Changes in Faecal Short-Chain Fatty Acids after Weight-Loss Interventions in Subjects with Morbid Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Interventions
2.4. Variables
2.5. Statistics
2.6. Ethics
3. Results
3.1. Subjects
3.2. Short-Chain Fatty Acids
3.3. Nutrients, Blood Tests, Type of Surgery and Faecal Microbiota Composition
3.4. Associations between SCFA Levels and Other Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Verbeke, K.A.; Boobis, A.R.; Chiodini, A.; Edwards, C.A.; Franck, A.; Kleerebezem, M.; Nauta, A.; Raes, J.; Van Tol, E.A.; Tuohy, K.M. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr. Res. Rev. 2015, 28, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Korpela, K. Diet, Microbiota, and Metabolic Health: Trade-Off Between Saccharolytic and Proteolytic Fermentation. Annu. Rev. Food Sci. Technol. 2018, 9, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Bouter, K.E.; Van Raalte, D.H.; Groen, A.K.; Nieuwdorp, M. Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology 2017, 152, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Yao, Y.; Ju, S.Y. Short Chain Fatty Acids and Fecal Microbiota Abundance in Humans with Obesity: A Systematic Review and Meta-Analysis. Nutrients 2019, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, N.R.F.; Zaparolli, M.R.; Cruz, M.R.R.; Schieferdecker, M.E.M.; Campos, A.C.L. Postoperative Changes in Intestinal Microbiota and Use of Probiotics in Roux-En-Y Gastric Bypass and Sleeve Vertical Gastrectomy: An Integrative Review. Arq. Bras. Cir. Dig. 2018, 31, e1400. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Backhed, F.; Mithieux, G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Vinolo, M.A.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, W.R.; Gratz, S.W.; Duncan, S.H.; Holtrop, G.; Ince, J.; Scobbie, L.; Duncan, G.; Johnstone, A.M.; Lobley, G.E.; Wallace, R.J.; et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 2011, 93, 1062–1072. [Google Scholar] [CrossRef]
- Oliphant, K.; Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome 2019, 7, 91. [Google Scholar] [CrossRef]
- Damms-Machado, A.; Mitra, S.; Schollenberger, A.E.; Kramer, K.M.; Meile, T.; Konigsrainer, A.; Huson, D.H.; Bischoff, S.C. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed. Res. Int. 2015, 2015, 806248. [Google Scholar] [CrossRef]
- Sowah, S.A.; Riedl, L.; Damms-Machado, A.; Johnson, T.S.; Schubel, R.; Graf, M.; Kartal, E.; Zeller, G.; Schwingshackl, L.; Stangl, G.I.; et al. Effects of Weight-Loss Interventions on Short-Chain Fatty Acid Concentrations in Blood and Feces of Adults: A Systematic Review. Adv. Nutr. 2019, 10, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Tremaroli, V.; Karlsson, F.; Werling, M.; Stahlman, M.; Kovatcheva-Datchary, P.; Olbers, T.; Fandriks, L.; Le Roux, C.W.; Nielsen, J.; Backhed, F. Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metab. 2015, 22, 228–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aron-Wisnewsky, J.; Prifti, E.; Belda, E.; Ichou, F.; Kayser, B.D.; Dao, M.C.; Verger, E.O.; Hedjazi, L.; Bouillot, J.L.; Chevallier, J.M.; et al. Major microbiota dysbiosis in severe obesity: Fate after bariatric surgery. Gut 2019, 68, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Paganelli, F.L.; Luyer, M.; Hazelbag, C.M.; Uh, H.W.; Rogers, M.R.C.; Adriaans, D.; Berbers, R.M.; Hendrickx, A.P.A.; Viveen, M.C.; Groot, J.A.; et al. Roux-Y Gastric Bypass and Sleeve Gastrectomy directly change gut microbiota composition independent of surgery type. Sci. Rep. 2019, 9, 10979. [Google Scholar] [CrossRef] [PubMed]
- Aasbrenn, M.; Lydersen, S.; Farup, P.G. A Conservative Weight Loss Intervention Relieves Bowel Symptoms in Morbidly Obese Subjects with Irritable Bowel Syndrome: A Prospective Cohort Study. J. Obes. 2018, 2018, 3732753. [Google Scholar] [CrossRef] [Green Version]
- Schauer, P.R.; Ikramuddin, S.; Hamad, G.; Eid, G.M.; Mattar, S.; Cottam, D.; Ramanathan, R.; Gourash, W. Laparoscopic gastric bypass surgery: Current technique. J. Laparoendosc. Adv. Surg. Tech. A 2003, 13, 229–239. [Google Scholar] [CrossRef]
- Roa, P.E.; Kaidar-Person, O.; Pinto, D.; Cho, M.; Szomstein, S.; Rosenthal, R.J. Laparoscopic sleeve gastrectomy as treatment for morbid obesity: Technique and short-term outcome. Obes. Surg. 2006, 16, 1323–1326. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Lillegaard, I.T.; Karlsen, A.; Blomhoff, R.; Drevon, C.A.; Andersen, L.F. Evaluation of energy and dietary intake estimates from a food frequency questionnaire using independent energy expenditure measurement and weighed food records. Nutr. J. 2010, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- The Norwegian Food Composition Table. Available online: http://www.matvaretabellen.no/?language=en (accessed on 25 February 2020).
- Normobiosis or Dysbiosis? Available online: http://www.genetic-analysis.com/services (accessed on 25 February 2020).
- Casen, C.; Vebo, H.C.; Sekelja, M.; Hegge, F.T.; Karlsson, M.K.; Ciemniejewska, E.; Dzankovic, S.; Froyland, C.; Nestestog, R.; Engstrand, L.; et al. Deviations in human gut microbiota: A novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment. Pharmacol. Ther. 2015, 42, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Genetic Analysis AS. GAMap TM Dysbiosis Test. Available online: http://www.genetic-analysis.com/patent (accessed on 25 February 2020).
- Zijlstra, J.B.; Beukema, J.; Wolthers, B.G.; Byrne, B.M.; Groen, A.; Dankert, J. Pretreatment methods prior to gaschromatographic analysis of volatile fatty acids from faecal samples. Clin. Chim. Acta 1977, 78, 243–250. [Google Scholar] [CrossRef]
