Dietary Fibre May Mitigate Sarcopenia Risk: Findings from the NU-AGE Cohort of Older European Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Assessment of Body Composition
2.3. Assessment of Dietary Intake
2.4. Assessment of Physical Function
2.5. Assessment of Adherence to Physical Activity Guidelines Using Accelerometry
2.6. Assessment of Metabolic Risk
2.7. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dodds, R.M.; Roberts, H.C.; Cooper, C.; Sayer, A.A. The Epidemiology of Sarcopenia. J. Clin. Densitom. 2015, 18, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamboni, M.; Rossi, A.P.; Fantin, F.; Zamboni, G.; Chirumbolo, S.; Zoico, E.; Mazzali, G. Adipose tissue, diet and aging. Mech. Ageing Dev. 2014, 136, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Atkins, J.L. Muscle loss and obesity: The health implications of sarcopenia and sarcopenic obesity. Proc. Nutr. Soc. 2015, 74, 405–412. [Google Scholar] [CrossRef]
- Srikanthan, P.; Karlamangla, A.S. Relative Muscle Mass Is Inversely Associated with Insulin Resistance and Prediabetes. Findings from The Third National Health and Nutrition Examination Survey. J. Clin. Endocrinol. Metab. 2011, 96, 2898–2903. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.; Lee, S.-E.; Jun, J.E.; Lee, Y.-B.; Ahn, J.; Bae, J.C.; Jin, S.-M.; Hur, K.Y.; Jee, J.H.; Lee, M.-K.; et al. Increase in relative skeletal muscle mass over time and its inverse association with metabolic syndrome development: A 7-year retrospective cohort study. Cardiovasc. Diabetol. 2018, 17, 23. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.; Montiel Rojas, D.; Kadi, F. Impact of Meeting Different Guidelines for Protein Intake on Muscle Mass and Physical Function in Physically Active Older Women. Nutrients 2018, 10, 1156. [Google Scholar] [CrossRef] [Green Version]
- Fontana, L.; Hu, F.B. Optimal body weight for health and longevity: Bridging basic, clinical, and population research. Aging Cell 2014, 13, 391–400. [Google Scholar] [CrossRef]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.; Halvardsson, P.; Kadi, F. Adherence to dash-style dietary pattern impacts on adiponectin and clustered metabolic risk in older women. Nutrients 2019, 11, 805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abete, I.; Konieczna, J.; Zulet, M.A.; Galmés-Panades, A.M.; Ibero-Baraibar, I.; Babio, N.; Estruch, R.; Vidal, J.; Toledo, E.; Razquin, C.; et al. Association of lifestyle factors and inflammation with sarcopenic obesity: Data from the PREDIMED-Plus trial. J. Cachexia. Sarcopenia Muscle 2019, 10, 974–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroder, H.D. Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J. Nutr. Biochem. 2007, 18, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Jessri, M.; Wolfinger, R.D.; Lou, W.Y.; L’Abbé, M.R. Identification of dietary patterns associated with obesity in a nationally representative survey of Canadian adults: Application of a priori, hybrid, and simplified dietary pattern techniques. Am. J. Clin. Nutr. 2017, 105, 669–684. [Google Scholar] [CrossRef]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. Whole Grains and Pulses: A Comparison of the Nutritional and Health Benefits. J. Agric. Food Chem. 2014, 62, 7029–7049. [Google Scholar] [CrossRef]
