The Metabolic Syndrome: Emerging Novel Insights Regarding the Relationship between the Homeostasis Model Assessment of Insulin Resistance and other Key Predictive Markers in Young Adults of Western Algeria
Abstract
:1. Introduction
2. Subjects, Materials and Methods
2.1. Study Location
2.2. Study Population
2.3. Blood Pressure Measurement and Hypertension Definition
2.4. Anthropometric Measurements
2.5. Blood Sampling
2.6. Plasma Lipids and Glucose
2.7. Plasma Insulin, C-Peptide, Homeostasis Model Assessment of Insulin Resistance and the Insulinogenic Index Calculations
2.8. Plasma Adipokines and Other Markers
2.9. Ethical Consideration
2.10. Data management and Statistical Analysis
3. Results
3.1. Glycemia as a First Marker of the Metabolic Syndrome in Young Adults of Western Algeria
3.2. Relevance of the Insulinogenic Index to the Insulin Secretory Response of the Endocrine Pancreas to Glucose in the Metabolic Syndrome
3.3. Correlation between the Homeostasis Model Assessment and Twelve other Selected Variables of the Metabolic Syndrome
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aboul-Enein, B.H.; Bernstein, J.; Neary, A.C. Dietary transition and obesity in selected Arabic-speaking countries: A review of the current evidence. East. Mediterr. Health J. 2017, 22, 763–770. [Google Scholar] [CrossRef]
- Belahsen, R. Nutrition transition and food sustainability. Proc. Nutr. Soc. 2014, 73, 385–388. [Google Scholar] [CrossRef] [Green Version]
- Rahim, H.F.A.; Sibai, A.; Khader, Y.; Hwalla, N.; Fadhil, I.; Alsiyabi, H.; Mataria, A.; Mendis, S.; Mokdad, A.H.; Husseini, A. Non-communicable diseases in the Arab world. Lancet 2014, 383, 356–367. [Google Scholar] [CrossRef]
- Diaf, M.; Khaled, M.B. Overview on main nutrition-related diseases in three countries from North Africa. N. Afr. J. Food Nutr. Res 2017, 1, 19–27. [Google Scholar]
- Toselli, S.; Gualdi-Russo, E.; Boulos, D.N.; Anwar, W.A.; Lakhoua, C.; Jaouadi, I.; Khyatti, M.; Hemminki, K. Prevalence of overweight and obesity in adults from North Africa. Eur. J. Public Health 2014, 24, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamri, L.; Gripiotis, E.; Ferrario, A. Diabetes in Algeria and challenges for health policy: A literature review of prevalence, cost, management and outcomes of diabetes and its complications. Glob. Health 2014, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, B.F.; Sacramento, J.F.; Ribeiro, M.J.; Prego, C.S.; Correia, M.C.; Coelho, J.C.; Cunha-Guimaraes, J.P.; Rodrigues, T.; Martins, I.B.; Guarino, M.P. Evaluating the Impact of Different Hypercaloric Diets on Weight Gain, Insulin Resistance, Glucose Intolerance, and its Comorbidities in Rats. Nutrients 2019, 11, 1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julibert, A.; Bibiloni, M.D.M.; Bouzas, C.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Zomeño, M.D.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M. Total and Subtypes of Dietary Fat Intake and Its Association with Components of the Metabolic Syndrome in a Mediterranean Population at High Cardiovascular Risk. Nutrients 2019, 11, 1493. [Google Scholar] [CrossRef] [Green Version]
- Vidal, J.; Jiménez, A. Definition, History, and Management of the Metabolic Syndrome and Management Gaps. In Metabolic Syndrome and Diabetes; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–17. [Google Scholar]
- Engin, A. The definition and prevalence of obesity and metabolic syndrome. In Obesity and Lipotoxicity; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–17. [Google Scholar]
- Robberecht, H.; Hermans, N. Biomarkers of metabolic syndrome: Biochemical background and clinical significance. Metab. Syndr. Relat. Disord. 2016, 14, 47–93. [Google Scholar] [CrossRef]