- Hoverstad, T.; Bjorneklett, A.; Midtvedt, T.; Fausa, O.; Bohmer, T. Short-chain fatty acids in the proximal gastrointestinal tract of healthy subjects. Scand. J. Gastroenterol. 1984, 19, 1053–1058. [Google Scholar] [PubMed]
- Patrone, V.; Vajana, E.; Minuti, A.; Callegari, M.L.; Federico, A.; Loguercio, C.; Dallio, M.; Tolone, S.; Docimo, L.; Morelli, L. Postoperative Changes in Fecal Bacterial Communities and Fermentation Products in Obese Patients Undergoing Bilio-Intestinal Bypass. Front. Microbiol. 2016, 7, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aasbrenn, M.; Farup, P.G.; Videm, V. Changes in C-reactive protein, neopterin and lactoferrin differ after conservative and surgical weight loss in individuals with morbid obesity. Sci. Rep. 2019, 9, 17695. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijova, E. Gut bacterial metabolites of indigestible polysaccharides in intestinal fermentation as mediators of public health. Bratisl. Lek. Listy 2019, 120, 807–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, S.H.; Belenguer, A.; Holtrop, G.; Johnstone, A.M.; Flint, H.J.; Lobley, G.E. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 2007, 73, 1073–1078. [Google Scholar] [CrossRef] [Green Version]
- Scott, K.P.; Duncan, S.H.; Flint, H.J. Dietary fibre and the gut microbiota. Nutr. Bull. 2008, 33, 201–211. [Google Scholar] [CrossRef]
- Suez, J.; Korem, T.; Zilberman-Schapira, G.; Segal, E.; Elinav, E. Non-caloric artificial sweeteners and the microbiome: Findings and challenges. Gut Microbes 2015, 6, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Feehley, T.; Nagler, C.R. Health: The weighty costs of non-caloric sweeteners. Nature 2014, 514, 176–177. [Google Scholar] [CrossRef] [Green Version]
- Farup, P.G.; Aasbrenn, M.; Valeur, J. Separating “good” from “bad” faecal dysbiosis-evidence from two cross-sectional studies. BMC Obes. 2018, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. Severe obesity and gut microbiota: Does bariatric surgery really reset the system? Gut 2019, 68, 5–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andoh, A.; Nishida, A.; Takahashi, K.; Inatomi, O.; Imaeda, H.; Bamba, S.; Kito, K.; Sugimoto, M.; Kobayashi, T. Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J. Clin. Biochem. Nutr. 2016, 59, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajilic-Stojanovic, M.; De Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 2014, 38, 996–1047. [Google Scholar] [CrossRef]
- Mahawar, K.K.; Sharples, A.J. Contribution of Malabsorption to Weight Loss After Roux-en-Y Gastric Bypass: A Systematic Review. Obes. Surg. 2017, 27, 2194–2206. [Google Scholar] [CrossRef]
- Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019, 15, 261–273. [Google Scholar] [CrossRef]
- Arora, T.; Sharma, R.; Frost, G. Propionate. Anti-obesity and satiety enhancing factor? Appetite 2011, 56, 511–515. [Google Scholar] [CrossRef]