- Smith, C.E.; Tucker, K.L. Health benefits of cereal fibre: A review of clinical trials. Nutr. Res. Rev. 2011, 24, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Kehoe, L.; Walton, J.; Flynn, A. Nutritional challenges for older adults in Europe: Current status and future directions. Proc. Nutr. Soc. 2019, 78, 221–233. [Google Scholar] [CrossRef]
- Dreher, M. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients 2018, 10, 1833. [Google Scholar] [CrossRef] [Green Version]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Miller, V.; Mente, A.; Dehghan, M.; Rangarajan, S.; Zhang, X.; Swaminathan, S.; Dagenais, G.; Gupta, R.; Mohan, V.; Lear, S.; et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): A prospective cohort study. Lancet 2017, 390, 2037–2049. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.; Leung, J.; Woo, J. Dietary Patterns and Risk of Frailty in Chinese Community-Dwelling Older People in Hong Kong: A Prospective Cohort Study. Nutrients 2015, 7, 7070–7084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buigues, C.; Fernández-Garrido, J.; Pruimboom, L.; Hoogland, A.; Navarro-Martínez, R.; Martínez-Martínez, M.; Verdejo, Y.; Mascarós, M.; Peris, C.; Cauli, O. Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial. Int. J. Mol. Sci. 2016, 17, 932. [Google Scholar] [CrossRef] [PubMed]
- Shikany, J.M.; Barrett-Connor, E.; Ensrud, K.E.; Cawthon, P.M.; Lewis, C.E.; Dam, T.-T.L.; Shannon, J.; Redden, D.T. Macronutrients, Diet Quality, and Frailty in Older Men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R.; Tapsell, L.C. Food synergy: The key to a healthy diet. Proc. Nutr. Soc. 2013, 72, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Basora-Gallisa, J.; Ruiz-Gutierrez, V.; Covas, M.I.; Fiol, M.; Gomez-Gracia, E.; Lopez-Sabater, M.C.; Escoda, R.; et al. Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J. Epidemiol. Commun. Health 2009, 63, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Kanauchi, O.; Mitsuyama, K.; Araki, Y.; Andoh, A. Modification of Intestinal Flora in the Treatment of Inflammatory Bowel Disease. Curr. Pharm. Des. 2003, 9, 333–346. [Google Scholar] [CrossRef]
- Wåhlin-Larsson, B.; Carnac, G.; Kadi, F. The influence of systemic inflammation on skeletal muscle in physically active elderly women. Age 2014, 36, 9718. [Google Scholar] [CrossRef] [Green Version]
- Wåhlin-Larsson, B.; Wilkinson, D.J.; Strandberg, E.; Hosford-Donovan, A.; Atherton, P.J.; Kadi, F. Mechanistic Links Underlying the Impact of C-Reactive Protein on Muscle Mass in Elderly. Cell. Physiol. Biochem. 2017, 44, 267–278. [Google Scholar] [CrossRef]