- Srikanthan, K.; Feyh, A.; Visweshwar, H.; Shapiro, J.I.; Sodhi, K. Systematic review of metabolic syndrome biomarkers: A panel for early detection, management, and risk stratification in the West Virginian population. Int. J. Med Sci. 2016, 13, 25. [Google Scholar] [CrossRef] [Green Version]
- Martin, K.A.; Mani, M.V.; Mani, A. New targets to treat obesity and the metabolic syndrome. Eur. J. Pharmacol. 2015, 763, 64–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babikr, W.G.; Alshahrani, A.S.A.; Hamid, H.G.M.; Abdelraheem, A.H.M.K.; Shalayel, M.H.F. The correlation of HbA1c with body mass index and HDL-cholesterol in type 2 diabetic patients. Biomed Res 2016, 27, 1280–1283. [Google Scholar]
- Bae, E.; Cha, R.-H.; Kim, Y.C.; An, J.N.; Kim, D.K.; Yoo, K.D.; Lee, S.M.; Kim, M.-H.; Park, J.T.; Kang, S.-W. Circulating TNF receptors predict cardiovascular disease in patients with chronic kidney disease. Medicine 2017, 96, e6666. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.J.; Choi, M.-S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [Green Version]
- Danesh, J.; Wheeler, J.G.; Hirschfield, G.M.; Eda, S.; Eiriksdottir, G.; Rumley, A.; Lowe, G.D.; Pepys, M.B.; Gudnason, V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 2004, 350, 1387–1397. [Google Scholar] [CrossRef]
- Indulekha, K.; Surendar, J.; Anjana, R.M.; Geetha, L.; Gokulakrishnan, K.; Pradeepa, R.; Mohan, V. Metabolic obesity, adipocytokines, and inflammatory markers in Asian Indians—CURES-124. Diabetes Technol. Ther. 2015, 17, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Lehr, S.; Hartwig, S.; Sell, H. Adipokines: A treasure trove for the discovery of biomarkers for metabolic disorders. Proteom. Clin. Appl. 2012, 6, 91–101. [Google Scholar] [CrossRef]
- de Abreu, V.G.; de Moraes Martins, C.J.; de Oliveira, P.A.C.; Francischetti, E.A. High-molecular weight adiponectin/HOMA-IR ratio as a biomarker of metabolic syndrome in urban multiethnic Brazilian subjects. PLoS ONE 2017, 12, e0180947. [Google Scholar] [CrossRef]
- den Biggelaar, L.J.C.J.; Sep, S.J.S.; Eussen, S.J.P.M.; Mari, A.; Ferrannini, E.; van Greevenbroek, M.M.J.; van der Kallen, C.J.H.; Schalkwijk, C.G.; Stehouwer, C.D.A.; Dagnelie, P.C. Discriminatory ability of simple OGTT-based beta cell function indices for prediction of prediabetes and type 2 diabetes: The CODAM study. Diabetologia 2017, 60, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Woo, Y.C.; Cheung, B.M.Y.; Yeung, C.Y.; Lee, C.H.; Hui, E.Y.L.; Fong, C.H.Y.; Tso, A.W.K.; Tam, S.; Lam, K.S.L. Cardiometabolic risk profile of participants with prediabetes diagnosed by HbA1c criteria in an urban Hong Kong Chinese population over 40 years of age. Diabet. Med. 2015, 32, 1207–1211. [Google Scholar] [CrossRef]
- Drucker, D.J. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 2016, 24, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka-Tojo, M.; Tojo, T.; Takahira, N.; Matsunaga, A.; Aoyama, N.; Masuda, T.; Izumi, T. Elevated circulating levels of an incretin hormone, glucagon-like peptide-1, are associated with metabolic components in high-risk patients with cardiovascular disease. Cardiovasc. Diabetol. 2010, 9, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belhayara, M.I.; Mellouk, Z.; Hamdaoui, M.S.; Bachaoui, M.; Kheroua, O.; Malaisse, W.J. Relationship between the insulin resistance and circulating predictive biochemical markers in metabolic syndrome among young adults in western Algeria. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 504–509. [Google Scholar] [CrossRef] [PubMed]
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Circulation 2002, 106, 3143–3421.