- Li, Z.; Yi, C.X.; Katiraei, S.; Kooijman, S.; Zhou, E.; Chung, C.K.; Gao, Y.; Van den Heuvel, J.K.; Meijer, O.C.; Berbee, J.F.P.; et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018, 67, 1269–1279. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.K.; Muir, J.G.; Gibson, P.R. Review article: Insights into colonic protein fermentation, its modulation and potential health implications. Aliment. Pharmacol. Ther. 2016, 43, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Diether, N.E.; Willing, B.P. Microbial Fermentation of Dietary Protein: An Important Factor in Diet-Microbe-Host Interaction. Microorganisms 2019, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Dependent Variable | At Inclusion | Change T2 4 Minus T1 3 | Statistics (p-Value) | ||
---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | ||
Total SCFA 1 | 36.96 | 33.34; 40.59 | −5.61 | −10.43; −0.79 | 0.023 |
Acetic acid 1 | 20.28 | 18.37; 21.18 | −3.78 | −6.33; −1.23 | 0.004 |
Acetic acid (proportion 2) | 55.14 | 53.76; 56.52 | −1.66 | −3.70; 0.38 | 0.109 |
Propionic acid 1 | 6.49 | 5.73; 7.26 | −1.03 | −2.05; −0.01 | 0.048 |
Propionic acid (proportion 2 ) | 17.40 | 16.49; 18.32 | −0.42 | −1.58; 0.72 | 0.461 |
Butyric acid 1 | 7.23 | 6.35; 8.12 | −1.31 | −2.50; −0.13 | 0.031 |
Butyric acid (proportion 2) | 18.97 | 17.89; 20.04 | −0.38 | −1.77; 1.00 | 0.582 |
Valeric acid 1 | 1.01 | 0.86; 1.16 | 0.01 | −0.20; 0.22 | 0.904 |
Valeric acid (proportion 2) | 2.68 | 2.42; 2.94 | 0.56 | 0.21; 0.91 | 0.002 |
Caproic acid 1 | 0.31 | 0.23; 0.40 | −0.06 | −0.17; 0.06 | 0.353 |
Caproic acid (proportion 2) | 0.79 | 0.56; 1.02 | 0.17 | −0.14; 0.47 | 0.281 |
Isobutyric acid 1 | 0.70 | 0.60; 0.81 | 0.22 | 0.08; 0.36 | 0.002 |
Isobutyric acid (proportion 2) | 2.01 | 1.78; 2.22 | 0.90 | 0.55; 1.24 | < 0.001 |
Isovaleric acid 1 | 1.02 | 0.87; 1.18 | 0.36 | 0.15; 0.57 | 0.001 |
Isovaleric acid (proportion 2) | 2.94 | 2.60; 3.28 | 1.41 | 0.96; 1.86 | < 0.001 |
Isocaproic acid 1 | 0.00 | 0.00; 0.00 | 0.00 | −0.00; 0.00 | 0.753 |
Isocaproic aicd (proportion 2) | 0.00 | −0.00; 0.01 | 0.0 | −0.01; 0.01 | 0.803 |
Straight SCFA 1,5 | 33.93 | 30.60; 37.26 | −6.11 | −10.59; -1.63 | 0.008 |
Straight SCFA 5 (proportion 2) | 91.60 | 90.79; 92.41 | −2.77 | −3.79; −1.75 | <0.001 |
Branched SCFA 1,6 | 1.72 | 1.46; 1.97 | 0.59 | 0.25; 0.93 | 0.001 |
Branched SCFA 6 (proportion 2) | 4.95 | 4.40; 5.50 | 2.31 | 1.54; 3.08 | <0.001 |
Dependent Variable | Inclusion | Change T2 4 Minus T1 3 | Statistics (p-Value) | ||
---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | ||
Nutritional variables | |||||
Energy total (KJ) | 10662 | 9647; 11678 | −4404 | −5359; −3451 | <0.001 |
Total food intake (g) | 4971 | 4496; 5447 | −1410 | −1952; −869 | <0.001 |
Protein (g) | 112 | 100; 124 | −37 | −44; −31 | <0.001 |