- Berendsen, A.; Santoro, A.; Pini, E.; Cevenini, E.; Ostan, R.; Pietruszka, B.; Rolf, K.; Cano, N.; Caille, A.; Lyon-Belgy, N.; et al. Reprint of: A parallel randomized trial on the effect of a healthful diet on inflammageing and its consequences in European elderly people: Design of the NU-AGE dietary intervention study. Mech. Ageing Dev. 2014, 136–137, 14–21. [Google Scholar] [CrossRef]
- Santoro, A.; Pini, E.; Scurti, M.; Palmas, G.; Berendsen, A.; Brzozowska, A.; Pietruszka, B.; Szczecinska, A.; Cano, N.; Meunier, N.; et al. Combating inflammaging through a Mediterranean whole diet approach: The NU-AGE project’s conceptual framework and design. Mech. Ageing Dev. 2014, 136–137, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Guidarelli, G.; Ostan, R.; Giampieri, E.; Fabbri, C.; Bertarelli, C.; Nicoletti, C.; Kadi, F.; de Groot, L.C.P.G.M.; Feskens, E.; et al. Gender-specific association of body composition with inflammatory and adipose-related markers in healthy elderly Europeans from the NU-AGE study. Eur. Radiol. 2019, 29, 4968–4979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.M.; Jang, H.C.; Lim, S. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. Korean J. Intern. Med. 2016, 31, 643–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglielmi, G.; Ponti, F.; Agostini, M.; Amadori, M.; Battista, G.; Bazzocchi, A. The role of DXA in sarcopenia. Aging Clin. Exp. Res. 2016, 28, 1047–1060. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, A.; van de Rest, O.; Feskens, E.; Santoro, A.; Ostan, R.; Pietruszka, B.; Brzozowska, A.; Stelmaszczyk-Kusz, A.; Jennings, A.; Gillings, R.; et al. Changes in Dietary Intake and Adherence to the NU-AGE Diet Following a One-Year Dietary Intervention among European Older Adults—Results of the NU-AGE Randomized Trial. Nutrients 2018, 10, 1905. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Nilsson, A.; Wåhlin-Larsson, B.; Kadi, F. Physical activity and not sedentary time per se influences on clustered metabolic risk in elderly community-dwelling women. PLoS ONE 2017, 12, e0175496. [Google Scholar] [CrossRef]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; McDowell, M. Physical Activity in the United States Measured by Accelerometer. Med. Sci. Sport. Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Santoro, A.; Bazzocchi, A.; Guidarelli, G.; Ostan, R.; Giampieri, E.; Mercatelli, D.; Scurti, M.; Berendsen, A.; Surala, O.; Jennings, A.; et al. A Cross-Sectional Analysis of Body Composition Among Healthy Elderly From the European NU-AGE Study: Sex and Country Specific Features. Front. Physiol. 2018, 9, 1693. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Viguiliouk, E.; Nishi, S.K.; Mejia, S.B.; Rahelić, D.; Kahleová, H.; Salas-Salvadó, J.; Kendall, C.W.; Sievenpiper, J.L. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, J.; Xu, J.-Y.; Zhang, W.; Han, S.; Qin, L.-Q. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: A meta-analysis of randomized controlled trials. Int. J. Food Sci. Nutr. 2015, 66, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R. The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br. J. Nutr. 2012, 108, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, J.I.; Kim, I.Y.; Wolfe, R.R. Protein consumption and the elderly: What is the optimal level of intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef] [Green Version]