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Mellouk, Z.; Zhang, Y.; Bulur, N.; Louchami, K.; Malaisse, W.J.; Ait Yahia, D.; Sener, A. The metabolic syndrome of fructose-fed rats: Effects of long-chain polyunsaturated $ømega$3 and $ømega$6 fatty acids. III. Secretory behaviour of isolated pancreatic islets. Int. J. Mol. Med. 2012, 29, 285–290. [Google Scholar]
- Mellouk, Z.; Hachimi Idrissi, T.; Louchami, K.; Hupkens, E.; Malaisse, W.J.; Ait Yahia, D.; Sener, A. The metabolic syndrome of fructose-fed rats: Effects of long-chain polyunsaturated $ømega$3 and $ømega$6 fatty acids. I. Intraperitoneal glucose tolerance test. Int. J. Mol. Med. 2011, 28, 1087–1092. [Google Scholar]
- Agardh, C.-D.; Ahrén, B. Switching from high-fat to low-fat diet normalizes glucose metabolism and improves glucose-stimulated insulin secretion and insulin sensitivity but not body weight in C57BL/6J mice. Pancreas 2012, 41, 253–257. [Google Scholar] [CrossRef]
- Cancelas, J.; Prieto, P.G.; Villanueva-Peñacarrillo, M.L.; Valverde, I.; Malaisse, W.J. Effects of an olive oil-enriched diet on glucagon-like peptide 1 release and intestinal content, plasma insulin concentration, glucose tolerance and pancreatic insulin content in an animal model of type 2 diabetes. Horm. Metab. Res. 2006, 38, 98–105. [Google Scholar] [CrossRef]
- Chia, C.W.; Egan, J.M.; Ferrucci, L. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ. Res. 2018, 123, 886–904. [Google Scholar] [CrossRef] [PubMed]
- Laakso, M.; Kuusisto, J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat. Rev. Endocrinol. 2014, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Malaisse, W.J. Insulin release: The receptor hypothesis. Diabetologia 2014, 57, 1287–1290. [Google Scholar] [CrossRef]
- Fu, Z.; R Gilbert, E.; Liu, D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 2013, 9, 25–53. [Google Scholar] [CrossRef]
- Malin, S.K.; Finnegan, S.; Fealy, C.E.; Filion, J.; Rocco, M.B.; Kirwan, J.P. β-Cell dysfunction is associated with metabolic syndrome severity in adults. Metab. Syndr. Relat. Disord. 2014, 12, 79–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cubeddu, L.X.; Hoffmann, I.S. Impact of traits of metabolic syndrome on β-cell function and insulin resistance in normal fasting, normal glucose tolerant subjects. Metab. Syndr. Relat. Disord. 2012, 10, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.K.; Dutta, M.K.; Mahalle, N. Study of beta-cell function (by HOMA model) in metabolic syndrome. Indian J. Endocrinol. Metab. 2011, 15, S44. [Google Scholar] [CrossRef]
- Baez-Duarte, B.G.; Sánchez-Guillén, M.D.C.; Perez-Fuentes, R.; Zamora-Ginez, I.; Leon-Chavez, B.A.; Revilla-Monsalve, C.; Islas-Andrade, S. β-cell function is associated with metabolic syndrome in Mexican subjects. DiabetesMetab. Syndr. Obes. Targets Ther. 2010, 3, 301. [Google Scholar]