Protein (energy-%) | 18.2 | 17.5; 19.0 | 2.0 | 1.0; 3.0 | <0.001 |
Fat (g) | 100 | 89; 111 | −44 | −54; −34 | <0.001 |
Fat (energy-%) | 34.2 | 32.8; 35.6 | −0.7 | −2.6; 1.1 | 0.435 |
Carbohydrates (g) | 275 | 247; 302 | −116 | −151; - 80 | <0.001 |
Carbohydrates (energy-%) | 44.1 | 42.5; 45.8 | −1.8 | −3.9; 0.4 | 0.102 |
Sugar (g) | 46 | 32; 59 | −26 | −46; −6 | 0.011 |
Sugar (energy-%) | 6.4 | 5.1; 7.7 | −1.9 | −3.7; −0.2 | 0.032 |
Starch (g) | 134 | 124; 145 | −65 | −78; −53 | <0.001 |
Starch (energy-%) | 21.9 | 20.6; 23.1 | −2.7 | −4.3; −1.0 | 0.002 |
Fibre (g) | 35 | 32; 37 | −12 | −15; −10 | <0.001 |
Fibre (energy-%) | 2.8 | 2.6; 3.0 | 0.2 | −0.1; 0.4 | 0.139 |
NNS (units) 1 | 8.0 | 6.0; 10.0 | −2.8 | −5.2; −0.5 | 0.020 |
Blood biomarkers | |||||
CRP | 6.9 | 6.0; 7.8 | −5.0 | −6.1; −4.0 | <0.001 |
HbA1C | 6.0 | 5.7; 6.2 | −0.7 | −0.9; −0.5 | <0.001 |
Zonulin (ng/ml) | 65 | 59; 70 | −35 | −44; −27 | <0.001 |
Microbiota | |||||
Dysbiosis Index (score 1–5) | 2.7 | 2.5; 3.0 | 1.4 | 0.9; 1.9 | <0.001 |
Firmicutes (mean score) 2 | −0.00 | −0.04; 0.04 | 0.16 | 0.09; 0.22 | <0.001 |
Bacteroidetes (mean score) 2 | 0.43 | 0.37; 0.50 | −0.08 | −0.19; 0.03 | 0.151 |
Independent Variables | Dependent Variables | |||||
---|---|---|---|---|---|---|
Total SCFA (mmol/kg Wet Weight) | Straight SCFA 1 (mmol/kg Wet Weight) | Branched SCFA 2 (mmol/kg Wet Weight) | ||||
B (95% CI) | p-Value | B (95% CI) | p-Value | B (95% CI) | p-Value | |
Nutritional variables | ||||||
Energy total (KJ) 3 | 1.10 (0.14; 2.05) | 0.026 | 1.06 (0.18; 1.94) | 0.019 | 0.00 (−0.06; 0.08) | 0.803 |
Total food intake (g) 3 | 1.55 (−0.16; 3.12) | 0.052 | 1.14 (−0.27; 2.85) | 0.054 | 0.07 (−0.5; 0.18) | 0.246 |
Protein (g) | 0.16 (0.06; 0.26) | 0.002 | 0.15 (0.06; 0.24) | 0.002 | 0.00 (−0.00; 0.01) | 0.201 |
Fat (g) | 0.13 (0.04; 0.21) | 0.004 | 0.12 (0.04;0.20) | 0.003 | 0.00 (−0.00; 0.01) | 0.635 |
Carbohydrates (g) | 0.01 (−0.01; 0.04) | 0.350 | 0.01 (−0.01; 0.04) | 0.299 | −0.00 (−0.00; 0.00) | 0.779 |
Sugar (g) | −0.03 (−0.07; 0.02) | 0.305 | −0.02 (−0.07; 0.02) | 0.325 | −0.00 (−0.01; 0.00) | 0.379 |
Starch (g) | 0.08 (0.01; 0.15) | 0.027 | 0.08 (0.01; 0.14) | 0.018 | 0.00 (−0.00; 0.01) | 0.960 |
Fibre (g) | 0.23 (−0.08; 0.54) | 0.146 | 0.23 (−0.06; 0.51) | 0.120 | −0.00 (−0.02; 0.02) | 0.984 |
NNS (units) 4 | −0.14 (−0.50; 0.23) | 0.460 | −0.11 (−0.45; 0.22) | 0.501 | −0.00 (−0.01; 0.01) | 0.620 |
Blood biomarkers | ||||||
CRP (mg/L) | 0.27 (−0.39; 0.92) | 0.426 | 0.25 (−0.35; 0.86) | 0.409 | 0.00 (−0.05; 0.05) | 0.977 |
HbA1C (%) | −1.48 (−3.93; 0.97) | 0.234 | −1.45 (−3.70; 0.80) | 0203 | −0.01 (−0.18; 0.17) | 0.932 |
Zonulin (ng/ml) | -0.02 (-0.12; 0.08) | 0.672 | −0.02 (−0.11; 0.07) | 0.669 | 0.00 (−0.01; 0.01) | 0.718 |
Microbiota | ||||||
Dysbiosis Index (score: 1 to 5) | 0.27 (−2.14; 2.69) | 0.822 | 0.19 (−2.04; 2.43) | 0.864 | 0.10 (−0.07; 0.27) | 0.237 |