- Hughes, V.A.; Frontera, W.R.; Wood, M.; Evans, W.J.; Dallal, G.E.; Roubenoff, R.; Singh, M.A.F. Longitudinal Muscle Strength Changes in Older Adults: Influence of Muscle Mass, Physical Activity, and Health. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, B209–B217. [Google Scholar] [CrossRef]
- Li, Y.O.; Komarek, A.R. Dietary fibre basics: Health, nutrition, analysis, and applications. Food Qual. Saf. 2017, 1, 47–59. [Google Scholar] [CrossRef]
SMI Male | SMI Female | |||||
---|---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | Tertile 1 | Tertile 2 | Tertile 3 | |
n | 139 | 138 | 138 | 189 | 188 | 189 |
SMI, % | ≤29.1 | >29.1–≤31.8 | >31.8 | ≤ 23.2 | >23.2–≤25.6 | > 25.6 |
Basic Characteristics | ||||||
Age, y | 72 ± 4 | 71 ± 4 | 70 ± 4 * | 71 ± 4 | 71 ± 4 | 71 ± 4 |
Weight, kg | 89.3 ± 11.6 | 81.6 ± 10.4 * | 75.8 ± 9.1 *# | 76.1 ± 11.4 | 68.0 ± 10.0 * | 63.0 ± 8.2 *# |
Height, cm | 172 ± 7 | 173 ± 6 | 174 ± 6 | 159 ± 7 | 159 ± 6 | 162 ± 7 *# |
Years full education, y | 13 ± 4 | 13 ± 4 | 13 ± 3 | 12 ± 4 | 12 ± 3 | 12 ± 3 |
Smoking, % never | 30.2 | 39.1 | 44.2 | 60.3 | 62.2 | 61.9 |
Medication, % yes | 89.2 | 81.9 | 60.9 | 83.1 | 80.9 | 68.8 |
PA. guidelines, % yes | 56.1 | 60.9 | 74.6 | 39.7 | 48.9 | 51.9 |
Physical function | ||||||
Handgrip, kg/kg BW | 0.44 ± 0.08 | 0.49 ± 0.09 * | 0.56 ± 0.09 *# | 0.32 ± 0.08 | 0.38 ± 0.08 * | 0.43 ± 0.10 *# |
SPPB, score | 11.5 ± 0.9 | 11.4 ± 1.0 | 11.8 ± 0.8 *# | 10.8 ± 1.5 | 11.3 ± 1.3 * | 11.5 ± 0.9 * |
Metabolic Risk Factors | ||||||
WC, cm | 105.5 ± 9.1 | 97.8 ± 8.6 * | 90.2 ± 7.4 *# | 94.9 ± 9.9 | 88.1 ± 9.7 * | 81.6 ± 8.1 *# |
BMI, kg/m2 | 29.7 ± 3.3 | 27.0 ± 2.8 * | 24.8 ± 2.6 *# | 29.8 ± 3.8 | 26.5 ± 3.5 * | 23.9 ± 3.0 *# |
DBP, mmHg | 76 ± 10 | 76 ± 11 | 78 ± 10 | 75 ± 10 | 74 ± 11 | 73 ± 11 |
SBP, mmHg | 142 ± 17 | 140 ± 19 | 141 ± 18 | 141 ± 21 | 140 ± 22 | 138 ± 21 |
MetS, % yes | 73.4 | 44.2 | 15.2 | 55.6 | 42.0 | 20.1 |
Glucose, mmol/L | 6.14 ± 1.02 | 5.69 ± 0.74 * | 5.37 ± 0.76 *# | 5.67 ± 0.82 | 5.39 ± 0.64 * | 5.24 ± 0.57 * |
Triglycerides, mmol/L | 1.21 ± 0.55 | 1.05 ± 0.45 * | 0.97 ± 0.43 * | 1.15 ± 0.46 | 1.07 ± 0.46 | 0.96 ± 0.40 * |
TC, mmol/L | 1.87 ± 0.40 | 1.92 ± 0.37 | 2.02 ± 0.40 * | 2.16 ± 0.40 | 2.18 ± 0.42 | 2.28 ± 0.41 * |
HDL-cholesterol, g/L | 0.46 ± 0.12 | 0.49 ± 0.13 | 0.57 ± 0.15 *# | 0.62 ± 0.16 | 0.64 ± 0.17 | 0.72 ± 0.19 *# |
LDL-cholesterol, g/L | 1.17 ± 0.37 | 1.22 ± 0.33 | 1.25 ± 0.36 | 1.32 ± 0.37 | 1.33 ± 0.39 | 1.37 ± 0.38 |
Adiponectin, µg/mL | 7.96 ± 4.47 | 9.63 ± 6.23 | 9.87 ± 6.63 * | 14.93 ± 8.44 | 15.68 ± 9.24 | 18.01 ± 9.81 * |