- Yoon, H.; Yoon, Y.S.; Kim, S.G.; Oh, H.J.; Choi, C.W.; Seong, J.M.; Park, J. Relationship between metabolic syndrome and metabolic syndrome score with β-cell function by gender in non-diabetic Korean populations. Endocr. Res. 2019, 44, 71–80. [Google Scholar] [CrossRef]
- Chen, C.; Cohrs, C.M.; Stertmann, J.; Bozsak, R.; Speier, S. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol. Metab. 2017, 6, 943–957. [Google Scholar] [CrossRef]
- Henquin, J.-C.; Dufrane, D.; Kerr-Conte, J.; Nenquin, M. Dynamics of glucose-induced insulin secretion in normal human islets. Am. J. Physiol. -Endocrinol. Metab. 2015, 309, E640–E650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFronzo, R.A.; Abdul-Ghani, M.A. Preservation of β-cell function: The key to diabetes prevention. J. Clin. Endocrinol. Metab. 2011, 96, 2354–2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meigs, J.B.; Wilson, P.W.; Fox, C.S.; Vasan, R.S.; Nathan, D.M.; Sullivan, L.M.; D’Agostino, R.B. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J. Clin. Endocrinol. Metab. 2006, 91, 2906–2912. [Google Scholar] [CrossRef] [PubMed]
- Vakilian, M.; Tahamtani, Y.; Ghaedi, K. A review on insulin trafficking and exocytosis. Gene 2019, 706, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Kojima, I.; Medina, J.; Nakagawa, Y. Role of the glucose-sensing receptor in insulin secretion. Diabetes Obes. Metab. 2017, 19, 54–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaisse, W.J. Role of glycogen metabolism in pancreatic islet beta cell function. Diabetologia 2016, 59, 2489–2491. [Google Scholar] [CrossRef] [Green Version]
- Ashcroft, F.M.; Rohm, M.; Clark, A.; Brereton, M.F. Is type 2 diabetes a glycogen storage disease of pancreatic β cells? Cell Metab. 2017, 26, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Nagy, L.; Márton, J.; Vida, A.; Kis, G.; Bokor, É.; Kun, S.; Gönczi, M.; Docsa, T.; Tóth, A.; Antal, M. Glycogen phosphorylase inhibition improves beta cell function. Br. J. Pharmacol. 2018, 175, 301–319. [Google Scholar] [CrossRef] [Green Version]
- Malaisse, W.J.; Marynissen, G.; Sener, A. Possible role of glycogen accumulation in B-cell glucotoxicity. Metabolism 1992, 41, 814–819. [Google Scholar] [CrossRef]
- Malaisse, W.J. The anomeric malaise: A manifestation of B-cell glucotoxicity. Horm. Metab. Res. 1991, 23, 307–311. [Google Scholar] [CrossRef]
- Owei, I.; Umekwe, N.; Provo, C.; Wan, J.; Dagogo-Jack, S. Insulin-sensitive and insulin-resistant obese and non-obese phenotypes: Role in prediction of incident pre-diabetes in a longitudinal biracial cohort. BMJ Open Diabetes Res. Care 2017, 5, e000415. [Google Scholar] [CrossRef] [PubMed]
