.001 | |
Sweets | 1.423 | 0.013 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, S.; Ali, I.; Rust, P.; Kundi, M.; Ekmekcioglu, C. Selenium, Zinc, and Manganese Status in Pregnant Women and Its Relation to Maternal and Child Complications. Nutrients 2020, 12, 725. https://doi.org/10.3390/nu12030725
Iqbal S, Ali I, Rust P, Kundi M, Ekmekcioglu C. Selenium, Zinc, and Manganese Status in Pregnant Women and Its Relation to Maternal and Child Complications. Nutrients. 2020; 12(3):725. https://doi.org/10.3390/nu12030725
Chicago/Turabian StyleIqbal, Sehar, Inayat Ali, Petra Rust, Michael Kundi, and Cem Ekmekcioglu. 2020. "Selenium, Zinc, and Manganese Status in Pregnant Women and Its Relation to Maternal and Child Complications" Nutrients 12, no. 3: 725. https://doi.org/10.3390/nu12030725
APA StyleIqbal, S., Ali, I., Rust, P., Kundi, M., & Ekmekcioglu, C. (2020). Selenium, Zinc, and Manganese Status in Pregnant Women and Its Relation to Maternal and Child Complications. Nutrients, 12(3), 725. https://doi.org/10.3390/nu12030725