hs-CRP, mg/L | 2.0 ± 2.4 | 1.7 ± 2.3 | 1.1 ± 1.6 *# | 2.2 ± 2.7 | 1.5 ± 1.9 * | 1.3 ± 2.0 *# |
WBC, % total count | 5.9 ± 1.2 | 5.7 ± 1.5 | 5.7 ± 1.4 | 5.8 ± 1.4 | 5.8 ± 1.5 | 5.9 ± 1.5 |
Fat mass | ||||||
Total fat mass, kg | 30.4 ± 5.8 | 22.8 ± 4.9 * | 15.4 ± 4.6 *# | 34.2 ± 7.2 | 26.2 ± 5.5 * | 20.3 ± 5.0 *# |
Trunk fat mass, kg | 19.3 ± 3.9 | 13.9 ± 3.3 * | 8.8 ± 3.1 *# | 18.1 ± 4.2 | 13.5 ± 3.3 * | 9.9 ± 3.0 *# |
Android fat mass, kg | 3.7 ± 0.8 | 2.5 ± 0.7 * | 1.6 ± 0.6 *# | 3.3 ± 0.9 | 2.3 ± 0.6 * | 1.7 ± 0.5 *# |
Gynoid fat mass, kg | 4.1 ± 0.8 | 3.2 ± 0.7 * | 2.4 ± 0.7 *# | 5.8 ± 1.3 | 4.4 ± 0.9 * | 3.8 ± 0.8 *# |
MetS Male | MetS Female | |||
---|---|---|---|---|
No | Yes | No | Yes | |
n (%) | 231 (56%) | 184 (44%) | 344 (61%) | 222 (39%) |
SPPB, score | 11.6 ± 0.9 | 11.5 ± 0.9 | 11.3 ± 1.3 | 11.0 ± 1.3 * |
Handgrip, kg/kg BW | 0.52 ± 0.10 | 0.47 ± 0.08 * | 0.40 ± 0.10 | 0.35 ± 0.09 * |
SMI, % | 32.0 ± 2.9 | 28.9 ± 2.4 * | 25.2 ± 2.8 | 23.2 ± 2.4 * |
SMI Male | SMI Female | |||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T1 | T2 | T3 | |
Total energy intake, kcal | 1902 ± 418 | 1968 ± 413 | 2189 ± 473 *# | 1571 ± 314 | 1657 ± 304 * | 1730 ± 345 *# |
Fibre, g/d | 21.8 ± 7.7 | 23.6 ± 8.7 | 27.5 ± 9.2 *# | 19.6 ± 5.8 | 20.6 ± 6.3 | 23.4 ± 7.0 *# |
Protein, g/kg BW | 0.90 ± 0.23 | 0.99 ± 0.23 * | 1.15 ± 0.25 *# | 0.91 ± 0.24 | 1.02 ± 0.21 * | 1.12 ± 0.24 *# |
Adherence healthy diet, % | 48.9 ± 9.1 | 49.4 ± 8.4 | 48.9 ± 9.3 | 50.2 ± 9.7 | 50.9 ± 9.3 | 50.9 ± 9.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montiel-Rojas, D.; Nilsson, A.; Santoro, A.; Franceschi, C.; Bazzocchi, A.; Battista, G.; de Groot, L.C.P.G.M.; Feskens, E.J.M.; Berendsen, A.; Pietruszka, B.; et al. Dietary Fibre May Mitigate Sarcopenia Risk: Findings from the NU-AGE Cohort of Older European Adults. Nutrients 2020, 12, 1075. https://doi.org/10.3390/nu12041075
Montiel-Rojas D, Nilsson A, Santoro A, Franceschi C, Bazzocchi A, Battista G, de Groot LCPGM, Feskens EJM, Berendsen A, Pietruszka B, et al. Dietary Fibre May Mitigate Sarcopenia Risk: Findings from the NU-AGE Cohort of Older European Adults. Nutrients. 2020; 12(4):1075. https://doi.org/10.3390/nu12041075
Chicago/Turabian StyleMontiel-Rojas, Diego, Andreas Nilsson, Aurelia Santoro, Claudio Franceschi, Alberto Bazzocchi, Giuseppe Battista, Lisette C. P. G. M. de Groot, Edith J. M. Feskens, Agnes Berendsen, Barbara Pietruszka, and et al. 2020. "Dietary Fibre May Mitigate Sarcopenia Risk: Findings from the NU-AGE Cohort of Older European Adults" Nutrients 12, no. 4: 1075. https://doi.org/10.3390/nu12041075
APA StyleMontiel-Rojas, D., Nilsson, A., Santoro, A., Franceschi, C., Bazzocchi, A., Battista, G., de Groot, L. C. P. G. M., Feskens, E. J. M., Berendsen, A., Pietruszka, B., Januszko, O., Fairweather-Tait, S., Jennings, A., Nicoletti, C., & Kadi, F. (2020). Dietary Fibre May Mitigate Sarcopenia Risk: Findings from the NU-AGE Cohort of Older European Adults. Nutrients, 12(4), 1075. https://doi.org/10.3390/nu12041075