- Iwani, N.A.K.Z.; Jalaludin, M.Y.; Zin, R.M.W.M.; Fuziah, M.Z.; Hong, J.Y.H.; Abqariyah, Y.; Mokhtar, A.H.; Nazaimoon, W.M.W. Triglyceride to HDL-C ratio is associated with insulin resistance in overweight and obese children. Sci. Rep. 2017, 7, 40055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saravia, G.; Civeira, F.; Hurtado-Roca, Y.; Andres, E.; Leon, M.; Pocovi, M.; Ordovas, J.; Guallar, E.; Fernandez-Ortiz, A.; Casasnovas, J.A. Glycated hemoglobin, fasting insulin and the metabolic syndrome in males. cross-sectional analyses of the Aragon Workers’ Health Study baseline. PLoS ONE 2015, 10, e0132244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farid, S.M. Study of Correlation Between Anthropometric Parameters (BMI, WC, WHR) and Atherogenic Index of Plasma (AIP) in Type 2 Diabetics in Jeddah, Saudi Arabia. GJBB. 2018, 7, 60–69. [Google Scholar]
- Zadhoush, F.; Sadeghi, M.; Pourfarzam, M. Biochemical changes in blood of type 2 diabetes with and without metabolic syndrome and their association with metabolic syndrome components. J. Res. Med Sci. 2015, 20, 763. [Google Scholar]
- Naveen, L.; Santoshi, M.; Madhav, D.; Sri Rama, A.G.; Mahesh, V. A study of association of insulin resistance and cardio metabolic risk factors in an adult population with type 2 diabetes mellitus, Inter. J. Appl. Med. Sci. 2014, 4, 168–172. [Google Scholar]
- Raja Reddy, R.; Jayarama, N.; Shashidhar, K.N. Association among HbA1c and lipid profile in Kolar type 2 diabetic population. J. Pharm. Sci. Innov. 2013, 2, 10–12. [Google Scholar] [CrossRef]
- Bodhe, C.; Jankar, D.; Bhutada, T.; Patwardhan, M.; Patwardhan, V. HbA1c: Predictor of dyslipidemia and atherogenicity in diabetes mellitus. Int. J. Basic Med Sci. Pharm. 2012, 2, 25–27. [Google Scholar]
- Bastenie, P.A.; Conard, V.; Franckson, J.; Bellens, R.; Malaisse, W. Exploration des états prédiabétiques. Bull. De L’académie R. De Médecine De Belg. 1963, 7, 185–219. [Google Scholar]
Parameter | Control Group | Non-Diabetic Group | Diabetic Group |
---|---|---|---|
Glycemia (mM) | 4.78 ± 0.11 (n = 20) | 6.02 ± 0.08 (n = 25) a* | 8.00 ± 0.09 (n = 75) b*,c* |
Insulinemia (µU/mL) | 11.05 ± 0.88 (n = 20) | 30.38 ± 0.37 (n = 25) a* | 32.33 ± 0.45 (n = 75) b*,c# |
C-peptide (ng/mL) | 1.44 ± 0.06 (n = 20) | 2.34 ± 0.07 (n = 25) a* | 2.94 ± 0.06 (n = 75) b*,c* |
HOMA-IR (mM µU | 53.5 ± 4.95 (n = 20) | 183.47 ± 4.05 (n = 25) a* | 260.22 ± 5.94 (n = 75) b*,c* |
HbA1C (%) | 5.29 ± 0.05 (n = 20) | 5.92 ± 0.05 (n = 25) a* | 6.80 ± 0.06 (n = 75) b*,c* |
Total cholesterol (g/L) | 1.60 ± 0.04 (n = 20) | 2.09 ± 0.01 (n = 25) a* | 2.03 ± 0.01 (n = 75) b*,c# |
HDL-C (g/l) | 0.57 ± 0.01 (n = 20) | 0.41 ± 0.01 (n = 25) a* | 0.43 ± 0.01 (n = 75) b* |
LDL-C (g/L) | 1.00 ± 0.04 (n = 20) | 1.26 ± 0.01 (n = 25) a* | 1.20 ± 0.01 (n = 75) b*,c# |
Triglycerides (g/L) | 1.06 ± 0.05 (n = 20) | 1.99 ± 0.03 (n = 25) a* | 1.99 ± 0.04 (n = 75) b* |
Leptin (ng/mL) | 7.11 ± 1.17 (n = 12) | 17.81 ± 1.58 (n = 11) a* | 17.99 ± 0.87 (n = 55) b* |
Adiponectin (µg) | 7.43 ± 0.69 (n = 12) | 3.92 ± 0.31 (n = 09) a* | 3.91 ± 0.17 (n = 53) b* |
Interleukin-6 (pg/mL) | 7.70 ± 0.73 (n = 14) | 12.57 ± 0.97 (n = 12) a* | 12.99 ± 0.61 (n = 51) b* |
TNF-α (pg) | 14.90 ± 2.27 (n = 14) | 25.31 ± 2.07 (n = 11) a* | 19.67 ± 1.22 (n = 55) b*,c# |