Firmicutes (score: -3 to 3) | −12.4 (−29.8; 4.9) | 0.159 | −11.2 (−27.2; 4.8) | 0.169 | −0.80 (−2.00; 0.40) | 0.190 |
Bacteroidetes (score: -3 to 3) | −3.24 (−13.20; 6.72) | 0.521 | −2.63 (−11.82; 6.56) | 0.572 | −0.47 (−1.14; 0.21) | 0.173 |
Independent Variables | Dependent Variables | |||||
---|---|---|---|---|---|---|
Changes | Changes in Total SCFA (mmol/kg Wet Weight) | Changes in Straight SCFA 1 (mmol/kg Wet Weight) | Changes in Branched SCFA 2 (mmol/kg Wet Weight) | |||
B (95% CI) | p-Value | B (95% CI) | p-Value | B (95% CI) | p-Value | |
Nutritional variables | ||||||
Energy total (KJ) | 0.000 (−0.001; 0.002) | 0.605 | 0.001 (−0.001; 0.002) | 0.535 | 0.000 (0.000; 0.000) | 0.161 |
Total food intake (g) | 0.001 (−0.002; 0.004) | 0.497 | 0.001 (−0.002; 0.004) | 0.495 | 0.000 (0.000; 0.000) | 0.895 |
Protein (g) | 0.168 (−0.083; 0.418) | 0.184 | 0.166 (−0.065; 0.397) | 0.155 | −0.004 (−0.022; 0.015) | 0.681 |
Fat (g) | 0.079 (−0.093; 0.252) | 0.359 | 0.080 (−0.079; 0.239) | 0.315 | −0.007 (−0.019; 0.006) | 0.272 |
Carbohydrates (g) | −0.001 (−0.046; 0.045) | 0.970 | 0.001 (−0.041; 0.043) | 0.965 | −0.002 (−0.005; 0.001) | 0.205 |
Sugar (g) | −0.035 (−0.099; 0.029) | 0.280 | −0.032 (−0.092; 0.027) | 0.282 | −0.002 (−0.007; 0.003) | 0.425 |
Starch (g) | 0.077 (−0.067; 0.221) | 0.287 | 0.086 (−0.046; 0.218) | 0.196 | −0.012 (−0.22; -0.002) | 0.019 |
Fiber (g) | 0.357 (−0.258; 0.972) | 0.249 | 0.369 (−0.199; 0.936) | 0.197 | −0.002 (−0.067; 0.023) | 0.324 |
NNS (units) 3 | −0.125 (−1.094; 0.844) | 0.796 | −0.119 (−1.014; 0.776) | 0.790 | −0.025 (−0.095; 0.046) | 0.485 |
Blood biomarkers | ||||||
CRP (mg/L) | 0.779 (−0.298; 1.856) | 0.153 | 0.680 (−0.316; 1.675) | 0.176 | 0.059 (−0.017; 0.136) | 0.127 |
HbA1C (%) | 0.776 (−4.444; 5.996) | 0.766 | 0.575 (−4.239; 5.389) | 0.811 | 0.165 (−0.205; 0.535) | 0.373 |
Zonulin (ng/mL) | −0.035 (−0.191; 0.120) | 0.651 | −0.038 (−0.182; 0.105) | 0.596 | 0.005 (−0.006; 0.016) | 0.384 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farup, P.G.; Valeur, J. Changes in Faecal Short-Chain Fatty Acids after Weight-Loss Interventions in Subjects with Morbid Obesity. Nutrients 2020, 12, 802. https://doi.org/10.3390/nu12030802
Farup PG, Valeur J. Changes in Faecal Short-Chain Fatty Acids after Weight-Loss Interventions in Subjects with Morbid Obesity. Nutrients. 2020; 12(3):802. https://doi.org/10.3390/nu12030802
Chicago/Turabian StyleFarup, Per G, and Jørgen Valeur. 2020. "Changes in Faecal Short-Chain Fatty Acids after Weight-Loss Interventions in Subjects with Morbid Obesity" Nutrients 12, no. 3: 802. https://doi.org/10.3390/nu12030802
APA StyleFarup, P. G., & Valeur, J. (2020). Changes in Faecal Short-Chain Fatty Acids after Weight-Loss Interventions in Subjects with Morbid Obesity. Nutrients, 12(3), 802. https://doi.org/10.3390/nu12030802