Hs-CRP (mg/L) | 1.52 ± 0.10 (n = 20) | 4.80 ± 0.67 (n = 10) a* | 5.23 ± 0.33 (n = 40) b* |
GLP-1 (pmol/L) | 24.52 ± 0.55 (n = 20) | 13.09 ± 0.72 (n = 14) a* | 12.64 ± 0.55 (n = 48) b* |
BMI | Insulinemia | HOMA-IR Index | |||
Non-diabetic | Diabetic | Non-diabetic | Diabetic | Non-diabetic | Diabetic |
+0.2849 (p = 0.16) | +0.5558 (p < 0.01) | +0.0914 (p = 0.42) | +0.5456 (p <0.01) | +0.8281 (p < 0.01) | +0.8643 (p < 0.01) |
C-Peptide | Glycated hemoglobin (HbA1C) | Total cholesterol | |||
Non-diabetic | Diabetic | Non-diabetic | Diabetic | Non-diabetic | Diabetic |
+0.6314 (p < 0.01) | +0.6270 (p < 0.01) | +0.6700 (p < 0.01) | +0.6857 (p < 0.01) | −0.3422 (p = 0.09) | +0.2304 (p < 0.05) |
HDL-cholesterol | LDL-cholesterol | Triglycerides to HDL-C ratio | |||
Non-diabetic | Diabetic | Non-diabetic | Diabetic | Non-diabetic | Diabetic |
+0.2483 (p = 0.23) | −0.2930 (p < 0.01) | −0.4257 (p < 0.05) | +0.1147 (p = 0.32) | +0.2928 (p = 0.15)b | +0.4309 (p < 0.01)a |
Leptin | Adiponectin | Interleukin-6 | |||
Non-diabetic | Diabetic | Non-diabetic | Diabetic | Non-diabetic | Diabetic |
−0.3901 (p = 0.21)a | −0.0138 (p = 0.92)b | −0.1971 (p = 0.56)c | −0.3639 (p < 0.01)d | −0.1398 (p = 0.66)a | +0.3519 (p < 0.01)d |
TNF-α | hs-CRP | GLP-1 | |||
Non-diabetic | Diabetic | Non-diabetic | Diabetic | Non-diabetic | Diabetic |
−0.7927 (p < 0.01)e | −0.3393 (p < 0.01)f | -0.3317 (p = 0.31)c | +0.1841 (p = 0.26)g | −0.1484 (p = 0.61)e | −0.2618 (p < 0.05)h |
Subjects | Glycemia | Insulinemia | Insulin/Glucose Ratio |
---|---|---|---|
(mM) | (U/mL) | (µU per ml/mM) | |
Non-obese control subjects (n = 20) | 4.78 ± 0.11 | 11.05 ± 0.88 | 2.31 ± 0.17 |
Obese control subjects (n = 20) | 5.73 ± 0.07 | 28.18 ± 1.08 | 4.91 ± 0.16 |
Male MetS patients (n = 60) | 7.56 ± 0.15 | 30.97 ± 0.49 | 4.16 ± 0.08 |
Female MetS patients (n = 40) | 7.42 ± 0.17 | 33.14 ± 0.54 | 4.53 ± 0.09 |
Non-diabetic MetS patients (n = 25) | 6.02 ± 0.08 | 30.38 ± 0.37 | 5.19 ± 0.12 |
Diabetic MetS patients (n = 75) | 8.00 ± 0.09 | 32.33 ± 0.45 | 4.05 ± 0.07 |
Overweight MetS patients (n = 20) | 6.82 ± 0.23 | 28.27 ± 0.38 | 4.26 ± 0.17 |
Obese MetS patients (n = 80) | 7.68 ± 0.12 | 32.73 ± 0.40 | 4.32 ± 0.12 |
BMI | C-Peptide | HOMA-IR Index | |||
Non-diabetic | Diabetic | Non-diabetic | Diabetic | Non-diabetic | Diabetic |
+0.0853 (p = 0.68) | +0.3856 (p < 0.01) | −0.3426 (p = 0.09) | +0.2859 (p < 0.01) | −0.1173 (p < 0.57) | +0.2699 (p < 0.01) |
Glycated hemoglobin (HbA1C) | Total cholesterol | HDL cholesterol | |||
Non-diabetic | Diabetic | Non-diabetic | Diabetic | Non-diabetic | Diabetic |
+0.5669 (p < 0.01) | +0.1765 (p = 0.12) | +0.2139 (p = 0.30) | +0.2250 (p < 0.05) | +0.1897 (p = 0.36) | +0.0866 (p = 0.46) |
LDL cholesterol | Triglycerides | Leptin | |||
Non-diabetic | Diabetic | Non-diabetic | Diabetic | Non-diabetic | Diabetic |
+0.1786 (p = 0.39) | +0.0626 (p = 0.59) | +0.0127 (p = 0.95) | +0.2155 (p < 0.05) | +0.0666 (p = 0.83)a | +0.3781 (p < 0.01)b |
Adiponectin | Interleukin-6 | TNF-α | |||
Non-diabetic | Diabetic | Non-diabetic | Diabetic | Non-diabetic | Diabetic |
−0.141+ (p = 0.67)c | −0.0563 (p = 0.69)d | +0.2712 (p = 0.39)a | +0.2747 (p < 0.05)d | +0.5941 (p < 0.05)f | +0.0426 (p = 0.76)e |
hs-CRP | GLP-1 | ||||
Non-diabetic | Diabetic | Non-diabetic | Diabetic | ||
+0.3484 (p = 0.29)c | +0.6560 (p < 0.01)g | +0.2304 (p = 0.42)f | −0.4838 (p < 0.01)h |
Selected Variable | Sex | Correlation Index | p-Value |
---|---|---|---|
HbA1C HbA1C | Female | +0.8818 | < 0.01 |
Male | +0.7974 | < 0.01 | |
BMI | Male | +0.7077 | < 0.01 |
BMI | Female | +0.7045 | < 0.01 |
Leptin | Female | +0.6395 | < 0.01 |
hs-CRP | Male | +0.5782 | < 0.01 |
Interleukin-6 | Male | +0.5431 | < 0.01 |
Triglycerides | Male | +0.4850 | < 0.01 |
Triglycerides | Female | +0.4342 | < 0.01 |
hs-CRP | Female | +0.3989 | = 0.08 |
TNF-α | Male | +0.2810 | = 0.09 |
Interleukin-6 | Female | +0.2199 | = 0.27 |
Total cholesterol | Male | +0.1867 | = 0.15 |
Total cholesterol | Female | −0.0205 | = 0.90 |
LDL-cholesterol | Male | −0.0298 | = 0.82 |
LDL-cholesterol | Female | −0.0620 | = 0.70 |
GLP-1 | Male | −0.1443 | = 0.40 |
Leptin | Male | −0.2234 | = 0.17 |
HDL-cholesterol | Female | −0.2448 | = 0.13 |
Adiponectin | Female | −0.2552 | = 0.22 |
TNF-α | Female | −0.2601 | = 0.19 |
HDL-cholesterol | Male | −0.3262 | = 0.01 |
Adiponectin | Male | −0.5088 | < 0.01 |
GLP-1 | Female | −0.7568 | < 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belhayara, M.I.; Mellouk, Z.; Hamdaoui, M.S.; Bachaoui, M.; Kheroua, O.; Malaisse, W.J. The Metabolic Syndrome: Emerging Novel Insights Regarding the Relationship between the Homeostasis Model Assessment of Insulin Resistance and other Key Predictive Markers in Young Adults of Western Algeria. Nutrients 2020, 12, 727. https://doi.org/10.3390/nu12030727
Belhayara MI, Mellouk Z, Hamdaoui MS, Bachaoui M, Kheroua O, Malaisse WJ. The Metabolic Syndrome: Emerging Novel Insights Regarding the Relationship between the Homeostasis Model Assessment of Insulin Resistance and other Key Predictive Markers in Young Adults of Western Algeria. Nutrients. 2020; 12(3):727. https://doi.org/10.3390/nu12030727
Chicago/Turabian StyleBelhayara, Mohammed Ilyes, Zoheir Mellouk, Mohammed Seddik Hamdaoui, Malika Bachaoui, Omar Kheroua, and Willy J. Malaisse. 2020. "The Metabolic Syndrome: Emerging Novel Insights Regarding the Relationship between the Homeostasis Model Assessment of Insulin Resistance and other Key Predictive Markers in Young Adults of Western Algeria" Nutrients 12, no. 3: 727. https://doi.org/10.3390/nu12030727
APA StyleBelhayara, M. I., Mellouk, Z., Hamdaoui, M. S., Bachaoui, M., Kheroua, O., & Malaisse, W. J. (2020). The Metabolic Syndrome: Emerging Novel Insights Regarding the Relationship between the Homeostasis Model Assessment of Insulin Resistance and other Key Predictive Markers in Young Adults of Western Algeria. Nutrients, 12(3), 727. https://doi.org/10.3390/nu12030727